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Self-Adjoint Extensions by Additive Perturbations

ANDREA POSILICANO

Abstract. Let AN be the symmetric operator given by the restriction of A to N ,
where A is a self-adjoint operator on the Hilbert spaceH andN is a linear dense set
which is closed with respect to the graph norm on D(A), the operator domain of A.
We show that any self-adjoint extension A� of AN such that D(A�)∩ D(A) = N
can be additively decomposed by the sum A� = Ā+T�, where both the operators
Ā and T� take values in the strong dual of D(A). The operator Ā is the closed
extension of A to the whole H whereas T� is explicitly written in terms of a
(abstract) boundary condition depending on N and on the extension parameter
�, a self-adjoint operator on an auxiliary Hilbert space isomorphic (as a set) to
the deficiency spaces of AN . The explicit connection with both Kreı̆n’s resolvent
formula and von Neumann’s theory of self-adjoint extensions is given.

Mathematics Subject Classification (2000): 47B25 (primary), 47B38, 47F05
(secondary).

1. – Introduction

Given a self-adjoint operator A : D(A) ⊆ H → H, let AN be the restriction
of A to N , where N � D(A) is a dense linear subspace which is closed with
respect to the graph norm. Then AN is a closed, densely defined, symmetric
operator. Since N �= D(A), AN is not essentially self-adjoint, as A is a non-
trivial extension of AN , and, by the famed von Neumann’s formulae [15], we
know that AN has an infinite family of self-adjoint extensions AU parametrized
by the unitary maps U from K+ onto K−, where K± :=Kernel (−A∗

N ± i)
denotes the deficiency spaces.

In Section 2 we define a family A� of extensions of AN by means of
a Kreı̆n-like formula i.e. by explicitly giving its resolvent (−A� + z)−1 (see
Theorem 2.1). By using the approach developed in [16], we describe the domain
of A� in terms of the boundary condition τφ� = � Qφ , where τ : D(A) → h is
a surjective continuos linear mapping with Kernel τ = N , � : D(�) ⊆ h → h

is self-adjoint and h is a Hilbert space isomorphic (as a set) to K±.

Pervenuto alla Redazione il 15 ottobre 2001.
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In Section 3 we use the resolvent (−A� + z)−1 given in Theorem 2.1 to
re-write A� in a more appealing way as a sum Ā + T� where both Ā and T�

take values in the strong dual (with respect to the graph norm) of D(A) (see
Theorem 3.1); Ā is nothing else that the closed extension of A to the whole
Hilbert space H and T� is explicitly given in terms of the maps τ and � giving
the boundary conditions. This result gives an extension, and a rephrasing in
terms of boundary conditions, of the results obtained in [10] (and references
therein, in particular [13]), where A is strictly positive and N is closed in
D(A1/2) (see Remark 3.5). As regards boundary conditions the reader is also
refered to [9], where A = −� + λ, λ > 0, N the kernel of the evaluation
map along a regular submanifold, and to [17], where A is an arbitrary injective
self-adjoint operator.

Successively, is Section 4, we study the connection of the self-adjoint ex-
tensions defined in the previuos sections with the ones given by von Neumann’s
theory [15]. We prove (see Theorem 4.1) that the operator Ã = Ā + T defined
in Theorem 3.4, of which the self-adjoint A� = Ā + T� is a restriction, coin-
cides with A∗

N ; moreover we explicitly define a map on self-adjoint operators
� : D(�) ⊆ h → h to unitary operators U : K+ → K− such that A� = AU ,
where AU denotes the von Neumann’s extension corresponding to U . Such
correspondence is then explicitly inverted (see Theorem 4.3). This shows (see
Corollary 4.4) that Ã = Ā + T coincides with a self-adjoint extension Â of AN
such that D( Â)∩ D(A) = N if and only if the boundary condition τφ� = � Qφ

holds for some self-adjoint operator �.
In Section 5 we conclude with some examples both in the case of finite and

infinite deficiency indices. Example 5.1 (also see Remark 4.2) shows that, in the
case dimK± < +∞, our results reproduce the theory of finite rank perturbations
as given in [3], Section 3.1, and thus they can be viewed as an extension of
such a theory to the infinite rank case. In Example 5.2 we give two examples in
the infinite rank case: infinitely many point interaction in three dimensions and
singular perturbations, supported on d-sets with 0 < n − d < 2s, of traslation
invariant pseudo-differential operators with domain the Sobolev space H s(Rn).

Notations and definitions

• Given a Banach space X we denote by X ′ its strong dual.
• L(X ,Y) denotes the space of linear operators from the Banach space X to

the Banach space Y; L(X ) ≡ L(X ,X ).
• B(X ,Y) denotes the Banach space of bounded, everywhere defined, linear

operators on the Banach space X to the Banach space Y; B(X ) ≡ B(X ,X ).
• Given A ∈ L(X ,Y) densely defined, the closed operator A′ ∈ L(Y ′,X ′) is

the adjoint of A i.e.

