
Self-Adaptive Software:
Landscape and Research Challenges

Mazeiar Salehie and Ladan Tahvildari

Software Technologies Applied Research (STAR) Group

University of Waterloo, Waterloo, Canada

{msalehie, ltahvild}@uwaterloo.ca

Software systems dealing with distributed applications in changing environments normally re-
quire human supervision to continue operation in all conditions. These (re-)configuring, trou-
bleshooting, and in general maintenance tasks lead to costly and time-consuming procedures
during the operating phase. These problems are primarily due to the open-loop structure often
followed in software development. Therefore, there is a high demand for management complexity
reduction, management automation, robustness, and achieving all of the desired quality require-
ments within a reasonable cost and time range during operation. Self-adaptive software is a
response to these demands; it is a closed-loop system with a feedback loop aiming to adjust itself
to changes during its operation. These changes may stem from the software system’s self (internal
causes e.g., failure) or context (external events e.g., increasing requests from users). Such a sys-
tem is required to monitor itself and its context, detect significant changes, decide how to react,
and act to execute such decisions. These processes depend on adaptation properties (called self-*
properties), domain characteristics (context information or models), and preferences of stakehold-
ers. Noting these requirements, it is widely believed that new models and frameworks are needed
to design self-adaptive software. This survey article presents a taxonomy, based on concerns of
adaptation, i.e., how, what, when and where, towards providing a unified view of this emerging
area. Moreover, as adaptive systems are encountered in many disciplines, it is imperative to learn
from the theories and models developed in these other areas. This survey article presents a land-
scape of research in self-adaptive software by highlighting relevant disciplines and some prominent
research projects. This landscape helps to identify the underlying research gaps and elaborates
on the corresponding challenges.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey; D.2.9
[Software]: Management—Software configuration management ; Software quality assurance; C.4
[Computer Systems Organization]: Performance of Systems; K.6.3 [Management of Com-
puting and Information Systems]: Software Management—Software Maintenance

General Terms: Management, Performance, Reliability, Design

Additional Key Words and Phrases: Self-Adaptive Software, Survey, Self-* properties, Taxonomy

1. INTRODUCTION

Scientists and engineers have made significant efforts to design and develop self-
adaptive systems. These systems address adaptivity in various concerns including
performance, security, and fault management [Laddaga 1999; Kephart and Chess
2003]. While self-adaptive systems are used in a number of different areas, this
article focuses only on their application in the software domain, called self-adaptive
software. Researchers in this area have proposed several solutions to incorporate
adaptation mechanisms into software systems. In this way, a software application
which would normally be implemented as an open-loop system, is converted to
a closed-loop system using feedback. While adaptivity may be achieved through

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009, Pages 1–0??.



2 · Self-Adaptive Software: Landscape and Research Challenges

feed-forward mechanisms as well (e.g., through workload monitoring), the feedback
loop takes into account a more holistic view of what happens inside the application
and its environment.

Self-adaptive software aims to adjust various artifacts or attributes in response
to changes in the self and in the context of a software system. By self, we mean
the whole body of the software, mostly implemented in several layers, while the
context encompasses everything in the operating environment that affects the sys-
tem’s properties and its behavior. Therefore, in our view, self-adaptive software is
a closed-loop system with feedback from the self and the context.

A fundamental question is why we need self-adaptive software. The primary
reason is the increasing cost of handling the complexity of software systems to
achieve their goals [Laddaga 2000]. Among these goals, some deal with management
complexity, robustness in handling unexpected conditions (e.g., failure), changing
priorities and policies governing the goals, and changing conditions (e.g., in the
context of mobility). Traditionally, a significant part of the research on handling
complexity and achieving quality goals has been focused on software development
and its internal quality attributes (as in ISO 9126-1 quality model [ISO/IEC 9126-1
2001 ]). However, in recent years, there has been an increasing demand to deal with
these issues at operation time (run-time). The primary causes for this trend include
an increase in the heterogeneity level of software components, more frequent changes
in the context/goals/requirements during run-time, and higher security needs. In
fact, some of these causes are consequences of the higher demand for ubiquitous,
pervasive, embedded, and mobile applications, mostly in the Internet and ad-hoc
networks.

Self-adaptive software is expected to fulfill its requirements at run-time in re-
sponse to changes. To achieve this goal, software should have certain characteristics,
known as self-* properties [Kephart and Chess 2003; Babaoglu et al. 2005]. These
properties provide some degree of variability, and consequently, help to overcome
deviations from expected goals (e.g., reliability). Managing software at run-time
is often costly and time-consuming. Therefore, an adaptation mechanism is ex-
pected to trace software changes and take appropriate actions at a reasonable cost
and in a timely manner. This objective can be achieved through monitoring the
software system (self ) and its environment (context) to detect changes, make ap-
propriate decisions, and act accordingly. Required changes in traditional software
systems can stem from different categories of maintenance/evolution, as discussed
in a relevant IEEE standard [IEEE-ISO/IEC 14764 2006]. This standard discusses
corrective maintenance for fixing bugs, adaptive maintenance for adjusting the soft-
ware according to changing environments, perfective maintenance for updating the
software according to changing requirements, and finally, preventive maintenance
for improving software maintainability. Although this standard does not explicitly
refer to dynamic/run-time changes (dynamic evolution) in conjunction with these
four categories, these changes are part of what is needed to deal with bugs and
new/changing requirements. Dynamic/runtime changes are the basis for adapta-
tion in self-adaptive software.

This survey article presents an overview of basic principles, properties, and back-
ground behind self-adaptive software. It proposes a taxonomy of adaptation relying
ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



Mazeiar Salehie and Ladan Tahvildari · 3

on the questions of when, what, how, and where. Using this taxonomy, a landscape
is presented by reviewing a number of disciplines dealing with self-adaptive soft-
ware, as well as some selected research projects. The comparison between different
views followed in this landscape provides a framework for identifying challenges,
current research gaps, and some promising future directions.

The rest of this article is organized as follows: Section 2 discusses the principles of
self-adaptive software by reviewing the underlying definitions, properties, require-
ments, and processes. Section 3 introduces a taxonomy for self-adaptive software
by relying on a hierarchical structure capturing the adaptation requirements. Sec-
tion 4 explains how the techniques developed in the context of adaptive systems in
several existing disciplines can be used to support self-adaptive software, and then
analyzes some selected projects to identify research gaps. Section 5 aims to identify
future research challenges and classifies them according to the specified research
gaps. Finally, Section 6 presents a summary and some concluding remarks.

2. SELF-ADAPTIVE SOFTWARE: PRINCIPLES AND REQUIREMENTS

This section presents a general review of the basic concepts in self-adaptive software.
The objective is to provide a unified set of definitions, goals, and requirements that
are used in the rest of the article.

2.1 Definition

Among several existing definitions for self-adaptive software, one is provided in
a DARPA Broad Agency Announcement (BAA) [Laddaga 1997]: “Self-adaptive
software evaluates its own behavior and changes behavior when the evaluation in-
dicates that it is not accomplishing what the software is intended to do, or when
better functionality or performance is possible.” A similar definition is given in [Or-
eizy et al. 1999]: “Self-adaptive software modifies its own behavior in response to
changes in its operating environment. By operating environment, we mean any-
thing observable by the software system, such as end-user input, external hardware
devices and sensors, or program instrumentation.”

Prior to formalizing the concept of self-adaptive software, there has been a related
point of view regarding the adaptive programming principle as an extension of
object-oriented programming [Lieberherr and Palsberg 1993]: “A program should
be designed so that the representation of an object can be changed within certain
constraints without affecting the program at all.” According to this view point,
an adaptive program is considered as: “A generic process model parameterized
by graph constraints which define compatible structural models (customizers) as
parameters of the process model.” This view on adaptation is similar to reflection
and meta-programming techniques.

In another point of view, adaptation is mapped to evolution. Buckley et al. pro-
vide a taxonomy of evolution based on the object of change (where), system prop-
erties (what), temporal properties (when), and change support (how) [Buckley et al.
2005]. Salehie et al. map this taxonomy to self-adaptive software domain, and pro-
pose a conceptual model for adaptation changes based on Activity Theory [Salehie
et al. 2009]. Static and dynamic adaptation, related to the temporal dimension of
this view, are mapped to compile-time evolution and load-time/run-time evolution,
respectively. For this reason, dynamic adaptation is sometimes called dynamic evo-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



4 · Self-Adaptive Software: Landscape and Research Challenges

lution. In fact, self-adaptivity is linked to what Lehman has discussed on feedback
and feedback control in the context of the software process for evolution [Lehman
1996]. According to this article, the essence of self-adaptive software is aligned with
the laws of evolution (described by Lehman and his colleagues in FEAST/1 and
FEAST/2 projects).

Self-adaptive software systems are strongly related to other types of systems.
The notable ones are autonomic and self-managing systems [Kephart and Chess
2003]. However, it is difficult to draw a distinction between these terminologies.
Many researchers use the terms self-adaptive (not specifically self-adaptive soft-
ware), autonomic computing, and self-managing interchangeably, for instance in
the survey provided by Huebscher and McCann [Huebscher and McCann 2008]. In
comparing self-adaptive software to autonomic computing, there are some similar-
ities and some differences. From one point of view, the self-adaptive software do-
main is more limited, while autonomic computing has emerged in a broader context.
This means self-adaptive software has less coverage and falls under the umbrella
of autonomic computing. From another point of view, we can consider a layered
model for a software-intensive system that consists of: application(s), middleware,
network, operating system, hardware [McKinley et al. 2004], and sub-layers of mid-
dleware [Schmidt 2002]. According to this view, self-adaptive software primarily
covers the application and the middleware layers, while its coverage fades in the
layers below middleware. On the other hand, autonomic computing covers lower
layers too, down to even the network and operating system (e.g., see reincarnation
server in Minix 3.0 [Tanenbaum and Woodhull 2006]). However, the concepts of
these domains are strongly related and in many cases can be used interchangeably.

The key point in self-adaptive software is that its life-cycle should not be stopped
after its development and initial set up. This cycle should be continued in an
appropriate form after installation in order to evaluate the system and respond
to changes at all time. Such a closed-loop deals with different changes in user
requirements, configuration, security, and a number of other issues.

2.2 Self-* Properties

Adaptivity properties are often known as self-* properties. One of the initial well-
known set of self-* properties, introduced by IBM, include eight properties [IBM-AC
2001 ]. This section discusses these properties, along with some other related ones,
towards providing a unified hierarchical set, which will be used in the rest of the
article.

2.2.1 A Hierarchical View.
Figure 1 illustrates a hierarchy of self-* properties in three levels. In this hierarchy,
self-adaptiveness and self-organizing are general properties, which are decomposed
into major and primitive properties at two different levels. The rest of this section
further elaborates on each level of this hierarchy.
—General Level: This level contains global properties of self-adaptive software. A

subset of these properties, which falls under the umbrella of self-adaptiveness [Or-
eizy et al. 1999], consists of self-managing, self-governing, self-maintenance [Kephart
and Chess 2003], self-control [Kokar et al. 1999], and self-evaluating [Laddaga
2006]. Another subset at this level is self-organizing [Jelasity et al. 2006; Seru-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



Mazeiar Salehie and Ladan Tahvildari · 5

Self-Adaptiveness

Self-Configuring Self-Healing 

Self-Optimizing Self-Protecting 

Self-Awareness Context-Awareness 
Primitive Level 

General Level 

Major Level 

Fig. 1: Hierarchy of the Self-* Properties

gendo et al. 2003], which emphasizes decentralization and emergent functional-
ity(ies). A system with such a property typically consists of many interacting
elements that are either absolutely unaware of or have only partial knowledge
about the global system. The self-organizing property is bottom-up, in contrast
to self-adaptiveness, which is typically top-down. Although most of the concepts
in this article are applicable to the self-organizing property, this property is not
the primary concern of this survey work. Noting the amount of research dealing
with self-organizing systems, a separate survey would be needed to adequately
cover this emerging area.

—Major Level: The IBM autonomic computing initiative defines a set of four
properties at this level [Horn 2001]. This classification serves as the de facto
standard in this domain. These properties have been defined in accordance to
biological self-adaptation mechanisms [Kephart and Chess 2003]. For instance,
the human body has similar properties in order to adapt itself to changes in its
context (e.g., changing temperature in the environment) or self (an injury or
failure in one of the internal organs). The following list further elaborates on the
details.
• Self-configuring is the capability of reconfiguring automatically and dynami-

cally in response to changes by installing, updating, integrating, and compos-
ing/decomposing software entities.

• Self-healing, which is linked to self-diagnosing [Robertson and Laddaga 2005]
or self-repairing [de Lemos and Fiadeiro 2002], is the capability of discovering,
diagnosing, and reacting to disruptions. It can also anticipate potential prob-
lems, and accordingly take proper actions to prevent a failure. Self-diagnosing
refers to diagnosing errors, faults and failures, while self-repairing focuses on
recovery from them.

• Self-optimizing, which is also called self-tuning or Self-adjusting [Sterritt et al.
2005], is the capability of managing performance and resource allocation in
order to satisfy the requirements of different users. End-to-end response time,
throughput, utilization, and workload are examples of important concerns re-
lated to this property.

• Self-protecting is the capability of detecting security breaches and recovering
from their effects. It has two aspects, namely defending the system against
malicious attacks, and anticipating problems and taking actions to avoid them
or to mitigate their effects.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



6 · Self-Adaptive Software: Landscape and Research Challenges

—Primitive Level: Self-awareness, self-monitoring, self-situated, and context-
awareness are the underlying primitive properties [Horn 2001; Salehie and Tahvil-
dari 2005a]. Some other properties were also mentioned in this level, such as
openness [IBM-AC 2001 ] and anticipatory [Parashar and Hariri 2005], which are
optional. The following list further elaborates on the details.
• Self-Awareness [Hinchey and Sterritt 2006] means that the system is aware of

its self states and behaviors. This property is based on self-monitoring which
reflects what is monitored.

• Context-Awareness [Parashar and Hariri 2005] means that the system is aware
of its context, which is its operational environment.

2.2.2 Relationships with Quality Factors.
There is a belief that self-* properties are related to software quality factors. Sale-
hie and Tahvildari discuss the potential links between these properties and quality
factors [Salehie and Tahvildari 2005a]. The links can help us define and understand
self-* properties better, and to utilize the existing body of knowledge on quality
factors, metrics, and requirements, in developing and operating self-adaptive soft-
ware. To demonstrate such relationships, it is better to analyze how a well-known
set of quality factors defined in the ISO 9126-1 quality model [ISO/IEC 9126-1 2001
] are linked to major and primitive self-* properties.

Self-configuring potentially impacts several quality factors, such as maintainabil-
ity, functionality, portability, and usability. One may argue that self-configuring
may be linked to reliability as well. This depends on the definition of reconfiguring.
Assuming the definition given in the previous section (which is adopted by many
researchers), we cannot associate all of the changes made to the system to for keep
it reliable (e.g., fault recovery) with self-configuring. For self-healing, the main ob-
jective is to maximize the availability, survivability, maintainability, and reliability
of the system [Ganek and Corbi 2003].

Self-optimizing has a strong relationship with efficiency. Since minimizing re-
sponse time is often one of the primary system requirements, it also impacts func-
tionality. On the other hand, self-protecting has a strong relationship with reliabil-
ity, and it can also be linked to functionality. Primitive properties may also impact
quality factors, such as maintainability, functionality, and portability. Sterritt et
al. also emphasize this view by discussing the relationship between dependabil-
ity aspects (e.g., availability and reliability) and the self-* properties [Sterritt and
Bustard 2003].

2.3 Adaptation Requirements Elicitation

One plausible way to capture the requirements of self-adaptive software is getting
help from the six honest serving men1. These six questions are very important in
eliciting adaptation requirements. Laddaga uses a similar idea to partially address
these requirements [Laddaga 2000]. The following set is a modified and completed
version of Laddaga’s questions to elicit the essential requirements of self-adaptive
software.

1Six questions What, Where, Who, When, Why and How, called 5W1H, from “Six Honest Men”
poem of R. Kipling, Just so stories. Penguin Books, London, 1902.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



Mazeiar Salehie and Ladan Tahvildari · 7

• Where: This set of questions are concerned with where the need for change
is. Which artifacts at which layer (e.g., middleware) and level of granularity
need to be changed? For this purpose, it is required to collect information about
attributes of adaptable software, dependency between its components and lay-
ers, and probably information about its operational profile. Therefore, “where”
questions set out to locate the problem that needs to be resolved by adaptation.

• When: Temporal aspects of change are addressed by this set of questions. When
does a change need to be applied, and when it is feasible to do so? Can it be
applied at anytime the system requires, or are there constraints that limit some
types of change? How often does the system need to be changed? Are the
changes happening continuously, or do they occur only as needed? Is it enough
to perform adaptation actions reactively, or do we need to predict some changes
and act proactively?

• What: This set of questions identifies what attributes or artifacts of the system
can be changed through adaptation actions, and what needs to be changed in
each situation. These can vary from parameters and methods to components,
architecture style, and system resources. It is also important to identify the
alternatives available for the actions and the range of change for attributes (e.g.,
parameters). Moreover, it is essential to determine what events and attributes
have to be monitored to follow-up on the changes, and what resources are essential
for adaptation actions?

• Why: This set of questions deals with the motivations of building a self-adaptive
software application. As we discussed before, these questions are concerned with
the objectives addressed by the system (e.g., robustness). If a goal-oriented
requirements engineering approach is adopted to elicit the requirements, this set
of questions identifies the goals of the self-adaptive software system.

• Who: This set of questions addresses the level of automation and human in-
volvement in self-adaptive software. With respect to automation, it is expected
that there will be minimum human intervention, whereas an effective interaction
with system owners and managers is required to build trust and transfer policies
(e.g. business policies). This issue will be discussed further in the taxonomy of
adaptation (See Section 3).

• How: One of the important requirements for adaptation is to determine how
the adaptable artifacts can be changed and which adaptation action(s) can be
appropriate to be applied in a given condition? This includes how the order of
changes, their costs and aftereffects are taken into account for deciding the next
action/plan.

In order to realize self-adaptive software, the above questions need to be answered
in two phases: a) the developing phase, which deals with developing and building
self-adaptive software either from scratch or by re-engineering a legacy system, and
b) the operating phase, which manages the operational concerns to properly respond
to changes in the self/context of a software application. At the developing phase,
designers elicit the requirements based on the above questions in order to build
adaptable software as well as to set up mechanisms and alternatives to be used at
the operating phase. At the operating phase, the system requires to adapt itself

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



8 · Self-Adaptive Software: Landscape and Research Challenges

based on the above questions. In fact, the questions in this phase are in general ask
about “where” the source of need for a change is, what needs be changed, and when
and how it is better to be changed. the answer to these questions at the operating
phase depends on the approach and type of adaptation chosen at the developing
phase. Some of these questions may be answered by administrators and managers
through policies, and the rest should be determined by the system itself.

The distinction between the what and where questions is notable. “Where”
addresses which part of the system caused the problem (e.g., deviation from quality
goals), while “what” refers to the attributes and artifacts that need to be changed
to resolve the problem. For example, in a multi-tier enterprise application, it is
essential to know which part caused performance degradation (e.g., the database
tier due to lack of resources) and after that, what needs to be changed (e.g., changing
the service level at the web tier). Sometimes, the entity that is the source of change
is also the entity that needs to be changed (e.g., component swapping). Therefore,
although these questions are related, they address different aspects of adaptation.

2.4 Adaptation Loop

As explained earlier, self-adaptive software embodies a closed-loop mechanism. This
loop, called the adaptation loop, consists of several processes, as well as sensors and
effectors, as depicted in Fig. 2. This loop is called the MAPE-K loop in the context
of autonomic computing, and includes the Monitoring, Analyzing, Planning and
Executing functions, with the addition of a shared Knowledge-base[Kephart and
Chess 2003]. Dobson et al. also represent the similar loop as autonomic control
loop in the context of autonomic communication, including collect, analyze, decide
and act [Dobson et al. 2006]. Oreizy et al. refer to this loop as adaptation manage-
ment, which is composed of several processes for enacting changes and collecting
observations, evaluating and monitoring observations, planning changes, and de-
ploying change descriptions[Oreizy et al. 1999]. More details on the processes,
sensors, and effectors of Fig. 2 are provided in the following sections.

Monitoring

Detecting Deciding

Symptoms
Decisions

Acting

Process

Data Flow

Sensors Effectors

Interface

Events Actions

Requests

Fig. 2: Four Adaptation Processes in Self-Adaptive Software

2.4.1 Adaptation Processes.
The adaptation processes, which exist at the operating phase can be summarized
as follows:
ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



Mazeiar Salehie and Ladan Tahvildari · 9

—The monitoring process is responsible for collecting and correlating data from
sensors and converting them to behavioral patterns and symptoms. This process
partly addresses the where, when, and what questions in the operating phase. The
process can be realized through event correlation, or simply threshold checking,
as well as other methods.

—The detecting process is responsible for analyzing the symptoms provided by
the monitoring process and the history of the system, in order to detect when
a change (response) is required. It also helps to identify where the source of a
transition to a new state (deviation from desired states or goals) is.

—The deciding process determines what needs to be changed, and how to change
it to achieve the best outcome. This relies on certain criteria to compare different
ways of applying the change, for instance by different courses of action.

—The acting process is responsible for applying the actions determined by the
deciding process. This includes managing non-primitive actions through prede-
fined workflows, or mapping actions to what is provided by effectors and their
underlying dynamic adaptation techniques. This process relates to the questions
of how, what, and when to change.

2.4.2 Sensors and Effectors.
Sensors monitor software entities to generate a collection of data reflecting the
state of the system, while effectors rely on in vivo mechanisms to apply changes. In
fact, effectors realize adaptation actions. Sensors and effectors are essential parts
of a self-adaptive software system. Indeed, the first step in realizing self-adaptive
software is instrumenting sensors and effectors to build the adaptable software.
Building adaptable software can be accomplished in an engineering or re-engineering
manner. For example, Parekh et al. discuss adding sensors (probes) into legacy
systems in order to retrofit the self-* properties [Parekh et al. 2006].

Table I lists the most common set of sensors and effectors in self-adaptive soft-
ware. Logging is likely to be the simplest technique for capturing information from
software. The logs need to be filtered, processed, and analyzed to mine significant
information. The IBM Generic Log Adapter (GLA) and the Log Trace Analyzer
(LTA) [IBM 2005] are examples of tools for this purpose.

Sensing and monitoring techniques from other areas can also be used. For in-
stance, some of the protocols, standards, and formats that have been utilized are:
CBE (Common Base Events) [IBM 2005], WBEM (Web-Based Enterprise Man-
agement) [WBEM ] (containing CIM - Common Information Model [CIM ]), and
SIENA (Scalable Internet Event Notification Architectures) [Carzaniga et al. 2001].
Another noteworthy standard for sensing is ARM (Application Response Measure-
ment) [ARM ], which enables developers to create a comprehensive end-to-end
management system with the capability of measuring the application’s availability,
performance, usage, and end-to-end response time. The ideas behind SNMP (Sim-
ple Network Management Protocol) [SNMP ] for network and distributed systems
are also applicable to self-adaptive software.

Profiling tools and techniques can also help in defining desirable sensors. The
Java environment provides JVMTI (Java Virtual Machine Tool Interface) for this
purpose [JVMTI ]. Software management frameworks, such as JMX (Java Manage-
ment eXtensions) [JMX ] provide powerful facilities for both sensing and effecting.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



10 · Self-Adaptive Software: Landscape and Research Challenges

Table I: Different Techniques for Realizing Sensors and Effectors

Entity Technique Example

Logging
GLA (Generic Log Adapter), LTA (Log Trace Ana-
lyzer) [IBM 2005]

Monitoring & events
information models

CIM (Common Information Model) [CIM ], CBE (Com-
mon Base Events) [IBM 2005]

Sensors
Management protocols
and standards

Simple Network Management Protocol[SNMP ] , Web-
Based Enterprise Management[WBEM ] , Application Re-
sponse Measurement[ARM ], Siena [Carzaniga et al. 2001]

Profiling JVMTI (JVM Tool Interface) [JVMTI ]

Management frameworks JMX (Java Management eXtension) [JMX ]

Aspect-oriented
programming

BtM (Build to Manage) [IBM BtM ], JRat (Java Run-time
Analysis Toolkit) [ShiftOne JRat ]

Signal monitoring
Heartbeat and pulse monitoring [Hinchey and Sterritt
2006]

Design patterns
Wrapper (Adapter), Proxy, Strategy Pattern [Gamma
et al. 1995]

Architectural
patterns

Microkernel pattern, Reflection pattern, Interception pat-
tern [Buschmann et al. 1996; Alur et al. 2001]

Autonomic patterns
Goal-driven self-assembly, self-healing clusters and
utility-function driven resource allocation [Kephart 2005]

Effectors
Middleware-based
effectors

Integrated middleware, Middleware intercep-
tion [Popovici et al. 2002], Virtual component pat-
tern [Schmidt and Cleeland 1999]

Metaobject protocol TRAP/J [Sadjadi et al. 2004]

Dynamic aspect weaving JAC [Pawlak et al. 2001], TRAP/J [Sadjadi et al. 2004]

Function pointers Callback in CASA [Mukhija and Glinz 2005]

Another notable idea along this line is pulse monitoring (reflex signal) [Hinchey and
Sterritt 2006] adopted from Grid Computing, which is an extension of the heartbeat
monitoring process. This technique encodes the status of the monitored entity.

Some of the effectors are based on a set of design patterns that allow the software
system to change some artifacts during run-time. For instance, wrapper (adapter),
proxy, and strategy are well-known design patterns [Gamma et al. 1995] for this
purpose. Landauer et al. utilize the wrapping idea at the architecture level of adap-
tive systems [Landauer and Bellman 2001]. Moreover, microkernel, reflection, and
interception are architectural patterns suitable for enabling adaptability in a soft-
ware system [Buschmann et al. 1996; Alur et al. 2001]. Furthermore, Kephart men-
tions several design patterns, namely goal-driven self-assembly, self-healing clusters,
and utility-function-driven resource allocation for self-configuring, self-healing, and
self-optimizing [Kephart 2005], respectively. Babaoglu et al. also discuss design
patterns from biology, such as plain diffusion and replication, which are applicable
to distributed adaptable systems [Babaoglu et al. 2006].

An important class of techniques for effectors is based on middleware. In these
solutions, system developers realize effectors at the middleware layer by intercept-
ing the software flow [Popovici et al. 2002], or by using design patterns [Schmidt
and Cleeland 1999]. Other solutions have been proposed for implementing effectors
using dynamic aspect weaving (e.g., in JAC [Pawlak et al. 2001]), metaobject pro-
ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



Mazeiar Salehie and Ladan Tahvildari · 11

tocol (e.g., in TRAP/J [Sadjadi et al. 2004]), and the function pointers technique
(e.g., in CASA [Mukhija and Glinz 2005] for realizing callback). Some middlewares
provide support for dynamic aspect weaving. For example, JBoss has an AOP
module, with the capability of dynamic weaving (e.g., used for effectors in [Salehie
et al. 2009]).

3. A TAXONOMY OF SELF-ADAPTATION

Several works have already discussed different aspects of self-adaptation. Oreizy
et al. discuss the spectrum of self-adaptivity, which generally starts from static
approaches and then moves on to dynamic ones [Oreizy et al. 1999]. On the other
hand, McKinley et al. focus more on the techniques and technologies in this do-
main [McKinley et al. 2004]. This article unifies these classifications into a taxon-
omy, and also introduces new facets to fill in the gaps.

Object to Adapt

Realization Issues

Temporal Characteristics

Interaction Concerns

Self-Adaptation

Layer

Artifact & Granularity

Impact & Cost

Approach

Type

Making/Achieving

External/Internal

Static/Dynamic Decision-Making

Open/Close

Specific/Generic

Model-Based/Free

Reactive/Proactive

Continuous/Adaptive Monitoring

Human Involvement

Interoperability

Trust

Fig. 3: Taxonomy of Self-Adaptation

Figure 3 illustrates the hierarchy of the introduced taxonomy. The first level
includes: “object to adapt”, “realization issues”, “temporal characteristics” and
“interaction concerns”. In organizing these facets, we kept the requirements ques-
tions, introduced in Section 2.3, in mind. Although these facets cannot be mapped
to the questions on a one-to-one basis, one or two questions in each facet are em-
phasized: “object to adapt” mainly addresses the “what” and “where” questions,
while “realization issues” deal more with the “how” concerns, and “temporal char-
acteristics” deal with issues related to the “when” aspect. Interaction concerns are
more or less related to all four of where-when-what-how questions as well as to the
“who” question.

3.1 Object to Adapt

This facet of the proposed taxonomy deals with where and what aspects of the
change. In fact, both sets of what and where questions are covered in the developing

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



12 · Self-Adaptive Software: Landscape and Research Challenges

and operating phases.

—Layer : Which layer of the software system (i.e., where) is not as expected, based
on the requirements? Which layer of the system can be changed and needs to
be changed? Adaptation actions can be applied to different layers. McKinley et
al. [McKinley et al. 2004] define two levels of application and middleware for this
purpose, in which middleware is decomposed into four sub-layers, as described
in [Schmidt 2002]. Application-layer adaptation differs from middleware-layer
adaptation in a number of ways. For example, in application-layer adaptation,
changes usually have direct impact on the user, and consequently, they may
require the user’s explicit approval and trust [Lapouchnian et al. 2005].

—Artifact and Granularity : Which artifact(s) and at which level of granularity
can/needs to be changed? What artifact, attribute, or resource can/needs to be
changed for this purpose? Adaptation can change the modules or the architec-
ture and the way they are composed. An application can be decomposed into
services, methods, objects, components, aspects, and subsystems depending on
the architecture and technologies used in its implementation. Each of these enti-
ties, as well as their attributes and compositions, can be subject to change, and
therefore, adaptation can be applied in fine or coarse levels of granularity.