∀ φ ∈ D(A) ⊆ X , ∀λ ∈ D(A′) ⊆ Y ′, (A′λ)(φ) = λ(Aφ) .



SELF-ADJOINT EXTENSIONS BY ADDITIVE PERTURBATIONS 3

• If H is a complex Hilbert space with scalar product (conjugate-linear with
respect to the first variable) 〈·, ·〉, then CH : H → H′ denotes the conjugate-
linear isomorphism defined by

(CH ψ)(φ) := 〈ψ, φ〉 .

• The Hilbert adjoint A∗ ∈ L(H2,H1) of the densely defined linear operator
A ∈ L(H1,H2) is defined as

A∗ := C−1
H1

· A′ · CH2 .

• F and ∗ denote Fourier transform and convolution respectively.
• H s(Rn), s ∈ R, is the usual scale of Sobolev-Hilbert spaces, i.e. H s(Rn)

is the space of tempered distributions with a Fourier transform which is
square integrable with respect to the measure with density (1 + |x |2)s .

2. – Extensions by a Kreı̆n-like formula

Given the Hilbert space H with scalar product 〈·, ·〉 (we denote by ‖ · ‖ the
corresponding norm and put C ≡ CH), let A : D(A) ⊆ H → H be a self-adjoint
operator and let N � D(A) be a linear dense set which is closed with respect
to the graph norm on D(A). We denote by H+ the Hilbert space given by the
set D(A) equipped with the scalar product 〈·, ·〉+ leading to the graph norm,
i.e.

〈φ1, φ2〉+ := 〈(A2 + 1)1/2φ1, (A2 + 1)1/2φ2〉 .

We remark that in the sequel we will avoid to identify H+ with its dual. Indeed
we will use the duality map induced by the scalar product on H (see the next
section for the details).

Being N closed we have H+ = N ⊕ N⊥ and we can then consider the
orthogonal projection π : H+ → N⊥. From now on, since this gives advantages
in concrete applications where usually a variant of π is what is known in
advance, more generally we will consider a linear map

τ : H+ → h , τ ∈ B(H+, h) ,

where h is a Hilbert space with scalar product 〈·, ·〉h, such that

(2.1) Range τ = h

and

(2.2) Kernel τ = H ,

the bar denoting here the closure in H.
We put

N := Kernel τ .

By (2.1) one has h � H+/Kernel τ � N⊥ so that

H+ � N ⊕ h .
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Regarding (2.2) we have the following

Lemma 2.1. Hypothesis (2.2) is equivalent to

Range τ ′ ∩ H′ = {0} ,

when one uses the embedding of H′ into H′
+ ⊇ Range τ ′ given by the map φ �→

〈C−1φ, · 〉.
Proof. Defining as usual the annihilator of N by

N 0 := {λ ∈ H′
+ : ∀ φ ∈ N , λ(φ) = 0}

one has that denseness of N is equivalent to

N 0 ∩ H′ = {0} .

Since Range τ ′ = N 0 the proof is concluded if the range of τ ′ is closed. This
follows from the closed range theorem since the range of τ is closed by the
surjectivity hypothesis.

Being ρ(A) the resolvent set of A, we define R(z) ∈ B(H,H+), z ∈ ρ(A),
by

R(z) := (−A + z)−1

and we then introduce, for any z ∈ ρ(A), the two linear operators Ğ(z) ∈
B(H, h) and G(z) ∈ B(h,H) by

Ğ(z) := τ · R(z) , G(z) := Ğ(z̄)∗ .

By (2.2) one has

(2.3) Range G(z) ∩ D(A) = {0} ,

and, as an immediate consequence of the first resolvent identity for R(z)
(see [16], Lemma 2.1)

(2.4) (z − w) R(w) · G(z) = G(w) − G(z) .

These relations imply

(2.5) Range (G(w) − G(z)) ⊆ D(A)

and
Range (G(w) + G(z)) ∩ D(A) = {0} .

By [16] (combining Theorem 2.1, Proposition 2.1, Lemma 2.2, Remarks 2.10,
2.12 and 2.13) one then obtains the following
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Theorem 2.2. Given z0 ∈ C\R define

G� := 1

2
(G(z0) + G(z̄0)) G� := 1

2
(G(z0) − G(z̄0))

and, given then any self-adjoint operator � : D(�) ⊆ h → h, define

R�(z) := R(z) + G(z) · (� + 
(z))−1 · Ğ(z) , z ∈ W� ∪ C\R ,

where

(z) := τ · (G� − G(z))

and
W� := {λ ∈ R ∩ ρ(A) : 0 ∈ ρ(� + 
(λ))} .

Then R� is the resolvent of the self-adjoint extension of AN defined by

D(A�) : = { φ ∈ H : φ = φ� + G�Qφ, φ� ∈ D(A), Qφ ∈ D(�), τφ� = � Qφ},
A� φ : = A φ� + Re(z0) G�Qφ + i Im(z0) G�Qφ .