—Impact & Cost : The impact describes the scope of aftereffects, while cost refers
to the execution time, required resources, and complexity of adaptation actions.
This facet is related to what the adaptation action will be applied to, and partly
to how it will be applied.
Based on both impact and cost factors, adaptation actions can be categorized
into the weak and strong classes. Weak adaptation involves modifying parameters
(parameter adaptation) or performing low-cost/limited-impact actions, whereas
strong adaptation deals with high-cost/extensive-impact actions, such as replac-
ing components with those that improve system quality [McKinley et al. 2004].
Generally, weak adaptation includes changing parameters (e.g., bandwidth limit),
using pre-defined static mechanisms (e.g., load-balancing), or other actions with
local impact and low cost (e.g., compressing data). Strong adaptation may
change, add, remove, or substitute system artifacts. Cost in this classification
refers to how much time and resources an action would need. It also highly de-
pends on whether the action’s requirements (e.g., alternatives for switching) are
ready, or will become ready at run time. Table II lists a typical set of adaptation
actions in both of the weak and strong categories.
It is notable that this classification is not the same as “artifact & granularity”,
even though one may argue that in general, higher levels (e.g., architecture) have
higher cost and impact. Although in some cases there may be some correlation
between granularity and cost/impact, this is not always the case. An example is
the case of having a load-balancing action that routes requests through duplicate
components or servers. Another noteworthy point is that strong actions are
mostly composite, and may contain several weak/strong actions. For example,
changing the architecture may require redeployment of some components and
changing a few parameters.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



Mazeiar Salehie and Ladan Tahvildari · 13

Table II: Typical Weak/Stong Adaptation Actions in Self-Adaptive Software

Type Action Description

Caching [Oreizy et al. 1999;
Dowling and Cahill 2004]

Caching data, states, connections, objects or compo-
nents in order to lower the response time, load of servers,
or help decentralized management

Changing data quality [Mukhija
and Glinz 2005]

Changing data quality (i.e., lower resolution) to save
bandwidth and increase speed

Changing type of data [Cheng
et al. 2006; Mukhija and Glinz
2005]

For instance, switching from video to image and even to
text to save bandwidth and increase speed

Weak
Compressing data [Laddaga
et al. 2001]

Saving bandwidth by transceiving compressed data

Tuning (parameter adjust-
ing) [Karsai et al. 2001]

Adjusting parameters to meet some adaptation goals
(i.e., buffer size and delay time)

Load balancing [Willebeek-
LeMair et al. 1993; Cardellini
et al. 1999]

Fair division of load between system elements to achieve
maximum utilization, throughput or minimum response
time

Changing aspects [Pinto et al.
2002; Suvée et al. 2003]

Changing aspect of a component or object with another
one with different quality

Changing algorithm/
method [Oreizy et al. 1999;
Robertson and Williams 2006]

Changing the algorithm/ method to meet self-* proper-
ties and run-time constraints

Replacement, addition & re-
moval [McKinley et al. 2004]

Replacing an entity (e.g., a component) by another
one with the same interface but different quality (non-
functional)

Strong

Restructuring /changing ar-
chitecture [Kramer and Magee
1990; Magee and Kramer 1996;
Oreizy et al. 1998]

Changing organization/ architecture of the system (it
may change the architectural style or design patterns of
the system)

Resource provisioning [Appleby
et al. 2001]

Provisioning additional resources at different levels (this
action can be extended to adding/removing any re-
sources, such as servers)

Restarting / redeployment [Can-
dea et al. 2006]

Restarting/ rebooting (macro- or micro-) or redeploy-
ment of system entities at different levels mainly due to
faults/failures

3.2 Realization Issues

This facet of the proposed taxonomy deals with how the adaptation can/needs to
be applied. These issue are categorized into approach and type classes, and are
discussed further in the following.

3.2.1 Adaptation Approach.
One significant facet of the taxonomy is the approach of incorporating adaptivity
into the system. The following sub-facets can be identified:

—Static/Dynamic Decision-Making : This sub-facet specifically deals with how the
deciding process can be constructed and modified. In the static option, the
deciding process is hard-coded (e.g., as a decision tree) and its modification
requires recompiling and redeploying the system or some of its components. In
dynamic decision-making, policies [Kephart and Walsh 2004], rules [Liu et al.
2004] or QoS definitions [Loyall et al. 1998] are externally defined and managed,

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



14 · Self-Adaptive Software: Landscape and Research Challenges

so that they can be changed during run-time to create a new behavior for both
functional and non-functional software requirements.

—External/Internal Adaptation: From a different perspective, the adaptation can
be divided into two categories with respect to the separation of the adaptation
mechanism and application logic. These two categories, as depicted in Fig. 4, are
as follows:

Adaptation 

Engine

Adaptable 

Software

Sensing Effecting

Self-Adaptive Software

Self-Adaptive

Software

Sensing

Effecting

Internal Approach External Approach

Fig. 4: Internal and External Approaches for Building Self-Adaptive Software

• Internal approaches intertwine application and the adaptation logic. This ap-
proach is based on programming language features, such as conditional expres-
sions, parametrization, and exceptions [Oreizy et al. 1999; Floch et al. 2006].
In this approach the whole set of sensors, effectors, and adaptation processes
are mixed with the application code, which often leads to poor scalability and
maintainability. This approach can be useful for handling local adaptations
(e.g., for exception handling). However, adaptation often needs global infor-
mation about the system and correlating events happening in its self/context.
Generally, this approach may be realized by extending existing programming
languages or defining new adaptation languages.

• External approaches use an external adaptation engine (or manager) contain-
ing adaptation processes. As depicted in Fig. 4, using this approach, the self-
adaptive software system consists of an adaptation engine and an adaptable
software. The external engine implements the adaptation logic, mostly with
the aid of middleware [Kon et al. 2002; Floch et al. 2006], a policy engine [Bigus
et al. 2002], or other application-independent mechanisms. In a complex and
distributed system, it is quite common to have multiple self-adaptive elements,
each containing these two parts. In this case, the composition of elements in an
appropriate architecture and an infrastructure for interoperability are essential.

The internal approach has some notable drawbacks. For instance, in this case the
system will be costly to test and maintain/evolve, and it is often not scalable. On
the other hand, a significant advantage of the external approach is the reusability
of the adaptation engine, or some realized processes for various applications. This
means that an adaptation engine can be customized and configured for different
systems.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



Mazeiar Salehie and Ladan Tahvildari · 15

—Making/Achieving Adaptation: Generally speaking, self-adaptivity can be intro-
duced into software systems using two strategies [Horn 2001]. The first strategy
is to engineer self-adaptivity into the system at the developing phase. The second
strategy is to achieve self-adaptivity through adaptive learning. Sterritt [Sterritt
2003] calls these two approaches making and achieving. Making has an implied
system and/or software engineering view to engineer adaptivity into the individ-
ual systems. Achieving has an implied artificial intelligence and adaptive learning
view to achieve adaptive behavior. These two approaches do not necessarily con-
tradict each other in the sense that their combination can be utilized as well.

3.2.2 Adaptation Type.
Another important facet is the type of adaptation. It specifies whether the adapta-
tion is open or closed to new alternatives, whether it is domain specific or generic,
and whether it is model-based or model-free.

—Close/Open Adaptation: A close-adaptive system has only a fixed number of
adaptive actions, and no new behaviors and alternatives can be introduced during
run-time. On the other hand, in open adaptation, self-adaptive software can
be extended, and consequently, new alternatives can be added, and even new
adaptable entities can be introduced to the adaptation mechanism (e.g., through
new joint-points for weaving aspects [Pawlak et al. 2001]).

—Model-Based/Free Adaptation: In model-free adaptation, the mechanism does
not have a predefined model for the environment and the system itself. In fact,
by knowing the requirements, goals, and alternatives, the adaptation mecha-
nism adjusts the system. For example, Dowling uses model-free Reinforcement
Learning (RL) in adaptation [Dowling 2004]. On the other hand, in model-based
adaptation, the mechanism utilizes a model of the system and its context. This
can be realized using different modeling approaches, such as a queueing model for
self-optimizing [Litoiu et al. 2005], architectural models for self-healing [Garlan
and Schmerl 2002], or domain-specific models in [Karsai and Sztipanovits 1999].

—Specific/Generic Adaptation: Some of the existing solutions address only spe-
cific domains/applications, such as a database (e.g., IBM SMART project [IBM
SMART ]). However, generic solutions are also available, which can be configured
by setting policies, alternatives, and adaptation processes for different domains
(e.g., Accord [Liu et al. 2004]). This type addresses where and what concerns
in addition to how, because the specific type only focuses on an adaptation of
artifacts or attributes of a particular part of the software system.

3.3 Temporal Characteristics

This facet deals with issues regarding when artifacts can/need to be changed. The
following sub-facets can be identified:

—Reactive/Proactive Adaptation: This sub-facet captures the self-adaptive soft-
ware anticipatory property [Parashar and Hariri 2005]. In the reactive mode,
the system responds when a change has already happened, while in the proactive
mode, the system predicts when the change is going to occur. This issue impacts
the detecting and the deciding processes.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



16 · Self-Adaptive Software: Landscape and Research Challenges

—Continuous/Adaptive Monitoring: This sub-facet captures whether the monitor-
ing process (and consequently sensing) is continually collecting and processing
data vs. being adaptive in the sense that it monitors a few selected features, and
in the case of finding an anomaly, aims at collecting more data. This decision
affects the cost of the monitoring and detection time.

3.4 Interaction Concerns

One cannot discuss the taxonomy without addressing the issue of interaction with
other self-adaptive software systems/elements through interfaces. This facet con-
sists of interacting with humans and/or other elements/systems. The facet is related
to all four of the where-when-what-how questions as well as the “who” question.
The following sub-facets can be identified:

—Human Involvement : As noted before, this facet is related to the question of
“who” the agent of change is. In self-adaptive software, human involvement can
be discussed from two perspectives. First, the extent to which the mechanism
is automated, and second, how well it interacts with its users and administra-
tors. For the former, we can use the maturity model proposed in autonomic
computing [Murch 2004]. The levels in this model include basic, managed, pre-
dictive, adaptive and autonomic. According to this view, human involvement
is not desirable, therefore more automation is demanding. However, the second
view addresses the quality of human interaction to either express their expecta-
tions and policies, or to observe what is happening in the system. According to
this view, human involvement is essential and quite valuable for improving the
manageability and trustworthiness of self-adaptive software. These issues have
been addressed in some earlier research, such as [Oreizy et al. 1999] and [Kephart
2005]. For the rest of this article, the second meaning will be used.

—Trust : Trust is a relationship of reliance, based on past experience or trans-
parency of behavior. One view of trust is security, as highlighted by Dobson et
al. in autonomic systems [Dobson et al. 2006]. Another view, not orthogonal
to the first one, is related to how much human or other systems can rely on
self-adaptive software systems to accomplish their tasks. This view is linked first
to assurance and dependability. Georgas et al. relate this issue to dependability
as the “extent to which a system can be trusted to appropriately and correctly
adapt” [Georgas et al. 2005]. However, as McCann et al. point out, trust is not
necessarily based on self-adaptive services or its quality [McCann et al. 2006;
Huebscher and McCann 2008]. They discuss how trust can be built via revealing
significant information about the system status and the visibility of adaptation
processes. This explains why predictability can be considered as a major factor
for placing trust upon self-adaptive software.

—Interoperability Support : Self-adaptive software often consists of elements, mod-
ules, and subsystems. Interoperability is always a concern in distributed com-
plex systems for maintaining data and behavior integrity across all constituent
elements and subsystems. In self-adaptive software, the elements need to be
coordinated with each other to have the desired self-* properties and to fulfill
the expected requirements. Global adaptation requirements will be met if ele-
ments and designated mechanisms in different layers and platforms of a system

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



Mazeiar Salehie and Ladan Tahvildari · 17

are interoperable (e.g., middleware and application).

4. A LANDSCAPE OF THE RESEARCH AREA

This section presents a landscape of current research in self-adaptive software sys-
tems. Two broad aspects of such a landscape are discussed: i) supporting disci-
plines, and ii) a selected number of projects. The former points out how various
disciplines dealing with adaptive systems can support building, evaluating, and uti-
lizing self-adaptive software systems, while the latter gives a picture of the current
status in this area.

4.1 Supporting Disciplines

The first viewpoint of the landscape shows how different disciplines are able to
support and contribute to developing and operating self-adaptive software systems.
The noteworthy point is that self-adaptive software is inherently interdisciplinary,
and the combination of disciplines highly depends on the design metaphors adopted
for building a specific self-adaptive software system. Laddaga enumerates three such
design metaphors used by early researchers: coding an application as a dynamic
planning system, coding an application as a control system [Laddaga 1999], and
coding a self-aware system [Laddaga 2000]. These metaphors utilize ideas from
artificial intelligence, control theory and decision theory. The following sections
discuss several such disciplines - namely software engineering, artificial intelligence,
decision theory, control theory, and network and distributed computing. Although
several other disciplines, such as optimization theory, can also be added to this list,
due to space limitations, they are only partially discussed in connection with the
other disciplines.

4.1.1 Software Engineering.
Numerous research areas in software engineering are related to self-adaptive soft-
ware. As discussed in Section 2.2.2, self-* properties can be related to quality
factors. Consequently, the ideas developed in the context of software quality for
realizing and measuring quality (including all -ilities) are potentially applicable to
self-adaptive software. A few research efforts, see for example [Salehie and Tahvil-
dari 2007], have aimed to establish this link. The important point is that self-*
properties are mostly related to Non-Functional Requirements (NFR), such as se-
curity and performance. In fact, fulfilling these requirements is the major trigger
for change. However, functional requirements are also related to self-adaptation.
An example is changing a component’s behavior to an acceptable lower level of
functionality, in order to improve its performance. These issues also bring require-
ments engineering into the picture. Several researchers have used NFR models,
particularly goal models, in self-adaptive software; see for example [Lapouchnian
et al. 2005] and [Subramanian and Chung 2001].

Coupling software with its specification and formal model can allow monitoring
correctness and many other metrics with respect to the specified requirements and
self-* properties [Pavlovic 2000]. Formal methods provide various ways for modeling
software systems as well as utilizing such models. Accordingly, it is possible to rely
on formal methods to model adaptable software in adaptation processes. Moreover,
formal methods can be used for validation and verification of self-adaptive software

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



18 · Self-Adaptive Software: Landscape and Research Challenges

to ensure its correct functionality, and to understand its behavior [Laddaga et al.
2000]. Due to various differences between traditional and self-adaptive software,
the existing models and methods developed for non-adaptive software systems are
not directly applicable. This means that new approaches based on formal models,
such as Model-Integrated Computing (MIC) [Karsai and Sztipanovits 1999], are re-
quired for this purpose. MIC has been applied successfully to some domain-specific
embedded systems for managing run-time re-configuration [Scott et al. 2000].

Software Architecture models and languages, such as Architectural Description
Languages (ADL), can certainly be helpful in software modeling and management,
particularly at run-time. Bradbury et al. survey several ADLs based on graphs,
process algebras, and other formalisms for dynamic software architectures [Brad-
bury et al. 2004]. Garlan et al. use Acme ADL to describe the architecture of
adaptable software and to detect violations from defined constraints [Garlan et al.
2004]. Oreizy et al. point out that software architecture can also help in change
management [Oreizy et al. 1999]. Another idea that can be useful is Attribute-
Based Architecture Styles (ABAS) [M.H. Klein and Lipson 1999] as an extension
of architectural styles. In fact, ABAS includes a quality-attribute specific model
(e.g., performance), in order to provide a method of reasoning about an architecture
design and the behavior of its interacting component types.

Component-Based Software Engineering (CBSE) can help the development of
self-adaptive software in two ways. First, it is easier to design and implement an
adaptable software relying on component models. Second, an adaptation engine
needs to be modular and reusable, and CBSE can also be used in its develop-
ment. Moreover, as pointed out in ACT [Sadjadi and McKinley 2004], component
models can be used in adaptive systems as a means of incorporating the underly-
ing services for dynamic adaptation and adaptation management. Another related
area, Aspect-Oriented Programming (AOP) and more specifically dynamic AOP,
can also be used in realizing self-adaptive software. This facilitates encapsulating
adaptation concerns in the form of aspects through dynamic run-time adaptation.
It also helps in implementing fine-grained adaptation actions at a level lower than
components [Greenwood and Blair 2004; Salehie et al. 2009]. For example, JAC
(which is a dynamic AOP framework [Pawlak et al. 2001]) uses a wrapping chain
that can dynamically change existing or new joint points. AOP can also be used
for instrumenting sensors as in the IBM BtM (Build to Manage) tool [IBM BtM ].

Service Computing and Service-Oriented Architecture (SOA) can also support
realizing self-adaptive software by facilitating the composition of loosely coupled
services. Web service technology is often an appropriate option for implementing
dynamic adaptable business processes and service-oriented software systems, due to
their flexibility for composition, orchestration, and choreography [Peltz 2003]. Bir-
man et al. propose extensions to the web services architecture to support mission-
critical applications [Birman et al. 2004]. Examples include standard services that
track the health of components, mechanisms for integrating self-diagnosis into ap-
plications, and automated configuration tools. Another notable work is Autonomic
Web Processes (AWP) [Verma and Sheth 2005], which are web service-based pro-
cesses that support the self-* properties.

4.1.2 Artificial Intelligence.
ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



Mazeiar Salehie and Ladan Tahvildari · 19

As noted by Laddaga [Laddaga 1999], in general, it is surprising that not much
has been done to apply Artificial Intelligence (AI) techniques, such as planning and
probabilistic reasoning, to develop and manage software systems. In particular, self-
adaptive software has a remarkable common ground with AI and adaptive systems
(see for example [Sterritt et al. 2005]). For the detecting process, AI can assist in
log/trace analysis and pattern/symptom matching to identify abnormal conditions
or the violation of constraints. AI is also rich in planning, reasoning, and learning,
which could be useful in the deciding process. One obstacle is quality assurance
for AI-based systems, which becomes necessary because of the utilized intelligent,
heuristic, and search-based techniques. This issue was pointed out by Parnas about
two decades ago a specific class of software systems, but it is generalizable to the
other systems as well [Parnas 1985].

One interesting approach to realize self-adaptive software is based on AI plan-
ning. In this approach, a software system plans and may replan its actions instead
of simply executing specific algorithms. This is in particular related to the deciding
process for selecting the appropriate course of action. The planning-based adap-
tation should be active all the times, through searching among existing plans or
by composing adaptation actions. In fact, the adaptation engine needs continuous
planning via contingency planning or replanning [Russell and Norvig 1995]. The
former provides a conditional plan with alternative paths based on the sensed infor-
mation, while the latter generates an alternative plan in the case that the original
plan fails. A notable point is that planning, at least in its basic form, cannot be
used for all of the self-* properties. According to [Srivastava and Kambhampati
2005], among all of the self-* properties, planning has the highest potential for
being used in conjunction with self-healing. One example of using AI-planning for
self-healing is the work by Arshad et al. [Arshad et al. 2003].

An important concept that can be used in self-adaptive software is the way
software agents model their domains, goals, and decision-making attributes. For
example, an interesting goal-based model for action selection (composed of actions
and goals with activation levels) has been proposed by Maes [Maes 1990]. Goal-
oriented requirements modeling is a well established area of research in agent-based
systems and there are many research efforts that involve these models and methods
in self-adaptive software, including [Lapouchnian et al. 2005] and [Morandini et al.
2008].

The other important issues, especially in Multi-Agent Systems (MAS), are co-
ordination models and distributed optimization techniques, which can be useful in
multi-element self-adaptive software; for example, see [Bernon et al. 2003]. In such
systems, local and global goals, which are mostly derived from self-* properties,
need to be coordinated. Tesauro et al. realize a sample MAS, called Unity, as a
decentralized autonomic architecture based on multiple interacting agents [Tesauro
et al. 2004]. Weyns et al. have also investigated employing multi-agent architectures
for self-adaptive software. For example, they utilized a situated multi-agent archi-
tecture for a self-adaptive automated guided vehicle transportation system [Weyns
et al. 2005].

Machine Learning and Soft Computing are other areas with the potential to play
important roles in self-adaptive software, especially through the “achieving” ap-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



20 · Self-Adaptive Software: Landscape and Research Challenges

proach. Achieving needs analyzing the stream of sensed data and learning the best
way to act. Oreizy et al. name evolutionary programming and AI-based learning in
the category of approaches dealing with unprecedented changes with a clearer sep-
aration of concerns [Oreizy et al. 1999]. These algorithms generally use properties
of the environment and knowledge gained from previous attempts to generate new
algorithms. Genetic algorithms and different on-line learning algorithms, such as
Reinforcement Learning (RL) can also be used for this purpose. RL is a promising
option for dynamic action selection [Amoui et al. 2008] and decentralized collab-
orative self-adaptive software [Dowling 2004]. Tesauro discusses that RL has the
potential to achieve better performance as compared to traditional methods, while
requiring less domain knowledge [Tesauro 2007]. He also adds that as RL relies on
exploration for training, it is not always feasible to learn policies in a live system.
Instead, offline training or a hybrid method to use the existing policies should be
utilized. Fuzzy logic is also applicable to address the fuzziness of quality goals and
policies [Salehie and Tahvildari 2005b].

Another notable field, related to this context under the umbrella of artificial
intelligence is decision theory. This theory, in both classical and qualitative forms,
can contribute to realizing the deciding process. The classical form is suitable
for cases in which decision-making relies on maximizing a certain utility function
in a deterministic manner, while the qualitative form is appropriate for problems
including uncertainty.

One of the areas applicable to self-adaptive software is utility theory. The term
utility refers to “the quality of being useful” for an action, choice, or alterna-
tive [Russell and Norvig 1995], and can be identified either with certainty or with
uncertainty (in classical or qualitative form). Therefore, utility theory deals with
methods to assign an appropriate utility value to each possible outcome and to
choose the best course of action based on maximizing the utility value [Keeney and
Raiffa 1976]. Walsh et al. demonstrate how utility functions can enable autonomic
elements to continually optimize the use of computational resources in a dynamic
and heterogeneous environment (a data center prototype) [Walsh et al. 2004]. Pola-
dian et al. employ a utility function for user needs and preferences in resource-aware
services [Poladian et al. 2004]. They use this function to formulate an optimization
problem for dynamic configuration of these services. Nowicki et al. deal with de-
centralized optimization using utility functions [Nowicki et al. 2005]. Boutilier et
al. use utility functions in self-optimizing and rely on incremental utility elicitation
to perform the necessary computations using only a small set of sampled points
from the underlying function [Boutilier et al. 2003; Patrascu et al. 2005].

In practice, due to uncertainty, probabilistic reasoning and decision-theoretic
planning are required in decision making. Markov Decision Process (MDP) and
Bayesian network are two well-established techniques for this purpose. These tech-
niques are also applicable to realizing self-* properties due to their uncertain at-
tributes. For example, there are several research efforts utilizing these models for
diagnosis and self-recovery, for example see [Howe 1995], [Robertson and Laddaga
2005] and [Robertson and Williams 2006]. Porcarelli et al. also use a stochastic
Petri net for decision-making in fault-tolerance [Porcarelli et al. 2003].

4.1.3 Control Theory/Engineering.
ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



Mazeiar Salehie and Ladan Tahvildari · 21

Control theory/engineering, similar to self-adaptive software, is concerned with
systems that repeatedly interact with their environment through a sense-plan-act
loop. The notions of adaptation and feedback have been discussed for decades in
control theory and engineering, and have been utilized in designing and developing
systems in various domains. The control-based paradigm considers the software
system (adaptable software) as a controllable plant with two types of inputs: con-
trol inputs, which control the plant’s behavior, and disturbances, which change
the plant’s behavior in an unpredictable manner [Kokar et al. 1999]. A controller
(adaptation engine) changes the values of the plant’s control inputs.

The control-based paradigm is often based on a model of the software plant’s be-
havior. For instance, Litoiu et al. use a hierarchical Layered Queue Model (LQM)
of a software system for tuning parameters (weak adaptation) [Litoiu et al. 2005].
Abdelwahed et al. [Abdelwahed et al. 2004] also show that a model-based control
architecture can realize the self-optimizing property, by tuning the plant param-
eters. Moreover, Bhat et al. discuss applying online control models to achieve
self-managing goals by extending the ACCORD component framework [Bhat et al.
2006]. Although closed-loop is the most widely used model for control-based self-
adaptive software, adaptive and reconfigurable models are also recommended for
several reasons, including large-range dynamic disturbances [Kokar et al. 1999].
On the other hand, considering the discrete nature of software systems, one of
the appropriate control-based approaches for self-adaptive software is supervisory
control of discrete event system (DES) [Ramadge and Wonham 1987]; see for ex-
ample [Tziallas and Theodoulidis 2004] and [Karsai et al. 2001].

Traditionally, control theory has been concerned with systems that are governed
by the laws of physics. This allows them to make assertions about the presence
or absence of certain properties, which is not necessarily the case with software
systems. In practice, checking software controllability or building a controllable
software is a challenging task, often involving non-intuitive analysis and system
modifications [Karamanolis et al. 2005]. Therefore, some researchers believe that
applying this approach to software is often more complex than the case of traditional
control systems [Robertson and Laddaga 2005].

4.1.4 Network and Distributed Computing.
Techniques used in network and distributed computing can be extensively applied
to self-adaptive software. This is due to the fact that the bulk of the existing
software systems are distributed and network-centric. Although it may be difficult
to directly apply some of these techniques to all layers of self-adaptive software (i.e.,
policy management at the application layer), their usage in addressing adaptation
requirements and the engineering of such systems is promising. Another line of
research in this area concerns Peer-to-Peer (P2P) applications and ad hoc networks,
which deal with the dynamic change of environment, architecture, and quality
requirements. Research in this area often uses self-organizing elements in a bottom-
up approach. However, as explained earlier, this article does not cover systems with
the self-organizing property.

Policy-based management is one of the most successful approaches followed in net-
work and distributed computing [Sloman 1994]. Policy-based management specifies
how to deal with situations that are likely to occur (e.g., priorities and access con-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



22 · Self-Adaptive Software: Landscape and Research Challenges

trol rules for system resources). Most of the definitions given for policy emphasize
on providing guidance in determining decisions and actions. The policy manage-
ment services normally consist of a policy repository, a set of Policy Decision Points
(PDP) for interpreting the policies, and a set of Policy Enforcement Points (PEP)
for applying the policies [Westerinen et al. 2000]. The most widely used policy
type in networks is the action policy (in the form of event-condition-action rules)
which is also applicable to self-adaptive software. In addition, other policy types
like goal policy (specifying a desired state), and utility policy (expressing the value
of each possible state) can also be exploited in self-adaptive software [Kephart and
Walsh 2004]. The adaptation policies may need to be changed based on new re-
quirements or conditions. Some research efforts have addressed this issue. For
example, Lutfyyia et al., among several other efforts on policy-based management,
have proposed a control-theoretic technique for dynamic change of policies in a data
center [Aly and Lutfiyya 2007]. Policy-based management has been adopted in a
number of self-adaptive software research; see for example [Keeney and Cahill 2003;
Badr et al. 2004; Salehie et al. 2009]. Some frameworks have also been introduced
for developing policy-based self-adaptive software, e.g., StarMX framework in the
domain of enterprise Java-based systems [Asadollahi et al. 2009].

Quality of Service (QoS) management, another successful area in networking
and distributed systems [Hutchison et al. 1994], is closely related to policy man-
agement [Lutfiyya et al. 2001]. QoS requirements are related to non-functional
requirements of a system, and consequently, they can be linked to self-* properties
in distributed software systems. In this context, QoS management methods rely
on either modeling the application, e.g., queuing models, or using well-understood
components, e.g., Prediction-Enabled Component Technology (PECT) [Woodside
and Menascé 2006]. Therefore, QoS management can assist in modeling the quality
factors of a self-adaptive software system (and consequently self-* properties), and
also in realizing adaptation processes.

Another powerful technology borrowed from distributed and network-based sys-
tems is middleware. Middleware-based adaptation (in all four sub-layers discussed
by Schmidt [Schmidt 2002]) would also be applicable to adaptation processes. For
instance, generic components of decision-making and change detection can be real-
ized at the middleware level; for example, see [Floch et al. 2006] and [Kumar et al.
2007].

One of the well established areas in networks and distributed systems is resource
management. In specific, virtualization techniques can have a significant impact
on the quality of self-adaptive software. Virtualization reduces the domain of an
adaptation engine to the contents of a virtual machine [Menascé and Bennani 2006].
Consequently, dynamic resource management and resource provisioning are easier
to handle. Virtualization also provides an effective way for legacy software systems
to coexist with current operational environments [Bantz et al. 2003]. This property
can be utilized in building adaptable software from legacy systems.

Monitoring and sensing techniques have been widely used in networks and dis-
tributed systems. Basic techniques like heartbeat monitoring and more advanced
techniques like pulse monitoring have been used in self-adaptive and self-managing
software [Hinchey and Sterritt 2006]. One important issue, which is quite signif-
ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



Mazeiar Salehie and Ladan Tahvildari · 23

icant in self-adaptive software, is the cost of sensing and monitoring. This issue
has been addressed extensively in networking (e.g., [Dilman and Raz 2002]) and
distributed systems (e.g., [Saab et al. 2002]).

4.2 Research Projects

The projects in this section are selected from different academic and industrial sec-
tors to capture main research trends in the broad area of self-adaptive software. We
collected information from many academic and industrial research projects (from
IBM, HP, Microsoft, Sun, etc). However, we selected a few of them to represent
the major research ideas in this field. Space limitations, the diversity of ideas, and
their impact on the field, are the concerns taken into account for the selection.

Among other goals, the discussions in this section aim to identify the existing
research gaps in this area. For this purpose, the projects are analyzed from several
points of view. Since some of these projects are not available for evaluation, the
reported properties and features are based on the referenced material.