Proof. Here we just give the main steps of the proof refering to [16],
Section 2, for the details. One starts writing the presumed resolvent of an
extension Ã of AN as

R̃(z) = R(z) + B(z) · τ · R(z) ≡ R(z) + B(z) · Ğ(z) ,

where B(z) ∈ B(h,H) has to be determined. Self-adjointness requires R̃(z)∗ =
R̃(z̄) or, equivalently,

(2.6) G(z̄) · B(z)∗ = B(z̄) · Ğ(z̄) .

Therefore posing B(z) = G(z) · �(z), where �(z) ∈ B(h), (2.6) is equivalent to

(2.7) �(z)∗ = �(z̄) .

The resolvent identity

(2.8) (z − w)R̃(w)R̃(z) = R̃(w) − R̃(z)

is then equivalent to

(2.9) �(w) − �(z) = (z − w) �(w) · Ğ(w) · G(z) · �(z) .

Suppose now that there exist a (necessarily closed) operator


(z) : D ⊆ h → h



6 ANDREA POSILICANO

and an open set Z ⊆ ρ(A), invariant with respect to complex conjugation, such
that

∀ z ∈ Z , 
(z)−1 = �(z) .

Then (2.9) forces 
(z) to satisfy the relation

(2.10) 
(z) − 
(w) = (z − w) Ğ(w) · G(z) ,

whereas (2.7), at least in the case 
(z) is densely defined, and has a bounded
inverse given by �(z) as we are pretending, is equivalent to

(2.11) 
(z)∗ = 
(z̄) .

By [16], Lemma 2.2, for any self-adjoint �, the linear operator

� + τ · (G� − G(z))

satisfies (2.10), (2.11) and, by [16], Proposition 2.1, has a bounded inverse for
any z ∈ W� ∪ C\R (at this point hypothesis (2.1) is used). Therefore (see the
proof of Theorem 2.1 in [16])

R�(z) := R(z) + G(z) · (� + 
(z))−1 · Ğ(z)

is the resolvent of a self-adjoint operator A� (here hypotheses (2.2) is needed).
For any z ∈ W� ∪ C\R one has

D(A�)={φ ∈ H :φ=φz +G(z) · (
 + �(z))−1 · τφz, φz ∈ D(A)},(2.12)

(−A� + z)φ = (−A + z)φz,(2.13)

the definition of A� being z-independent thanks to resolvent identity (2.8).
Being G(z) injective, (2.3) and (2.5) imply

φw + G(w)Q1 = φz + G(z)Q2 ⇒ Q1 = Q2

and so the definition
Qφ := (� + 
(z))−1 · τ φz

is z-independent. Therefore any φ ∈ D(A�) can be equivalently re-written as

φ = φz + G(z)Qφ ,

where Qφ ∈ D(�) and

τφz = � Qφ + 
(z)Qφ .
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This implies, for any φ ∈ D(A�),

φ = 1

2
(φz0 + G(z0)Qφ + φz̄0 + G(z̄0)Qφ) ≡ φ� + G�Qφ ,

τφ� ≡ 1

2
τ(φz0 + φz̄0) = � Qφ + 1

2
(
(z0)Qφ + 
(z̄0)Qφ) = � Qφ ,

A�φ = 1

2
(Aφz0 + z0G(z0)Qφ + Aφz̄0 + z̄0G(z̄0)Qφ)

≡ Aφ� + Re(z0) G�Qφ + i Im(z0) G�Qφ .

Conversely any φ = φ� + G�Qφ , φ� ∈ D(A), � Q = τφ�, admits the decompo-
sition φ = φz + G(z) · (� + 
(z))−1 · τφz , where

φz := φ� + (G� − G(z))Qφ .

Note that φz ∈ D(A) by (2.5) and τφz = (� + 
(z))Qφ .

Remark 2.3. The results quoted in the previous theorem are consequences
of an alternative version of Kreı̆n’s resolvent formula. The original one was
obtained in [11], [12], [18] for the cases where dimK± = 1, dimK± < +∞,
dimK± = +∞ respectively; also see [4], [6], [14] for more recent formulations.
In standard Kreı̆n’s formula (usually written with z0 = i ≡ √−1 ) the main
ingredient is the orthogonal projection P : H → K+ whereas we used, exploiting
the a priori knowledge of the self-adjoint operator A, the map τ , which plays
the role of the orthogonal projection π : H+ → N⊥. Thus the knowledge of
A∗
N is not needed. The version given in [16] allows τ to be not surjective and

h can be a Banach space; the use of the map τ simplifies the exposition and
makes easier to work out concrete applications. Indeed, as we already said,
frequently what is explicitely known is the map τ and N is then simply defined
as its kernel: see the many examples in [16] where τ is the trace (restriction)
map along some null subset of Rn and A is a (pseudo-)differential operator.
Moreover this approach allows a natural formulation in terms of the boundary
condition τφ� = � Qφ . Note that, since G�Qφ ∈ D(A) if and only if Qφ = 0,
once the reference point z0 has been chosen, the decomposition φ = φ� +G�Qφ

of a generic element φ of D(A�) by a regular part φ� ∈ D(A) and a singular
one G�Qφ ∈ H\D(A) is univocal.