Table III lists the selected projects sorted based on the date of cited publica-
tion(s). In the case of several related publications from the same research group,
the more important ones are cited. These projects are selected on the basis of their
impact on the area and the novelty/significance of their approach. In the rest of
this section, we compare the selected projects in relation to three different views,
namely self-* properties, adaptation processes, and the proposed taxonomy facets.

The first view discusses the major self-* properties that are supported by each
project, as shown in Table IV. We can see that the majority of these projects focus
on one or two of the known self-* properties. This shows that the coordination and
the orchestration among multiple self-* properties have not yet received the full at-
tention they deserve. Another notable point is that a limited number of projects in
the literature support self-protecting (only one project in the selected set). Gener-
ally speaking, this is due to constant changes in the network topology, the increasing
variety of software components/services, and the increasing complexity, as well as
variety of attacks and viruses [Qu and Hariri 2007]. Most of the research dealing
with the self-protecting property focus on the network layer, and particularly, on
detecting attacks. Such research efforts are outside of the main scope of this article,
as we have already mentioned.

The second view is concerned with how the selected projects address adaptation
processes. Table V compares and categorizes the selected projects according to four
levels from “no support” to “high support”. The level for each process is deter-
mined based on efficiency, coverage of different aspects, and support for available
standards. Each of the processes also has its own specific aspects. For example, to
evaluate the deciding process, we investigate whether a project takes into account
dynamicity and uncertainty. To analyze the table column-wise, we have included a
vector with four components reflecting the relative frequencies of the different levels
in each column, ranging from “no support” (−) to “high support” (H). For exam-
ple, the vector (2, 5, 7, 2)/16 under the Monitoring column shows that out of the
16 selected projects, there are 2 with “no support”, 5 with “low support”, 7 with
“medium support”, and 2 with “high support”. The column-wise assessment shows
that monitoring, detecting, deciding, and acting each have only 2 or 3 projects
with “high support” out of the selected 16 . These observations indicate that one

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



24 · Self-Adaptive Software: Landscape and Research Challenges

Table III: Selected Projects in the Area of Self-adaptive Software

Projects Summary

Quo [Loyall et al. 1998]

Quality Objects (QuO) provides Quality Description Languages (QDL)
for specifying possible QoS states, the system resources and mechanisms
for measuring and controlling QoS, and behavior for adapting to changing
levels of available QoS at run-time.

IBM Oceano [Appleby
et al. 2001]

Developing a pilot prototype of a manageable infrastructure for a comput-
ing utility powerplant

Rainbow [Garlan et al.
2004; Garlan and
Schmerl 2002]

Proposing an architecture-based adaptation framework consisting of an
adaptation infrastructure and a system-specific adaptation knowledge

Tivoli Risk
Manager [Tuttle et al.
2003]

Providing an integrated security management structure by filtering and
correlating the data from different sources and applying dynamic policies

KX [Kaiser et al. 2003;
Valetto and Kaiser
2003]

A generic framework for collecting and interpreting application-specific
behavioral data at run-time through sensors (probes) and gauges

Accord [Liu et al. 2004]
Providing a programming framework for defining application context, au-
tonomic elements, rules for the dynamic composition of elements, and an
agent infrastructure to support rule enforcement

ROC [Candea et al.
2004; Candea et al.
2006]

Building Recursively Recoverable (RR) systems, based on micro-reboot,
online verification of recovery mechanisms, isolation and redundancy, and
system-wide support for undo

TRAP [Sadjadi et al.
2004; Sadjadi and
McKinley 2004]

A tool for using aspects and reflective technique for dynamic adaptation
in Java, TRAP/J, and .Net framework, TRAP/.Net

K-Component [Dowling
and Cahill 2004;
Dowling 2004]

A meta-model for realizing a dynamic software architecture based on
Adaptation Contract Description Language (ACDL) for specifying re-
flective programs. ACDL separates the specification of a system’s self-
adaptive behavior from the system components’ behavior

Self-
Adaptive [Robertson
and Laddaga 2005]

Establishing a model-based diagnosis and automatic recovery approach
using of method deprecation and regeneration with the aid of a decision-
theoretic method dispatch

CASA [Mukhija and
Glinz 2005]

Contract-based Adaptive Software Architecture (CASA) supports both
application-level and low-level (e.g., middleware) adaption actions through
an external adaptation engine

J3 [White et al. 2005]

Providing a model-driven framework for application-level adaptation
based on three modules J2EEML, JAdapt, and JFense respectively for
modeling, interpreting and run-time management of self-adaptive J2EE
applications

DEAS [Lapouchnian
et al. 2005]

Proposing a framework for identifying the objectives, analyzing alternative
ways of how these objectives can be met, and designing a system that
supports all or some of these alternative behaviors using requirements
goal models

MADAM [Floch et al.
2006]

Facilitating adaptive application development for mobile computing, by
representing architecture models at runtime to allow generic middleware
components to reason about adaptation

M-Ware [Kumar et al.
2007]

Developing middleware to enable agility, resource-awareness, runtime
management and openness in distributed applications, by especially ad-
dressing performance concerns and business policies

ML-IDS [Al-Nashif
et al. 2008]

Detecting network attacks by inspecting and analyzing the traffic using
several levels of granularity (Multi-Level Intrusion Detection System -
ML-IDS), and consequently proactively protect the operating system by
employing a fusion decision algorithm

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



Mazeiar Salehie and Ladan Tahvildari · 25

Table IV: Comparing Projects in terms of Self-* Properties “
√

”: Supported, “-”:
Not supported.

Self-* Properties

Projects Self-Configuring Self-Healing Self-Optimizing Self-Protecting

Quo
√

-
√

-

IBM Oceano
√

-
√

-

Rainbow
√ √ √

-

Tivoli Risk Manager - - -
√

KX
√

- - -

Accord
√

- - -

ROC -
√

- -

TRAP
√

- - -

K-Component
√

- - -

Self-Adaptive
√ √

- -

CASA
√

-
√

-

J3 - -
√

-

DEAS
√

- - -

MADAM
√

-
√

-

M-Ware
√

-
√

-

ML-IDS - - -
√

Table V: Comparing Projects in terms of Adaptation Processes- “H” (High): Pro-
vides explicit features to support the process extensively, “M” (Medium): Pro-
vides generic features to partially support the process, “L” (Low): Provides limited
support, “−” (No Support)- e.g., the vector (2, 5, 7, 2)/16 shows there are 2 “no
support”, 5 “low support”, 7 “medium support” and 2 “high support” projects.

Adaptation Processes

Projects Monitoring Detecting Deciding Acting

Quo L L L M

IBM Oceano M M M M

Rainbow H M M M

Tivoli Risk Manager − H − −
KX H M L M

Accord L L M L

ROC L L M H

TRAP L L − M

K-Component L L H L

Self-Adaptive M H H M

CASA M M L H

J3 M M L M

DEAS − − M −
MADAM M M L M

M-Ware M M M L

ML-IDS M H M M

Column-wise Assessment (2,5,7,2)/16 (1,5,7,3)/16 (2,5,7,2)/16 (2,3,9,2)/16

needs to provide comprehensive solutions to realize all adaptation processes at a
high level.

The taxonomy introduced in Section 3 provides a third view. This view is sum-
marized in Table VI, which will also be analyzed column-wise. Before analyzing
this table, it should be noted that the possible values for some of the facets are not

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



26 · Self-Adaptive Software: Landscape and Research Challenges

mutually exclusive. For example, a project can rely on a hybrid approach includ-
ing both making and achieving. The findings related to this view based on each
taxonomy facet (corresponding to different columns in the table) are as follows:

—Layer (L): Most of the projects focus on the application layer, which is expected.
Note this article deals primarily with the upper layers of a software-intensive
system.

—Artifact & Granularity (A&G): Various artifacts at different granularity levels
have been addressed, which is a positive point.

—Impact & Cost (I&C ): Most of the projects utilize both weak and strong adap-
tation actions. This is also a positive point because it is possible to use low/high
cost and local/global actions depending on the circumstances.

—Making/Achieving (M/A): The achieving approach is rarely observed. This
means learning and evolutionary algorithms have not yet been widely used in
this area.

—External/Internal (E/I ): All of the projects use the external approach, which
means that they all support separation of the adaptation mechanism from the
application logic.

—Static/Dynamic Decision-Making (S/D DM ): The number of dynamic deciding
processes is not too high, but is notable. This is partly due to the research
activities in the area of policy-based management.

—Open/Close (O/C ): Another remarkable observation is the high number of projects
supporting close adaptation. This can be interpreted as the inability to attain
openness due to stability and assurance concerns.

—Specific/Generic (S/G): A number of projects (7 out of 16, including J3) have
been developed based on component-based systems. The justification is that
such components are loosely coupled entities that can be changed dynamically
at runtime, easier than the other entities.

—Model-Based/-Free (MB/F ): Most of the projects are model-based, which is not
surprising noting the wide-spread application of model-based and model-driven
approaches in engineering disciplines.

—Reactive/Proactive (R/P): Most of the projects are reactive, which is not gen-
erally a disadvantage. However, for some domains, it is required to have proac-
tiveness in order to decrease the aftereffects of changes, or to block change prop-
agation (e.g., faults in safety-critical systems).

—Continuous/Adaptive Monitoring (C/A M ): Most of the projects still use con-
tinuous monitoring, which is not preferable noting the cost and the load of this
process.

—Human Involvement (HI ): Most of the projects do not include an appropriate
human interface. This matter impacts the usability and trustworthiness of these
systems in practice.

—Interoperability (I ): Only one of the projects proposes a mechanism for interop-
erability with other self-adaptive or autonomic elements or systems. This matter
limits their applicability, especially in emerging service-oriented applications.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



Mazeiar Salehie and Ladan Tahvildari · 27

T
ab

le
V

I:
C

om
pa

ri
ng

P
ro

je
ct

s
in

te
rm

s
of

th
e

T
ax

on
om

y
Fa

ce
ts

-
“
-”

:
is

no
t

su
pp

or
te

d,
“
?”

:
N

ot
cl

ea
rl

y
kn

ow
n.

“L
””

L
ay

er
,

“A
&

G
”:

A
rt

ifa
ct

&
G

ra
nu

la
ri

ty
,

“I
&

C
”:

Im
pa

ct
&

C
os

t,
“M

/A
”:

M
ak

in
g/

A
ch

ie
vi

ng
,

“E
/I

”:
E

xt
er

na
l/

In
te

rn
al

,“
S/

D
D

M
”:

St
at

ic
/D

yn
am

ic
D

ec
is

io
n-

M
ak

in
g,

“O
/C

”:
O

pe
n/

C
lo

se
,

“S
/G

”:
Sp

ec
ifi

c/
G

en
er

ic
,

“M
B

/F
”:

M
od

el
-B

as
ed

/-
Fr

ee
,

“R
/P

”:
R

ea
ct

iv
e/

P
ro

ac
ti

ve
,
“C

/A
M

”:
C

on
ti

nu
ou

s/
A

da
pt

iv
e

M
on

it
or

in
g,

“H
I”

:
H

um
an

In
vo

lv
em

en
t,

“I
”:

In
te

ro
pe

ra
bi

lit
y.

O
b
je

c
t
to

a
d
a
p
t

R
ea

li
za

ti
o
n

T
e
m

p
o
ra

l
In

te
ra

c
ti
o
n

A
p
p
ro

a
c
h

T
y
p
e

T
a
x
o
n
o
m

y
/

P
r
o
je

c
t
s

L
A

&
G

I&
C

M
/
A

E
/
I

S
/
D

D
M

O
/
C

S
/
G

M
B
/
F

R
/
P

C
/
A

M
H

I
I

Q
u
o

a
p
p
li
c
a
ti

o
n

a
sp

e
c
t

w
m

e
s

c
c
o
m

p
.-
b
a
se

d
m

b
r

c
-

-

IB
M

O
c
e
a
n
o

In
fr

a
st

ru
c
tu

re
&

n
e
tw

o
rk

d
a
ta

c
e
n
te

r
w

/
s

m
e

d
o

d
a
ta

c
e
n
te

r
m

b
r

c
c
a
n

b
e

-

R
a
in

b
o
w

a
p
p
li
c
a
ti

o
n

a
rc

h
it

e
c
tu

re
w

/
s

m
e

se
m

i-
d

c
k
n
o
w

n
a
rc

h
.

st
y
le

s
m

b
r

se
m

i-
a

c
a
n

b
e

-

T
iv

o
li

R
is

k
M

a
n
a
g
e
r

n
e
tw

o
rk

&
a
p
p
li
c
a
ti

o
n

sy
st

e
m

-
m

e
-

?
g
e
n
e
ri

c
m

b
r

c
y
e
s

y
e
s

K
X

a
p
p
li
c
a
ti

o
n

a
p
p
li
c
a
ti

o
n

w
/
s

m
e

d
o

g
e
n
e
ri

c
m

b
r

se
m

i-
a

-
-

A
c
c
o
rd

a
p
p
li
c
a
ti

o
n

c
o
m

p
o
n
e
n
ts

w
/
s

m
e

d
c

g
e
n
e
ri

c
m

b
r

c
c
a
n

b
e

-

R
O

C

a
p
p
li
c
a
ti

o
n

&
m

id
d
le

w
a
re

c
o
m

p
o
n
e
n
ts

/
su

b
sy

st
e
m

s
w

m
e

s
c

c
o
m

p
.-
b
a
se

d
m

b
r

c
-

-

T
R

A
P

a
p
p
li
c
a
ti

o
n

a
sp

e
c
t

w
m

e
-

c
c
o
m

p
.-
b
a
se

d
-

r
c

y
e
s

-

K
-

C
o
m

p
o
n
e
n
t

a
p
p
li
c
a
ti

o
n

c
o
m

p
o
n
e
n
t

w
/
s

m
/
a

e
d

c
c
o
m

p
.-
b
a
se

d
m

b
r/

p
c

-
-

S
e
lf
-

A
d
a
p
ti

v
e

a
p
p
li
c
a
ti

o
n

m
e
th

o
d

w
m

/
a

e
se

m
i-
d

c
g
e
n
e
ri

c
m

b
r

c
-

-

C
A

S
A

a
p
p
li
c
a
ti

o
n

c
o
m

p
o
n
e
n
t

w
/
s

m
e

se
m

i-
d

c
c
o
m

p
.-
b
a
se

d
m

b
r

c
-

-

J
3

a
p
p
li
c
a
ti

o
n

a
sp

e
c
t

w
m

e
s

c
J
2
E
E

a
p
p
.

m
b

r
c

-
-

D
E
A

S
a
p
p
li
c
a
ti

o
n

a
p
p
li
c
a
ti

o
n

?
m

e
s

c
g
e
n
e
ri

c
-

-
-

-
-

M
A

D
A

M
m

id
d
le

w
a
re

a
rc

h
it

e
c
tu

re
s

m
e

s
c

c
o
m

p
.-
b
a
se

d
m

b
r

c
-

-

M
-W

A
R

E
m

id
d
le

w
a
re

p
a
ra

m
e
te

rs
w

m
e

s
o

g
e
n
e
ri

c
m

b
r

c
-

-

M
L
-I

D
S

n
e
tw

o
rk

p
a
ra

m
e
te

rs
w

m
e

d
c

g
e
n
e
ri

c
m

b
r/

p
c

-
-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



28 · Self-Adaptive Software: Landscape and Research Challenges

5. RESEARCH CHALLENGES

Self-adaptive software creates new opportunities, and at the same time, poses new
challenges to the development and operation of software-intensive systems. This
section aims to identify the challenges in realizing self-adaptive software. Prior to
classifying the challenges, we first provide a broader view on this issue following
the work of Kephart in the context of autonomic computing [Kephart 2005]: i) El-
emen/Component Level Challenges relate to building element interfaces and con-
tracts to share information, designing/implementing proper adaptation processes,
and designing an appropriate architecture for elements in order to execute and
coordinate the adaptation processes, ii) System Level Challenges relate to coor-
dinating self-* properties and adaptation processes between elements, specifying
the evaluation criteria, and defining appropriate architectures to fulfill this level’s
requirements (e.g., inter-element communication), and iii) Human-System Interac-
tion Challenges relate to building trust, providing an appropriate mechanism for
collecting user policies, and establishing a proper mechanism to involve humans in
the adaptation loop.

Although the above classification provides insight into the challenges associated
with self-adaptive systems, it does not quite fit into the taxonomy and landscape
discussed in the earlier parts of this article. Moreover, for some of the identified
challenges, depending on the underlying design decisions, they may be at the ele-
ment level or at the system level (e.g., coordinating self-* properties). To remedy
this shortcoming, in the following, we aim to classify the underlying challenges
based on the points summarized in Fig. 5. This enables us to relate the challenges
to the concepts already discussed, and to the analysis performed in the landscape
section.

Challenges

Self-*

Properties Interaction
Engineering

 Issues

Adaptation 

Processes

Fig. 5: Classifying Challenges

5.1 Challenges in Engineering Self-Adaptive Software

This section deals with the engineering challenges for requirements analysis, design,
implementation, and evaluation of self-adaptive software.

—Requirements analysis: As discussed earlier, the system’s requirements (es-
pecially non-functional), self-* properties, and quality factors are interrelated.
Consequently, besides the main task in requirements engineering, that is to cap-
ture the stakeholders’ expectations, the other key challenges are how to translate,
model, and relate those expectations to adaptation requirements and goals to be
used at run-time [Kramer and Magee 2007]. The desired model is used as a basis
to answer the adaptation requirements’ questions (described in Section 2.3) in
the developing and operating phases. In other words, the specifications are not

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



Mazeiar Salehie and Ladan Tahvildari · 29

only used in developing self-adaptive software, but also kept for conflict resolu-
tion and change management at the operating phase. Goal-oriented requirements
engineering appears to be a promising approach for addressing these challenges.

—Design issues: One key challenge is how to design self-adaptive software to fulfill
the adaptation requirements. Although numerous research efforts have focused
on designing self-adaptive software, there are still some major open problems in
this area. In an internal approach, one needs to extend the existing program-
ming languages, or define new adaptation languages. However, as the projects’
landscape in Section 4.2 indicates, most existing research is based on external
approaches. Consequently, the challenge is decomposed into: i) designing the
underlying adaptable software system(s) and adaptation engine(s), and ii) form-
ing the architecture connecting them together. The following list provides a
summary of these challenges.
The first question is how to design adaptable software, either from scratch or
from a legacy system. This question deals with the important issue of design for
adaptability. Adaptable software needs to expose important information through
sensors (by events), and to facilitate effectors for variability. The related out-
standing questions are as follows: i) Which architecture styles and design pat-
terns are appropriate for this purpose? ii) Which component model provides
the best support for the sensing and effecting in vivo mechanisms? iii) Which
interfaces and contracts need to be considered? And most importantly, iv) How
to use re-engineering approaches to transform a legacy system into an adaptable
software? Another challenge is how to use existing experiences in re-engineering,
reverse engineering, and re-factoring, as discussed in [Muller 2006], in dealing
with Ultra-Large-Scale (ULS) systems [Northrop 2006]. Parekh et al. address
this challenge partially by proposing a framework for retrofitting autonomic ca-
pabilities into legacy systems [Parekh et al. 2006]. It appears that for variability
management, ideas from product line architecture would be useful as well.
The primary challenges for designing the adaptation engine will be addressed in
Section 5.3 for each adaptation process. However, there are two missing points:
i) How to design the interfaces required for policy enforcement and connection
to adaptable software? ii) What kind of architecture is suitable for inter-process
communication and sharing knowledge inside the engine?
Last, but not least, is the issue of interoperability and system-wide architecture.
Several researchers have investigated this issue. Smith et al. [Smith et al. 2005]
address complexity and changeability of interaction between system elements, or
system of systems. McKinley et al. discuss the need for coordinating components
across layers of an adaptive system [McKinley et al. 2004]. One aspect of this
challenge is the availability of communication channels between elements, which
is addressed in [Parekh et al. 2006].

—Implementation languages, tools, and frameworks: Generally speaking,
building self-adaptive and autonomic software can be accomplished in two ways
[Liu et al. 2004]: i) extending existing programming languages/systems or defin-
ing new adaptation languages (e.g., based on aspects [Duzan et al. 2004]), and ii)
enabling dynamic adaptation by allowing adding, removing, and modifying soft-
ware entities at run-time (e.g., based on middleware [Floch et al. 2006; Asadollahi

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



30 · Self-Adaptive Software: Landscape and Research Challenges

et al. 2009]). In practice, a combination of these solutions is required to build
elements, to facilitate their compositions, and to provide a run-time infrastruc-
ture for interaction and management. Although numerous research efforts have
investigated both solutions and their combination, there is still a lack of powerful
languages, tools, and frameworks that could help realize adaptation processes
and instrument sensors/effectors in a systematic manner. The middleware-based
approach appears more promising, since the infrastructure is available. However,
dynamic adaptation actions (i.e. effectors) are still not extensively supported, or
not reliable.

—Testing and assurance: Testing and assurance are probably the least focused
phases in engineering self-adaptive software, and there are only a few research
efforts addressing this topic. The challenging issue is the availability of several
alternatives for adaptable artifacts and parameters in the system. This leads to
several paths of execution in different scenarios. If we add the dynamic decision-
making and achieving approach to this scenario, it will become even more com-
plex. There are attempts to use a self-test mechanism at runtime to validate
the changes. King et al. present this idea for autonomic systems by adding a
test manager for this purpose [King et al. 2007]. Zhang also proposes a run-time
model checking approach for the verification of adaptation [Zhang 2007].

—Evaluation and quality of adaptation: So far there has not been any compre-
hensive work addressing evaluation criteria or metrics for self-adaptive software,
or more generally, for autonomic computing. There are links between self-* prop-
erties and software quality goals; however, how quality metrics can help measure
the quality of adaptation is still an open question. Factors like safety, security,
and performance are discussed in [Gjorven et al. 2006], and QoS, cost, and granu-
larity/flexibility are discussed in [McCann and Huebscher 2004]. The availability
of benchmarks, testbeds, and appropriate case studies can help in evaluating and
comparing different adaptation solutions, at least in relation to each adaptation
process.

5.2 Challenges Related to Self-* Properties

Self-* properties are the key features of self-adaptive software. This section sum-
marizes the challenges expected in realizing these properties, both individually and
collectively.

—Individual self-* properties: According to the analysis performed in Sec-
tion 4.2, self-protecting has received the least attention among the self-* proper-
ties. Generally, most of research on self-protecting (not necessarily in the scope
of this paper) focus on detecting anomaly symptoms (e.g., intrusion). Some of
this research also concentrates on integrating various technologies for security
management and recovery (e.g., [Tuttle et al. 2003]). However, the point is that
realizing all of the adaptation processes for this property, particularly at the
upper layers (e.g., middleware and application), is still quite challenging.
An important question in realizing self-* properties is how well the system is ca-
pable of detecting changes and their potential consequences in the adaptable soft-
ware or its context. These challenges include inferring or predicting the change
propagation based on the dynamic model of software or data analysis at run-time.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



Mazeiar Salehie and Ladan Tahvildari · 31

Also, specific to the self-healing and self-protecting properties, the problem is how
to limit or isolate the problematic components, and eventually how to recover
these components. This matter definitely needs implanted effectors that allow
recovery without a crash or interruption in the system.

—Building multi-property self-adaptive software: As shown in Table VI,
the majority of projects do not address more than one self-* property. Moreover,
those projects that adress multiple properties, do not systematically coordinate
them. Generally, most of the proposed solutions do not address the relationships
between self-* properties including priority, conflict, and the execution order of
their actions at run-time. It is clear that coordinating and orchestrating these
properties and their derived goals at different levels of granularity is one of the
significant challenges in self-adaptive software. IBM addresses this issue in its
reference architecture for orchestrating across and within disciplines for self-*
properties [IBM Ref. Arch. 2005]. Cheng et al. also focus on this challenge in
an architecture-based adaptation [Cheng et al. 2006].
It is also important to note that each self-* property deals with several concerns,
such as cost and time. Realizing desired self-* properties means satisfying certain
goals related to these concerns, subject to given constraints. The problem with
the available solutions is that they usually do not rely on a multi-concern view
in the adaptation. An example of such a missing concern is the cost/benefit of
actions related to the business aspects of a software system.

5.3 Challenges in Adaptation Processes

An appropriate way to study challenges is to classify them on the basis of adaptation
processes:

—Monitoring challenges: A significant challenge for monitoring different at-
tributes in adaptable software is the cost/load of the sensors. In most cases, a
number of in vivo methods collect various information, which may not be required
by the desired self-* properties. In some cases, the monitoring process does not
need the details of the events, while in the case of deviating from “normal” be-
havior, more data will be required. Consequently, a monitoring process needs to
be adapted regarding the adaptable software situation, in order to increase the
level of awareness. Such a process can be called an adaptive monitoring process.
Oreizy et al. argue that a self-adaptive software needs a planning process to
specify which observations are necessary to decide “when” and “where” adapta-
tions are required [Oreizy et al. 1999]. A few efforts address adaptive monitoring,
such as the COMPAS framework in J2EE applications [Diaconescu et al. 2004].
Although these efforts have partially addressed the monitoring challenges, this
subject deserves much more attention.

—Detecting challenges: The prominent question in the detecting process is
“which behaviors/states of a software system are healthy/normal?”. Answer-
ing this question often requires a time-consuming static and dynamic analysis
of the system, which may also be strongly affected by the underlying random
variables (i.e., users’ requests arrival times, and faults in different components).
Although there have been efforts to apply statistical and data mining techniques
to address this issue (e.g., for problem determination [Brown et al. 2001]), the

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



32 · Self-Adaptive Software: Landscape and Research Challenges

existing realizations of this process are still mostly ad hoc and incomplete.
—Deciding challenges: The deciding process still needs lots of attention both

at the local level (adaptation engine) and at the system level. As discussed
in [McKinley et al. 2004], most of the known approaches are static and only
effective in specific domains. As shown in Table V, few research projects have
provided strong support for this process, in particular by focusing on multiple
self-* properties in dynamic and uncertain environments. Moreover, as shown
in Table VI, about half of the projects address dynamic decision-making. In
the presence of multiple objectives, in addition to the necessity of deciding on-
line and dynamically, one faces the following additional challenges: i) finding
approximately or partially optimal solutions for multi-objective decision-making
problems, ii) dealing with uncertainty and incompleteness of events/information
from the system’s self and context, iii) correlating local and global decision-
making mechanisms, and iv) addressing the scalability and fault-proneness of
the decision-making mechanism using centralized or decentralized models.

—Acting challenges: One important challenge is how to assure that the adap-
tation is going to be stable and have a predictable impact on the functional
and non-functional aspects of the underlying software system. It is important
to know: i) whether the adaptation actions follow the contracts and the ar-
chitectural styles of the system, ii) whether they impact the safety/integrity of
the application, and iii) what will happen if the action fails to complete, or if
preemption is required in order to suspend the current action and deal with a
higher priority action. These issues are critical, particularly for systems with
open adaptation and dynamic decision-making in non-stationary environments.
These challenges have been addressed by Laddaga [Laddaga 2006] in the context
of stability of self-adaptive software, and have been linked to verification by Kar-
sai et al. [Karsai et al. 2001]. These issues still require much more research, since
most of the solutions presented in the literature are ad hoc and problem-specific.
Formal methods and model-driven solutions, with the aid of model/constraint
checking, seem to be a promising direction in this respect.

5.4 Challenges in Interaction

At first glance, a human interface for self-adaptive software appears to be much
easier to build compared to non-adaptive software. However, as Russel et al. [Rus-
sell et al. 2003] point out, several problems exist that include policy management,
trust, and human involvement. The analysis in Section 4.2 also shows that most
of the projects do not have a human in the loop for policy changing or tracing
adaptation processes. These challenges can be briefly described as follows.

—Policy management: One prominent downside of some of the existing solutions
is the lack of explicit representation of policies and goals. This leads to two
problems that will be explained next.
• Policy translation: The policies and goals often need to be decomposed or

translated into lower-level/local ones that are understandable by the system
elements. Without having a goal/policy model, it is difficult to accomplish
this task effectively and efficiently in complex large-scale systems. This matter
needs highly flexible models and algorithms, which is a research issue definitely

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



Mazeiar Salehie and Ladan Tahvildari · 33

worth investigating.
• Dynamic policies and goals: The developers need to hard-code or precompile

the action selection mechanism for the deciding process. A rule-based mecha-
nism based on a fixed static conflict resolution mechanism is commonly used
for this purpose. The rules in such systems are hand-coded or compiled on the
basis of declarative descriptions of objectives, policies, or desired behaviors in
the design phase. However, the goals and management policies may be subject
to change during the operating phase.

—Building trust: Another noteworthy challenge issue is how to establish trust.
The issue of trust is not limited to self-adaptive software and is a general re-
search topic in many computer-based and software-intensive systems. However,
self-adaptive software, due to its dynamic and automatic nature, adds new con-
cerns to this problem. The independence and intelligence may make this type
of system less traceable for users and stakeholders. It is essential that a self-
adaptive application facilitates trust management for the security concerns, and
also reports its activities and decisions to administrators in order to expose what
is going on. Trust can be built incrementally to ensure that the adaptation pro-
cesses are safe and secure. It is noteworthy that trust can also be defined between
self-adaptive elements and services, in which this issue will affect interoperability.

—Interoperability: This issue is challenging in most distributed complex systems
and particularly in the so-called “systems of systems”. In self-adaptive software,
besides the data-related concerns, coordinating and orchestrating self-adaptation
behavior of all elements is a challenging task. Fulfilling global requirements
and self-* properties, for each property and across different properties, is not a
straight-forward task. The emergence of Ultra-Large Scale (ULS) systems adds to
the significance of interoperability, and at the same time, creates new challenges
in this regard [Northrop 2006].

6. SUMMARY

The area of self-adaptive software enjoys a growing importance. In spite of nu-
merous excellent research efforts, this area is still in its infancy, and the existing
body of knowledge is far from being adequate to address the escalating demands
for self-adaptivity of software in today’s dynamic and ever-changing environments.
Self-adaptive software poses many new opportunities, as well as challenges, for com-
puter scientists and engineers. New models and theories are needed to access to
these opportunities and to cope with the associated challenges towards fulfilling the
requirements.