Remark 2.4. As regards the definition of R�(z), the one given in the
theorem above is not the only possible definition of the operator 
(z). Any
other not necessarily bounded, densely defined operator satisfying


(z) − 
(w) = (z − w) Ğ(w) · G(z) ,


(z̄) = 
(z)∗

and such that � + 
(z) is boundedly invertible would suffice; moreover hy-
pothesis (2.1) is not necessary (see [16], Theorem 2.1); note that, once � is
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given, 
(z) univocally defines (−A�+z)−1 and hence A� itself. For alternative
choices of 
(z) we refer to [16]; also see [17] where it is shown how, under
the hypotheses Kernel A = {0} and ||τφ||h ≤ c‖Aφ‖, it is always possible to
take z0 = 0 in Theorem 2.1 (at the expense of having then φ� in the completion
of D(A) with respect to the norm φ �→ ‖Aφ‖ ). However we remark that any
different choice (either of z0 or of the operator 
(z) itself) does not change the
family of extensions as a whole.

Remark 2.5. In the case A has a non-empty real resolvent set, by [16],
Remark 2.7, if in Theorem 2.1 one consider only the sub-family of extensions
in which the �’s have bounded inverses, then one can take z0 ∈ R ∩ ρ(A).
More generally one can take z0 ∈ W� independently of the invertibility of �;
however this could give rise to implicit conditions (related to the location of
the spectrum of A�) on the choice of z0.

3. – Extensions by Additive Perturbations

We define the pre-Hilbert space H̃− as the set H equipped with the scalar
product

〈φ1, φ2〉− := 〈(A2 + 1)−1/2φ1, (A2 + 1)−1/2φ2〉 .

We denote then by H− the Hilbert space given by the completion of H̃−. We
will avoid to identify H+ and H− with their duals; indeed, see Lemma 3.1
below, we will identify H′

+ with H−.
As usual H will be treated as a (dense) subspace of H− by means of the

canonical embedding
I− : H → H−

which associates to φ the set of all the Cauchy sequences converging to φ.
Considering also the canonical embedding (with dense range)

I+ : H′ → H′
+ , I+λ(φ) := 〈C−1λ, φ〉 ,

we can then define the conjugate linear operator

C− : H′
+ → H−

as the unique bounded extension of

I− · C−1 · I −1
+ : I+(H′) ⊆ H′

+ → H− .

Analogously we define the conjugate linear operator

C+ : H− → H′
+

as the unique bounded extension of

I+ · C · I −1
− : I−(H) ⊆ H− → H′

+ .

These definitions immediately lead to the following
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Lemma 3.1. One has

C+ = C−1
− , C− = C−1

+ ,

so that
H′

+ � H− .

We will denote by

(·, ·) : H− × H+ → C , (ϕ, φ) := C+ϕ(φ)

the pairing between H− and H+. It is nothing else that the extension of the
scalar product of H, being

(I−φ1, φ2) = 〈φ1, φ2〉 .

We consider now the linear operator

I− · A : H+ ⊆ H → H− .

Since
‖(A2 + 1)−1/2 Aφ‖ ≤ ‖φ‖ ,

the operator I− · A has an unique extension

Ā : H → H− , Ā ∈ B(H,H−) .

Lemma 3.2. Let A′ : H′ → H′
+ be the adjoint of the linear operator A when

viewed as an element of B(H+,H). Then one has

Ā = C− · A′ · C .

Proof. Being I− injective, by continuity and density the thesis follows from
the identity

A = A∗ ≡ C−1 · A′ · C .

Remark 3.3. If we use the symbol A+ to denote the linear operator A
when we consider it as an element of B(H+,H), and if we use C− as a
substitute of C−1

H+ , then by Lemma 3.2 and a slight abuse of notations we can
write

Ā = A∗
+ .

By the same abuse of notations we define τ ∗ ∈ B(h,H−) by

τ ∗ := C− · τ ′ · Ch .

Now we can reformulate Theorem 2.1 in terms of additive perturbations:
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Theorem 3.4. Define

D( Ã) := {φ ∈ H : φ = φ� + G�Qφ, φ� ∈ D(A), Qφ ∈ h } ,

Ã : D( Ã) → H− , Ã := Ā + T ,

where
T : D( Ã) → H− , T φ := τ ∗Qφ .