This survey article has discussed the basic principles behind self-adaptive software
and proposed a taxonomy of adaptation. The questions of where, when, what, why,
who, and how form the basis of this taxonomy. A landscape has been presented
based on reviewing a number of disciplines related to self-adaptive software, as
well as some selected research projects. A comparison between the different views
of this landscape has provided a framework to identify gaps. For example, the
self-protecting property needs more work to provide more secure software systems.
Various threats to on-line distributed systems are the driving forces for this issue.
Adaptation processes also need to be improved to adapt software systems effectively

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



34 · Self-Adaptive Software: Landscape and Research Challenges

and efficiently.
The landscape also helps locate future challenges in this emerging research area.

Such challenges have been classified into four categories, namely self-* proper-
ties, adaptation processes, engineering issues, and interaction. These categories
are based on the discussed fundamentals of self-adaptive software in the previous
sections. The challenges have been linked to related discussions and concepts.

REFERENCES

Abdelwahed, S., Kandasamy, N., and Neema, S. 2004. A control-based framework for self-
managing distributed computing systems. In Proc. of Workshop on Self-healing Sys. 3–7.

Al-Nashif, Y., Kumar, A., Hariri, S., Luo, Y., Szidarovsky, F., and Qu, G. 2008. Multi-Level
Intrusion Detection System (ML-IDS). In Autonomic Computing, 2008. ICAC’08. Interna-
tional Conference on. 131–140.

Alur, D., Crupi, J., and Malks, D. 2001. Core J2EE Patterns: Best Practices and Design
Strategies. Prentice-Hall.

Aly, W. H. F. and Lutfiyya, H. 2007. Dynamic adaptation of policies in data center manage-
ment. In Proc. of IEEE Int. Workshop on Policies for Distributed Sys. & Networks. 266–272.

Amoui, M., Salehie, M., Mirarab, S., and Tahvildari, L. 2008. Adaptive action selection in
autonomic software using reinforcement learning. In Proc. of Int. Conf. on Autonomic and
Autonomous Systems. 175–181.

Appleby, K., Fakhouri, S., Fong, L., Goldszmidt, G., Kalantar, M., Krishnakumar, S.,
Pazel, D., Pershing, J., and Rochwerger, B. 2001. Oceano - SLA-based management of
a computing utility. In Proc. of IFIP/IEEE Int. Symp. on Integrated Network Management.
855–868.

ARM. Application response measurement. http://www.opengroup.org/tech/management/arm/.

Arshad, N., Heimbigner, D., and Wolf, A. 2003. Deployment and dynamic reconfiguration
planning for distributed software systems. In Proc. of IEEE Conf. on Tools with Artificial
Intelligence. 39–46.

Asadollahi, R., Salehie, M., and Tahvildari, L. 2009. Starmx: A framework for developing
self-managing java-based systems. In Proc of ICSE workshop on Software Engineering for
Adaptive and Self-Managing Systems. TBA.

Babaoglu, O., Canright, G., Deutsch, A., Caro, G. A. D., Ducatelle, F., Gambardella,
L. M., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A., and Urnes, T. 2006.
Design patterns from biology for distributed computing. ACM Trans. on Autonomous and
Adaptive Sys. 1, 1, 26–66.

Babaoglu, O., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A.,
and van Steen, M. 2005. Self-star Properties in Complex Information Systems: Conceptual
and Practical Foundations (Lecture Notes in Computer Science).

Badr, N., Taleb-Bendiab, A., and Reilly, D. 2004. Policy-based autonomic control service. In
Proc. of IEEE Int. Workshop on Policies for Distributed Sys. & Networks. 99.

Bantz, D. F., Bisdikian, C., Challener, D., Karidis, J. P., Mastrianni, S., Mohindra, A.,
Shea, D. G., and Vanover, M. 2003. Autonomic personal computing. IBM Systems Jour-
nal 42, 1, 165–176.

Bernon, C., Gleizes, M., Peyruqueou, S., and Picard, G. 2003. Adelfe: A methodology for
adaptive multi-agent systems engineering. Lecture Notes in Computer Science, 156–169.

Bhat, V., Parashar, M., Liu, H., Khandekar, M., Kandasamy, N., and Abdelwahed, S. 2006.
Enabling self-managing applications using model-based online control strategies. In Proc. of
IEEE Int. Conf. on Autonomic Computing. 15–24.

Bigus, J. P., Schlosnagle, D. A., Pilgrim, J. R., Mills, W. N., and Diao, Y. 2002. Able: A
toolkit for building multiagent autonomic systems. IBM Sys. Journal 41, 3, 350–371.

Birman, K., van Renesse, R., and Vogels, W. 2004. Adding high availability and autonomic
behavior to web services. In Proc. of Int. Conf. on Software Eng. 17–26.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



Mazeiar Salehie and Ladan Tahvildari · 35

Boutilier, C., Das, R., Kephart, J. O., and Walsh, W. E. 2003. Towards cooperative nego-
tiation for decentralized resource allocation in autonomic computing systems. In Proc. of Int.
Joint Conf. on Artificial Intelligence. 1458–1459.

Bradbury, J. S., Cordy, J. R., Dingel, J., and Wermelinger, M. 2004. A survey of self-
management in dynamic software architecture specifications. In Proc. of ACM workshop on
Self-managed systems. 28–33.

Brown, A., Kar, G., and Keller, A. 2001. An active approach to characterizing dynamic
dependencies for problem determination in a distributed environment. In Proc. of Integrated
Network Management. 377–390.

Buckley, J., Mens, T., Zenger, M., Rashid, A., and Kniesel, G. 2005. Towards a taxonomy
of software change. Journal on Software Maintenance and Evolution: Research and Practice,
309–332.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. 1996. A system of
patterns - pattern oriented software architecture. Wiley.

Candea, G., Cutler, J., and Fox, A. 2004. Improving availability with recursive microreboots:
a soft-state system case study. Performance Evaluation 56, 1-4, 213–248.

Candea, G., Kiciman, E., Kawamoto, S., and Fox, A. 2006. Autonomous recovery in compo-
nentized internet applications. Cluster Computing 9, 1, 175–190.

Cardellini, V., Colajanni, M., and Yu, P. 1999. Dynamic load balancing on Web-server
systems. IEEE Internet Computing 3, 3, 28–39.

Carzaniga, A., Rosenblum, D. S., and Wolf, A. L. 2001. Design and evaluation of a wide-area
event notification service. ACM Trans. on Computer Sys. 19, 3, 332–383.

Cheng, S.-W., Garlan, D., and Schmerl, B. 2006. Architecture-based self-adaptation in the
presence of multiple objectives. In Proc. of Workshop on Self-adaptation and Self-managing
Sys. 2–8.

CIM. Common information model standard. http://www.dmtf.org/standards/cim/.

de Lemos, R. and Fiadeiro, J. L. 2002. An architectural support for self-adaptive software for
treating faults. In Proc. of Workshop on Self-healing Sys. 39–42.

Diaconescu, A., Mos, A., and Murphy, J. 2004. Automatic performance management in com-
ponent based software systems. In Proc. of Int. Conf. on Autonomic Computing. 214–221.

Dilman, M. and Raz, D. 2002. Efficient reactive monitoring. IEEE Journal on Selected Areas
in Communications 20, 4, 668–676.

Dobson, S., Denazis, S., Fernández, A., Gäıti, D., Gelenbe, E., Massacci, F., Nixon, P.,
Saffre, F., Schmidt, N., and Zambonelli, F. 2006. A survey of autonomic communications.
ACM Transactions on Autonomous and Adaptive Systems (TAAS) 1, 2, 223–259.

Dowling, J. 2004. The decentralised coordination of self-adaptive components for autonomic
distributed systems. Ph.D. thesis, Department of Computer Science, Trinity College Dublin.

Dowling, J. and Cahill, V. 2004. Self-managed decentralised systems using K-components and
collaborative reinforcement learning. In Proc. of ACM Workshop on Self-Managed Sys. 39–43.

Duzan, G., Loyall, J. P., Schantz, R. E., Shapiro, R., and Zinky, J. A. 2004. Building
adaptive distributed applications with middleware and aspects. In Proc. of Int. Conf. on
Aspect-Oriented Software Development. 66–73.

Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., and Gjørven, E. 2006. Using
Architecture Models for Runtime Adaptability. IEEE SOFTWARE , 62–70.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design patterns: elements of
reusable object-oriented software. Addison-Wesley.

Ganek, A. G. and Corbi, T. A. 2003. The dawning of the autonomic computing era. IBM Sys.
Journal, Special Issues on Autonomic Computing 42, 5–18.

Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., and Steenkiste, P. 2004. Rainbow:
Architecture-based self-adaptation with reusable infrastructure. IEEE Computer 37, 10, 46–54.

Garlan, D. and Schmerl, B. 2002. Model-based adaptation for self-healing systems. In Proc.
of Workshop on Self-healing Sys. 27–32.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



36 · Self-Adaptive Software: Landscape and Research Challenges

Georgas, J. C., van der Hoek, A., and Taylor, R. N. 2005. Architectural runtime configuration
management in support of dependable self-adaptive software. In WADS ’05: Proceedings of the
2005 workshop on Architecting dependable systems. 1–6.

Gjorven, E., Eliassen, F., and Aagedal, J. O. 2006. Quality of adaptation. In Proc. of Int.
Conf. on Autonomic and Autonomous Sys. 9–14.

Greenwood, P. and Blair, L. 2004. Using dynamic aspect-oriented programming to implement
an autonomic system. In Proc. of Dynamic Aspects Workshop. 76–88.

Hinchey, M. G. and Sterritt, R. 2006. Self-managing software. IEEE Computer 39, 2, 107–109.

Horn, P. 2001. Autonomic computing: IBM’s perspective on the state of information technology.
http://www-1.ibm.com/industries/government/doc/content/bin/auto.pdf.

Howe, A. E. 1995. Improving the reliability of artificial intelligence planning systems by analyzing
their failure recovery. IEEE Trans. on Knowledge and Data Eng. 7, 1, 14–25.

Huebscher, M. C. and McCann, J. A. 2008. A survey of autonomic computing—degrees,
models, and applications. ACM Comput. Surv. 40, 3, 1–28.

Hutchison, D., Coulson, G., Campbell, A., and Blair, G. S. 1994. Quality of service man-
agement in distributed systems. 273–302.

IBM. 2005. Autonomic computing toolkit: Developers guide. Tech. Rep. SC30-4083-03.

IBM-AC 2001. Autonomic computing 8 elements. http://www.research.ibm.com/autonomic/overview/elements.html.

IBM BtM. Eclipse BtM (Build to Manage). www.ibm.com/developerworks/eclipse/btm.

IBM Ref. Arch. 2005. An architectural blueprint for autonomic computing. IBM white paper.
http://www-03.ibm.com/autonomic/pdfs/AC Blueprint White Paper V7.pdf.

IBM SMART. SMART. http://www.almaden.ibm.com/software/dm/SMART/.

IEEE-ISO/IEC 14764 2006. Standard for software maintenance - IEEE 14764-2006 - ISO/IEC
14764. URL = http://ieeexplore.ieee.org/iel5/11168/35960/01703974.pdf.

ISO/IEC 9126-1 2001. ISO/IEC 9126-1 Standard: Software Eng. -Product quality - Part 1: Quality
model, Int. Standard Organization, 2001.

Jelasity, M., Babaoglu, O., Laddaga, R., Nagpal, R., Zambonelli, F., Sirer, E. G.,
Chaouchi, H., and Smirnov, M. 2006. Interdisciplinary research: Roles for self-organization.
IEEE Intelligent Sys. 21, 2, 50–58.

JMX. Sun Java Management eXtensions. http://jcp.org/en/jsr/detail?id=3.

JVMTI. Sun JVM Tool Interface. http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/.

Kaiser, G. E., Parekh, J., Gross, P., and Valetto, G. 2003. Kinesthetics extreme: An ex-
ternal infrastructure for monitoring distributed legacy systems. In Proc. of Active Middleware
Services. 22–31.

Karamanolis, C., Karlsson, M., and Zhu, X. 2005. Designing controllable computer systems.
In Proc. of Hot Topics in Operating Sys. workshop. 49–54.

Karsai, G., Lédeczi, Á., Sztipanovits, J., Péceli, G., Simon, G., and Kovácsházy, T. 2001.
An approach to self-adaptive software based on supervisory control. In Proc. of Int. Workshop
on Self-Adaptive Software. 24–38.

Karsai, G. and Sztipanovits, J. 1999. A model-based approach to self-adaptive software. IEEE
Intelligent Systems 14, 3, 46–53.

Keeney, J. and Cahill, V. 2003. Chisel: A policy-driven, context-aware, dynamic adaptation
framework. In Proc. of IEEE Int. Workshop on Policies for Distributed Sys. & Networks. 3–14.

Keeney, R. L. and Raiffa, H. 1976. Decisions with Multiple Objectives. Wiley.

Kephart, J. O. 2005. Research challenges of autonomic computing. In Proc. of Int. Conf. on
Software Eng. 15–22.

Kephart, J. O. and Chess, D. M. 2003. The vision of autonomic computing. IEEE Com-
puter 36, 1, 41–50.

Kephart, J. O. and Walsh, W. 2004. An artificial intelligence perspective on autonomic com-
puting policies. In Proc. of IEEE int. workshop on Policies for Dist. Sys. and Networks.
3–13.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



Mazeiar Salehie and Ladan Tahvildari · 37

King, T. M., Babich, D., Alava, J., Clarke, P. J., and Stevens, R. 2007. Towards self-
testing in autonomic computing systems. In Proc. of the Eighth Int. Symp. on Autonomous
Decentralized Systems. 51–58.

Kokar, M. M., Baclawski, K., and Eracar, Y. A. 1999. Control theory-based foundations of
self-controlling software. IEEE Intelligent Sys. 14, 3, 37–45.

Kon, F., Costa, F., Blair, G., and Campbell, R. 2002. The case for reflective middleware.
Communications of the ACM 45, 6, 33–38.

Kramer, J. and Magee, J. 1990. The evolving philosophers problem: Dynamic change manage-
ment. IEEE Transactions on software engineering 16, 11, 1293–1306.

Kramer, J. and Magee, J. 2007. Self-managed systems: an architectural challenge. In Proc. of
ICSE - Future of Software Engineering. 259–268.

Kumar, V., Cooper, B., Cai, Z., Eisenhauer, G., and Schwan, K. 2007. Middleware for
enterprise scale data stream management using utility-driven self-adaptive information flows.
Cluster Computing 10, 4, 443–455.

Laddaga, R. 1997. Self-adaptive software. Tech. Rep. 98-12, DARPA BAA.

Laddaga, R. 1999. Guest editor’s introduction: Creating robust software through self-adaptation.
IEEE Intelligent Sys. 14, 3, 26–29.

Laddaga, R. 2000. Active software. In Proc. of Int. Workshop on Self-Adaptive Software. 11–26.

Laddaga, R. 2006. Self adaptive software problems and projects. In Proc. of IEEE workshop on
Software Evolvability. 3–10.

Laddaga, R., Robertson, P., and Shrobe, H. 2000. Introduction to self-adaptive software:
Applications. In Proc. of Int. Workshop on Self-Adaptive Software. Vol. 2614. 1–5.

Laddaga, R., Robertson, P., and Shrobe, H. E. 2001. Results of the 2nd Int. workshop on
self-adaptive software. In Proc. of Int. Workshop on Self-Adaptive Software. 281–290.

Landauer, C. and Bellman, K. L. 2001. New architectures for constructed complex systems.
Applied Mathematics and Computation 120, 149–163.

Lapouchnian, A., Liaskos, S., Mylopoulos, J., and Yu, Y. 2005. Towards requirements-driven
autonomic systems design. In Proc. of Workshop on Design and Evolution of Autonomic App.
Software. 1–7.

Lehman, M. M. 1996. Laws of software evolution revisited. In Proc. of European Workshop on
Software Process Technology. 108–124.

Lieberherr, K. J. and Palsberg, J. 1993. Engineering adaptive software. Projest Proposal,
ftp://ftp.ccs.neu.edu/pub/people/lieber/proposal.ps.

Litoiu, M., Woodside, M., and Zheng, T. 2005. Hierarchical model-based autonomic control of
software systems. In Proc. of Workshop on Design and Evolution of Autonomic App. Software.
27–33.

Liu, H., Parashar, M., and Hariri, S. 2004. A component-based programming model for
autonomic applications. In Proc. of Int. Conf. on Autonomic Computing. 10–17.

Loyall, J. P., Bakken, D. E., Schantz, R. E., Zinky, J. A., Karr, D. A., Vanegas, R., and
Anderson, K. R. 1998. QoS aspect languages and their runtime integration. In Proc. of Int.
Workshop on Languages, Compilers, and Run-Time sys. for scalable computers. 303–318.

Lutfiyya, H., Molenkamp, G., Katchabaw, M., and Bauer, M. A. 2001. Issues in managing
soft QoS requirements in distributed systems using a policy-based framework. In Proc. of IEEE
Int. Workshop on Policies for Distributed Sys. & Networks. 185–201.

Maes, P. 1990. Situated agents can have goals. Robotics and Autonomous Sys. 6, 49–70.

Magee, J. and Kramer, J. 1996. Dynamic structure in software architectures. ACM SIGSOFT
Software Engineering Notes 21, 6, 3–14.

McCann, J. A. and Huebscher, M. C. 2004. Evaluation issues in autonomic computing. In
Grid and Cooperative Computing workshops. 597–608.

McCann, J. A., Lemos, R. D., Huebscher, M., Rana, O. F., and Wombacher, A. 2006. Can
self-managed systems be trusted? some views and trends. Knowledge Eng. Review 21, 3, 239–
248.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



38 · Self-Adaptive Software: Landscape and Research Challenges

McKinley, P. K., Sadjadi, M., Kasten, E. P., and Cheng, B. H. C. 2004. Composing adaptive
software. IEEE Computer , 56–64.

Menascé, D. A. and Bennani, M. N. 2006. Autonomic virtualized environments. In Proc. of
Int. Conf. on Autonomic and Autonomous Systems. 28.

M.H. Klein, R. Kazman, L. B. J. C. M. B. and Lipson, H. 1999. Attribute-based architectural
styles. In Proc. of the IEEE/IFIP First Workshop Conf. on Software Architecture. 225–243.

Morandini, M., Penserini, L., and Perini, A. 2008. Towards goal-oriented development of
self-adaptive systems. In Proc. of Int. workshop on Software Engineering for Adaptive and
Self-managing Systems. 9–16.

Mukhija, A. and Glinz, M. 2005. Runtime adaptation of applications through dynamic recom-
position of components. In Proc. of Int. Conf. on Architecture of Computing Sys. 124–138.

Muller, H. A. 2006. Bits of history, challenges for the future and autonomic computing tech-
nology. In Proc. of Working Conf. on Reverese Eng. 9–15.

Murch, R. 2004. Autonomic Computing. Prentice Hall.

Northrop, L. 2006. Ultra-large-scale systems: The software challenges of the future. Tech. rep.,
Carnegie Mellon University. July. http://www.sei.cmu.edu/uls/.

Nowicki, T., Squillante, M. S., and Wu, C. W. 2005. Fundamentals of dynamic decentralized
optimization in autonomic computing systems. In LNCS. Vol. 3460. 204–218.

Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimbigner, D., Johnson, G., Medvidovic, N.,
Quilici, A., Rosenblum, D. S., and Wolf, A. L. 1999. An architecture-based approach to
self-adaptive software. IEEE Intelligent Sys. 14, 3, 54–62.

Oreizy, P., Medvidovic, N., and Taylor, R. N. 1998. Architecture-based runtime software
evolution. In Proc. of Int. Conf. on Software Eng. 177–186.

Parashar, M. and Hariri, S. 2005. Autonomic computing: An overview. Hot Topics, Lecture
Notes in Computer Science 3566, 247–259.

Parekh, J., Kaiser, G., Gross, P., and Valetto, G. 2006. Retrofitting autonomic capabilities
onto legacy systems. Cluster Computing 9, 2, 141–159.

Parnas, D. L. 1985. Software aspects of strategic defense systems. Commun. ACM 28, 12,
1326–1335.

Patrascu, R., Boutilier, C., Das, R., Kephart, J. O., Tesauro, G., and Walsh, W. E. 2005.
New approaches to optimization and utility elicitation in autonomic computing. In Proc. of
Conf. on Artificial Intelligence. 140–145.

Pavlovic, D. 2000. Towards semantics of self-adaptive software. In Proc. of Int. Workshop on
Self-Adaptive Software. Lecture Notes in Computer Science, vol. 1936. 65–74.

Pawlak, R., Seinturier, L., Duchien, L., and Florin, G. 2001. JAC: A flexible solution for
aspect-oriented programming in Java. In Proc. of Metalevel Architectures and Separation of
Crosscutting Concerns. 1–24.

Peltz, C. 2003. Web services orchestration and choreography. IEEE Computer 36, 10, 46–52.

Pinto, M., Fuentes, L., Fayad, M., and Troya, J. 2002. Separation of coordination in a dynamic
aspect oriented framework. In Proc. of Int. Conf. on Aspect-Oriented Software Development.
134–140.

Poladian, V., Sousa, J. P., Garlan, D., and Shaw, M. 2004. Dynamic configuration of resource-
aware services. In ICSE ’04: Proceedings of the 26th International Conference on Software
Engineering. IEEE Computer Society, Washington, DC, USA, 604–613.

Popovici, A., Gross, T., and Alonso, G. 2002. Dynamic weaving for aspect-oriented program-
ming. In Proc. of Int. Conf. on Aspect-Oriented Software Development. 141–147.

Porcarelli, S., Castaldi, M., Giandomenico, F. D., Bondavalli, A., and Inverardi, P.
2003. A framework for reconfiguration-based fault-tolerance in distributed systems. In Proc. of
ICSE Workshop on Architecting Dependable Systems II. Lecture Notes in Computer Science.
167–190.

Qu, G. and Hariri, S. 2007. Autonomic computing: concepts, infrastructures, and applications.
CRC, Chapter Anomaly-based self-protection against network attacks, 493–521.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



Mazeiar Salehie and Ladan Tahvildari · 39

Ramadge, P. J. and Wonham, W. M. 1987. Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization 25, 1, 206–230.

Robertson, P. and Laddaga, R. 2005. Model based diagnosis and contexts in self adaptive
software. In Proc. of Self-* Properties in Complex Information Sys. 112–127.

Robertson, P. and Williams, B. 2006. Automatic recovery from software failure. Commun.
ACM 49, 3, 41–47.

Russell, D. M., Maglio, P., Dordick, R., and Neti, C. 2003. Dealing with ghosts: Managing
the user experience of autonomic computing. IBM Sys. Journal 42, 1, 177–188.

Russell, S. J. and Norvig, P. 1995. Artificial intelligence: a modern approach. Prentice-Hall.

Saab, C. B., Bonnaire, X., and Folliot, B. 2002. Phoenix: A self adaptable monitoring platform
for cluster management. Cluster Computing 5, 1, 75–85.

Sadjadi, S. M. and McKinley, P. K. 2004. ACT: An adaptive CORBA template to support
unanticipated adaptation. In Proc. of Int. Conf. on Dist. Computing Sys. 74–83.

Sadjadi, S. M., McKinley, P. K., Cheng, B. H. C., and Stirewalt, R. E. K. 2004. TRAP/J:
Transparent generation of adaptable Java programs. Lecture Notes in Computer Science 3291,
1243–1261.

Salehie, M., Li, S., Asadollahi, R., and Tahvildari, L. 2009. Change support in adaptive
software: A case study for fine-grained adaptation. In Proc. of IEEE Conf. and Workshops on
Engineering of Autonomic and Autonomous Systems. TBA.

Salehie, M., Li, S., and Ladan, T. 2009. Employing aspect composition in adaptive software
systems: A case study. In Proc. of ACM Practices of Linking Aspect Technology and Evolution
workshop. TBA.

Salehie, M. and Tahvildari, L. 2005a. Autonomic computing: emerging trends and open prob-
lems. In Proc. of Workshop on Design and Evolution of Autonomic App. Software. 82–88.

Salehie, M. and Tahvildari, L. 2005b. A policy-based decision making approach for orches-
trating autonomic elements. In Proc. of IEEE Int. Workshop on Software Tech. & Eng. Prac.
173–181.

Salehie, M. and Tahvildari, L. 2007. A weighted voting mechanism for action selection prob-
lem in self-adaptive software. In Proc. IEEE Int. Conf. on Self-Adaptive and Self-Organizing
Systems. 328–331.

Schmidt, D. C. 2002. Middleware for real-time and embedded systems. Communication of
ACM 45, 6, 43–48.

Schmidt, D. C. and Cleeland, C. 1999. Applying patterns to develop extensible orb middleware.
IEEE Communications Magazine 37, 54–63.

Scott, J., Neema, S., Bapty, T., and Abbott, B. 2000. Hardware/software runtime environ-
ment for dynamically reconfigurable systems. Tech. Rep. ISIS-2000-06, Vanderbilt Univ.

Serugendo, G. D. M., Foukia, N., Hassas, S., Karageorgos, A., Mostéfaoui, S. K., Rana,
O. F., Ulieru, M., Valckenaers, P., and van Aart, C. 2003. Self-organisation: Paradigms
and app. In Proc. of Eng. Self-Organising App. workshop. 1–19.

ShiftOne JRat. JRat (Java Runtime Analysis Toolkit). http://jrat.sourceforge.net/.

Sloman, M. 1994. Policy driven management for distributed systems. J. Network Syst. Man-
age. 2, 4.

Smith, D., Morris, E., and Carney, D. 2005. Interoperability issues affecting autonomic com-
puting. In Proc. of Workshop on Design and Evolution of Autonomic App. Software. 89–91.

SNMP. Simple network management protocol. http://www.ietf.org/html.charters/OLD/snmp-
charter.html.

Srivastava, B. and Kambhampati, S. 2005. The case for automated planning in autonomic
computing. In Proc. of Int. Conf. on Automatic Computing. 331–332.

Sterritt, R. 2003. Autonomic computing: the natural fusion of soft computing and hard com-
puting. In IEEE Int. Conf. on Sys., Man and Cybernetics. Vol. 5. 4754–4759.

Sterritt, R. and Bustard, D. W. 2003. Autonomic computing - a means of achieving depend-
ability? In Proc. of IEEE Symp. and Workshops on Eng. of Computer-Based Sys. 247–251.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.



40 · Self-Adaptive Software: Landscape and Research Challenges

Sterritt, R., Parashar, M., Tianfield, H., and Unland, R. 2005. A concise introduction to
autonomic computing. Advanced Eng. Informatics 19, 181–187.

Subramanian, N. and Chung, L. 2001. Software architecture adaptability: An nfr approach. In
Proc. of Int. Workshop on Principles of Software Evolution. 52–61.

Suvée, D., Vanderperren, W., and Jonckers, V. 2003. JAsCo: an aspect-oriented approach
tailored for component based software development. In Proceedings of the 2nd international
conference on Aspect-oriented software development. 21–29.

Tanenbaum, A. S. and Woodhull, A. S. 2006. Operating systems: design and implementation,
Third ed. Pearson Prentice Hall.

Tesauro, G. 2007. Reinforcement learning in autonomic computing: A manifesto and case studies.
IEEE Internet Computing 11, 1, 22–30.

Tesauro, G., Chess, D. M., Walsh, W. E., Das, R., Segal, A., Whalley, I., Kephart, J. O.,
and White, S. R. 2004. A multi-agent systems approach to autonomic computing. In Proc.
of Int. Conf. on Autonomous Agents and Multiagent Systems. 464–471.

Tuttle, S., Batchellor, V., Hansen, M. B., and Sethuraman, M. 2003. Centralized risk
management using tivoli risk manager 4.2. Tech. rep., IBM Tivoli Software. December.

Tziallas, G. and Theodoulidis, B. 2004. A controller synthesis algorithm for building self-
adaptive software. Information & Software Tech. 46, 11, 719–727.

Valetto, G. and Kaiser, G. 2003. Using process technology to control and coordinate software
adaptation. In Proc. of Int. Conf. on Software Eng. 262–273.

Verma, K. and Sheth, A. P. 2005. Autonomic web processes. In Proc. of Int. Conf. on Service-
Oriented Computing. Lecture Notes in Computer Science, vol. 3826. 1–11.

Walsh, W. E., Tesauro, G., Kephart, J. O., and Das, R. 2004. Utility functions in autonomic
systems. In Proc. of IEEE Conference on Autonomic Computing. 70–77.

WBEM. Web-based enterprise management standard. http://www.dmtf.org/standards/wbem/.

Westerinen, A., Schnizlein, J., Strassner, J., Scherling, M., Quinn, B., Perry, J., Herzog,
S., Huynh, A.-N., and Carlson, M. 2000. Policy terminology. IETF, Internet Draft draftietf-
policy-terminology-00.txt.

Weyns, D., Schelfthout, K., and Holvoet, T. 2005. Architectural design of a distributed
application with autonomic quality requirements. SIGSOFT Softw. Eng. Notes 30, 4, 1–7.

White, J., Schmidt, D. C., and Gokhale, A. S. 2005. Simplifying autonomic enterprise java
bean applications via model-driven development: A case study. In Proc. of Int. Conf. on Model
Driven Eng. Languages and Sys. 601–615.

Willebeek-LeMair, M., Reeves, A., Center, I., and Heights, Y. 1993. Strategies for dynamic
load balancing on highly parallel computers. IEEE Transactions on Parallel and Distributed
Systems 4, 9, 979–993.

Woodside, C. M. and Menascé, D. A. 2006. Guest editors’ introduction: Application-level QoS.
IEEE Internet Computing 10, 3, 13–15.

Zhang, J. 2007. A formal approach to providing assurance to dynamically adaptive software.
Ph.D. thesis, Michigan State University.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, March 2009.