Then the linear operator Ã is H-valued and coincides with A� when restricted to
D(A�), i.e. when a boundary condition of the kind τφ� = � Qφ holds for some
self-adjoint operator �. Therefore, posing T� := T |D(A�), one has

A� : D(A�) → H , A� := Ā + T� ,

and, in the case � has a bounded inverse,

A� : D(A�) → H , A�φ = Āφ + V�φ� ,

where
V� : H+ → H− , (V�φ1, φ2) := 〈�−1τφ1, τφ2〉h .

Proof. By the definition of Ā, τ ∗ and G� one has, for any φ ∈ D( Ã),

Āφ = I− · Aφ� + C− · A′ · C · G�Qφ

= I− · Aφ� + 1

2
C− · A′ · R(z̄0)

′ · τ ′ · Ch Qφ

+ 1

2
C− · A′ · R(z0)

′ · τ ′ · Ch Qφ

= I− · (Aφ� + Re(z0) G�Qφ + i Im(z0) G�Qφ) − T Qφ .

The proof is then concluded by Theorem 2.1.

Remark 3.5. In the case 0 ∈ ρ(A) and � is boundedly invertible, by
Theorem 2.1 and Remark 2.4 (taking z0 = 0) one can define A� either by
A�φ := Aφ� or, equivalently, by

A−1
� = A−1 + G · �−1 · Ğ ,

where G := G(0), Ğ := Ğ(0). Since, for any φ1, φ2 ∈ H, one has

〈 Ā−1 · V� · A−1φ1, φ2〉 = (V� A−1φ1, A−1φ2)

= 〈�−1τ · A−1φ1, τ · A−1φ2〉h = 〈�−1Ğφ1, Ğφ2〉h

= 〈G · �−1 · Ğφ1, φ2〉 ,

the self-adjoint extension A� could be defined directly in terms of V� by

A−1
� = A−1 + Ā−1 · V� · A−1 .

This reproduces the formulae appearing in [2], Lemma 2.3, where however
no additive representaion of the extension A� is given, and in [10] where an
additive representaion is obtained only when N is closed in D(A1/2).
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4. – The connection with von Neumann’s Theory

In this section we explore the connection between the results given in the
previous sections and von Neumann’s theory of self-adjoint extensions [15].
Such a theory (see e.g. [5], Section 13, for a very compact exposition) tells us
that

D(A∗
N ) = N ⊕ K+ ⊕ K− , A∗

N (φ0 + φ+ + φ−) = Aφ0 + iφ+ − iφ− ,

the direct sum decomposition being orthogonal with respect to the graph inner
product of A∗

N ; any self-adjoint extension AU of AN is then obtained by
restricting A∗

N to a subspace of the kind N ⊕ Graph U , where U : K+ → K−
is unitary.

For simplicity in the next theorem we will consider only the case z0 = i
and we put G± := G(±i) and 
 := 
(i).

Theorem 4.1. Let Ã = Ā + T as defined in Theorem 3.4. Then

Ã = A∗
N .

The linear operator
G± : h → K±

is a continuos bijection which becomes unitary when one puts on h the scalar product

〈Q1, Q2〉
 := 〈√−i
 Q1,
√−i
 Q2〉h .

The linear operator

U : K+ → K− , U := − G− · (1 + 2(� − 
)−1 · 
) · G−1
+

is unitary and the corresponding von Neumann’s extension AU coincides with the
self-adjoint operator A� defined in Theorems 2.1 and 3.4.

Proof. By the definition of Ğ± ≡ Ğ(±i) one has

Range (−AN ± i) = Kernel Ğ±

and so, since
K± = Range (−AN ∓ i)⊥

and
Range G±⊥ = Kernel Ğ∓ ,

in conclusion there follows

Range G± = K±
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if and only if Range G± is closed. By the closed range theorem Range G± is
closed if and only if Range Ğ± is closed, and this is equivalent to the range of
τ being closed. Being τ surjective, G± is injective with a closed range and so

G± : h → K±

is a bijection.
By von Neumann’s theory we know that any φ ∈ D(A∗

N ) can be univocally
decomposed as

φ = φ0 + φ+ + φ− , φ0 ∈ N , φ± ∈ K± ,

i.e.
φ = φ0 + G+Q+ + G−Q− , φ0 ∈ N , Q± ∈ h .

The above decomposition can be then rearranged as

φ = φ0 + 1

2
(G+ − G−)Q+ + 1

2
(G+ + G−)Q+

+ 1

2
(G− − G+)Q− + 1

2
(G− + G+)Q−

= φ0 + 1

2
(G− − G+)(Q− − Q+) + G�(Q− + Q+) .

By (2.4) one has

(4.1) G∓ − G± = ±2i R(∓i) · G± .

Since the scalar product of H+ can be equivalently written as

〈φ1, φ2〉+ = 〈(−A + i)φ1, (−A + i)φ2〉 ,

one has
G− − G+ = 2i R(−i) · R(−i)∗ · τ ∗ = 2i τ ∗ .

This implies, since Range G+ is closed,

Range (G− − G+) = Range τ ∗ = Kernel τ ⊥ .

Thus, being H+ = N ⊕ N⊥, the vector

φ0 + 1

2
(G− − G+)(Q− − Q+)

is a generic element of D(A) and we have shown that D( Ã) = D(A∗
N ). It is

then straighforward to check that Ã = A∗
N .
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By (4.1) one has


 = ±1

2
τ · (G∓ − G±) = i τ · R(∓i) · G± = i Ğ∓ · G± = i G∗

± · G± .

This implies
‖G±Q‖ = ‖√−i
 Q‖h ,

thus U = − G− · (1 + 2(� − 
)−1 · 
) · G−1
+ is isometric if and only if

∀ Q ∈ h , ‖√−i
 · Ũ Q‖h = ‖√−i
 Q‖h ,

where Ũ := G−1
− · U · G+. By using the identities 
∗ = −
 and

(4.2) (� − 
)−1 − (� + 
)−1 = 2 (� + 
)−1 · 
 · (� − 
)−1 ,

one has

i‖√−i
 · (1 + 2(� − 
)−1 · 
) Q‖h

= 〈
 Q + 2
 · (� − 
)−1 · 
 Q, Q + 2(� − 
)−1 · 
 Q〉
= 〈
Q, Q〉 + 2〈
 Q, (� − 
)−1 · 
 Q〉 + 2〈
 · (� − 
)−1 · 
 Q, Q〉

+ 4〈
 · (� − 
)−1 · 
 Q, (� − 
)−1 · 
 Q〉
= 〈
Q, Q〉 + 2〈
 Q, ((� − 
)−1 − (� + 
)−1) · 
 Q〉

− 4〈
 Q, (� + 
)−1 · 
 · (� − 
)−1 · 
 Q〉
= 〈
Q, Q〉 = i ‖√−i
 Q‖h ,

and so U is an isometry. By again using identity (4.2) one can check that U
has an inverse defined by

U−1 := − G+ · (1 − 2(� + 
)−1 · 
) · G−1
− .

Thus U is unitary. Let us now take G−Q− = U G+Q+. Then

−2(� − 
)−1 · 
Q+ = Q− + Q+

and so Q− + Q+ ∈ D(�) and

τ

(
φ0 + 1

2
(G− − G+)(Q− − Q+)

)
≡ 
(Q− − Q+) = �(Q− + Q+) .

Remark 4.2. Note that when � is bounded, in the previuos theorem one
can re-write the unitary U as

U = −G− · (� − 
)−1 · (� + 
) · G−1
+ .

Being � always bounded when dimK± = n, the previous theorem gives an
analogue of Theorem 3.1.2 in [3] avoiding however the use of an admissible
matrix R (see [3], Definition 3.1.2).

The previous theorem has the following converse:
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Theorem 4.3. Let AU be a self-adjoint extension of AN as given by von
Neumann’s theory. Suppose that D(AU ) ∩ D(A) = N and let UA := (−A + i) ·
(−A − i)−1 be the Cayley transform of A. Then the set

D(�) := Range G−1
− · (U + UA)

is dense,

� : D(�) ⊆ h → h , � := i Ğ+ · (U − UA) · (U + UA)−1 · G− ,

is self-adjoint and the corresponding self-adjoint operator A�, defined in Theo-
rems 2.1 and 3.4, coincides with AU .

Proof. By (4.1) one has

G− · G−1
+ = 1 + 2i R(−i) = UA .

Thus, by inverting the relation U = − G− · (1 + 2(� − 
)−1 · 
) · G−1
+ given in

the previous theorem, one obtains

� = 
 · (G−1
− · U · G+ − 1) · (G−1

− · U · G+ + 1)−1

= 
 · G−1
− · (U − G− · G−1

+ ) · (U + G− · G−1
+ )−1 · G−

= 
 · G−1
− · (U − UA) · (U + UA)−1 · G− .

Since U = −UAU and 1 /∈ σp(UA · U−1
AU

) if and only if D(AU ) ∩ D(A) = N
(see e.g. [6], Lemma 1), the range of U + UA is dense and thus � is densely
defined as G− is a continuos bijection. By (4.1) one has


 · G−1
− = iτ · R(i) ≡ i Ğ+

and so, since Ğ∗
+ = G− and G∗

− = Ğ+, � is self-adjoint if and only if

(U ∗ + U ∗
A) · (U − UA) = −(U ∗ − U ∗

A) · (U + UA) .

Such an equality is then an immediate conseguence of the unitarity of both U
and UA.

Corollary 4.4. Ã = Ā + T as defined in Theorem 3.4 coincides with a self-
adjoint extension Â of AN such that D( Â) ∩ D(A) = N if and only if the boundary
condition τφ� = � Qφ holds for some self-adjoint operator � : D(�) ⊆ h → h.
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5. – Examples

Example 5.1. Finite rank perturbations. Suppose dimK± = n, so that
h � Cn and τ ∈ B(H+, Cn). Then necessarily

τ : H+ → Cn , τφ = {(ϕj , φ)}n
1 ,

with ϕ1, . . . , ϕn ∈ H−. Hypotheses (2.1) and (2.2) correspond to

∃ φ1, . . . , φn ∈ H+ s.t. (ϕi , φj ) = δi j ,

and
n∑

j=1

cj ϕj ∈ H iff c1 = · · · = cn = 0 .

Considering then an Hermitean invertible matrix � = (θi j ) with inverse �−1 =
(ti j ), by Theorem 3.4 one can define the self-adjoint operator

A�φ := Āφ +
n∑

i, j=1

ti j (ϕi , φ�)ϕj

with

D(A�) :=

φ∈H :φ=φ�+

n∑
j=1

Qj R�ϕj , φ� ∈ D(A), Q ∈Cn, (ϕi , φ�)=
n∑

j=1

θi j Qj


 ,

where

R� := 1

2
(R̂(z0) + R̂(z̄0)) , R̂(z) : H− → H , 〈R̂(z)ϕ, φ〉 := (ϕ, R(z̄)φ) .

According to Theorem 2.1 its resolvent is given by

(−A� + z)−1 = (−A + z)−1 +
n∑

i, j=1

(� + 
(z))−1
i j R̂(z)ϕi R̂(z̄)ϕj ,

where


(z)i j = 1

2
(ϕi , (R̂(z0) + R̂(z0) − 2R̂(z))ϕj ) .

The operator A� above coincides with a generic finite rank perturbation of the
self-adjoint operator A as defined in [3], Section 3.1. In order to realize that
the resolvent written above (in the case z0 = i) is the same given there, the
identity

1

2
(R(i) + R(−i) − 2R(z)) = (1 + z A) · (A − z)−1 · (A2 + 1)−1

has to be used.
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The previous construction can be applied to the case of so-called point
interactions in three dimensions (see [1] and references therein). Since in Ex-
ample 5.2 below we will consider the case of infinitely many point interactions,
here we just treat the simplest situation in which only one point interection
(placed at the origin) is present. In this case we take A = �, H = L2(R3),
H+ = H 2(R3), H− = H−2(R3), and ϕ = δ0. Therefore τ is simply the evalua-
tion map at the origin

τ : H 2(R3) → C , τφ = φ(0) ,

and we have the family of self-adjoint operators �θ , θ ∈ R\{0}, defined as (we
take z0 = i)

�θφ := �φ + θ−1φ�(0) δ0

on the domain

D(�θ) := {φ ∈ L2(R3) : φ = φ� + QG�, φ� ∈ H 2(R3), Q ∈ C, φ�(0) = θ Q} ,

where

G�(x) = cos
|x |√

2

e−|x |/√2

4π |x | .

This reproduces the family given in [3], Section 1.5.1, and coincides with the
family �α given in [1], Section I.1.1, when one takes α = θ − (4π

√
2 )−1. The

case α = −(4π
√

2 )−1 can be then recovered by directly using Theorem 3.4 in
the case θ = 0.

Example 5.2. Infinite rank perturbations. Suppose dimK± = +∞. Then
(we suppose H is separable) h � �2(N), τ ∈ B(H+, �2(N)) and necessarily

τ : H+ → �2(N) , τφ = {(ϕj , φ)}∞1 ,

with {ϕj }∞1 ⊂ H−. The generalization of the finite rank case to this situation
is then evident. As concrete example one can consider infinitely many point
interactions in three dimensions by taking A = �, H = L2(R3), H+ = H 2(R3),
H− = H−2(R3) as before and an infinite and countable set Y ⊂ R3 such that

inf
y �=ỹ

|y − ỹ| = d > 0 .

Defining then ϕy := δy , by [1] (see page 172) one has

τ ∈ B(H 2(R3), �2(Y )) ,

where
τ : H 2(R3) → �2(Y ) , τφ = {φ(y)}y∈Y ,

and hypotheses (2.1) and (2.2) are an immediate conseguence of the discreteness
of Y (see [16], Example 3.4). By Theoren 3.4, given any invertible infinite
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Hermitean matrix � = (θy ỹ) with a bounded inverse �−1 = (ty ỹ), one can then
define the family of self-adjoint operators

��φ := �φ +
∑

y,ỹ∈Y

ty ỹ φ�(y) δỹ

on the domain

D(��) :=

:=

φ∈ L2(R3) :φ=φ�+

∑
y∈Y

QyG y
� , φ� ∈ H 2(R3), Q ∈ D(�), φ�(y)=

∑
ỹ∈Y

θy ỹ Q ỹ


 ,

where G y
� (x) := G�(x − y). When

θyy = α + 1

4π
√

2
, θy ỹ = −G�(y − ỹ) , y �= ỹ ,

the self-adjoint extension �� coincides with the operator �α,Y given in [1],
Section III.1.1 (also see [16], Example 3.4).

In more general situations where the set Y is not discrete the use of the
unitary isomorphism h � �2(N) given no advantages and, how the following
example shows, it is better to work with h itself.

Let A = �, H = L2(Rn), H+ = H s(Rn), H− = H−s(Rn), where the
self-adjoint pseudo-differential operator � is defined by

� : H s(Rn) → L2(Rn) , �φ := F−1(ψ Fφ) ,

with ψ is a real-valued function such that

1

c
(1 + |x |2)s/2 ≤ 1 + |ψ(x)| ≤ c (1 + |x |2)s/2 , c > 0 .

We want now to define the self-adjoint extensions of the restriction of � to
functions vanishing on a d-set, with 0 < n − d < 2s. A Borel set M ⊂ Rn is
called a d-set, d ∈ (0, n], if

∃ c1, c2 > 0 : ∀ x ∈ M, ∀ r ∈ (0, 1), c1rd ≤ µd(Br (x) ∩ M) ≤ c2rd ,

where µd is the d-dimensional Hausdorff measure and Br (x) is the closed
n-dimensional ball of radius r centered at the point x (see [7], Section 1.1,
Chapter VIII). Examples of d-sets are d-dimensional Lipschitz submanifolds
and (when d is not an integer) self-similar fractals of Hausdorff dimension d
(see [7], Chapter II, Example 2). We take as the linear operator τ the unique
continuous surjective (thus (2.1) holds true) map

τM : H s(Rn) → B2,2
α (M) , α = s − n − d

2
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such that, for µd -a.e. x ∈ M ,

τMφ(x) ≡ {φ( j)
M (x)}| j |<α =

{
lim
r↓0

1

λn(r)

∫
Br (x)

dy D jφ(y)

}
| j |<α

,

where j ∈ Zn
+, | j | := j1 + · · · + jn , D j := ∂j1 · · · ∂jn and λn(r) denotes the

n-dimensional Lebesgue measure of Br (x). We refer to [7], Theorems 1 and 3,
Chapter VII, for the existence of the map τM ; obviously it coincides with the
usual evaluation along M when restricted to smooth functions. The definition
of the Besov-like space B2,2

α (M) is quite involved and we will not reproduce
it here (see [7], Section 2.1, Chapter V). However, in the case 0 < α < 1
(i.e. 2(s − 1) < n − d < 2s), B2,2

α (M) can be alternatively defined (see [7],
Section 1.1, Chapter V) as the Hilbert space of f ∈ L2(F; µM) having finite
norm

‖ f ‖2
B2,2
α (M)

:= ‖ f ‖2
L2(M)

+
∫

|x−y|<1
dµM(x) dµM(y)

| f (x) − f (y)|2
|x − y|d+2α

,

where µM denotes the restriction of the d-dimensional Hausdorff measure µd

to the set M .
The adjoint map τ ∗

M gives rive, for any Q ∈ B2,2
α (M), to the signed measure

νM(Q) ∈ H−s(Rn) defined by

(νM(Q), φ) = 〈Q, τMφ〉
B2,2
α (M)

.

Since νM(Q) has support given by the closure of M , hypothesis (2.2) is always
verified when the closure of M has zero Lebesgue measure. Defining then

Gψ
� := Re F−1 1

−ψ + z0
,

one has
G� : B2,2

α (M) → L2(Rn) , G�Q := Gψ
� ∗ νM(Q) .

Therefore, given any self-adjoint � : D(�) ⊆ B2,2
α (M) → B2,2

α (M), one has
the family of self-adjoint extensions

D(��) :={φ∈L2(Rn) :φ=φ�+Gψ
� ∗νM(Qφ), φ� ∈H s(Rn),Qφ ∈D(�),τMφ�=�Qφ},

��φ := F−1(ψ Fφ) + νM(Qφ)

(see [16], Example 3.6, [17], Section 4, for alternative definitions).
When M is a compact Riemannian manifold, �L B the Laplace-Beltrami

operator, one has

B2,2
α (M) � Hα(M) = {Q ∈ L2(M) : (−�L B)α/2 Q ∈ L2(M)}



SELF-ADJOINT EXTENSIONS BY ADDITIVE PERTURBATIONS 19

and
νM(Q) = ((−�L B)α Q) δM ,

where, for any Q̃ ∈ H−α(M) ≡ Hα(M)′,

Q̃δM(φ) :=
∫

M
dv(−�L B)−α/2 Q̃(−�L B)α/2τMφ ,

dv denoting the volume element of M . Therefore in this case, when α ≥ 1
(i.e. 0 < n − d ≤ 2), taking ψ(k) = |k|2, � = (−�L B)α−1, one can define the
self-adjoint extension

−�Mφ := −�φ − �L B · τMφ�δM ,

and so the construction given here generalizes the examples given in [8] and [9].
Also see [17], Example 14, for an alternative definition.
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