PACIFIC JOURNAL OF MATHEMATICS
Vol. 54, No. 1, 1974

SELF-ADJOINT EXTENSIONS OF
SYMMETRIC SUBSPACES

A. DukrsmA AND H. S. V. DE SNOO

A theory of self-adjoint extensions of closed symmetric
linear manifolds beyond the original space is presented. It
is based on the Cayley transform of linear manifolds. Resol-
vent and spectral families of such extensions are characterized.
These extensions are also determined by means of analytic
contractions between the ‘‘deficiency spaces’ of the original
symmetrie linear manifold.

1. Introduction. Let § be a Hilbert space over the complex
numbers € and denote by ©* the Hilbert space G 9. The adjoint
T* of a linear manifold T in $* is a closed linear manifold defined
by

* = {{h, K} € &9, h) = (f, k) for all {f, g}eT}.

A lipear manifold S is called symmetric if Sc S* and a self-adjoint
linear manifold H is one for which H* = H. Our interest will be in
self-adjoint extensions of a given symmetric subspace (closed linear
manifold). Such extensions were studied by Coddington in {4], who
gave a complete description of all self-adjoint extensions of a sym-
metric linear manifold in possibly larger Hilbert spaces. In [5]
Coddington applied this theory to nondensely defined ordinary differ-
ential operators and several of his results suggest that a fairly com-
plete extension theory may be given along the lines of Naimark [7]
and Straus [12].

In this paper we attempt to present such a theory thereby con-
necting Coddington’s work to results of Phillips [10], McKelvey [6],
and Schneider [11]. Fundamental is that for a self-adjoint subspace
H in & the linear manifold R(\) = (H — 2)*(xe C — R) is a bounded
linear operator defined on all of §, with the properties R(A)* = R(\)
and R(\) — R() = (v — )R\ R(z). This fact, due to Coddington [5]
and also proved by Bennewitz [3], forms the basis of our paper. As
was shown by McKelvey [6] and Schneider [11], these relations are
sufficient to guarantee the existence of a spectral family E{(t) (t€ R)
such that

(*) R(k):SRt_ikdE(t),keC—R.

Thus one is led to the question what will happen when the R(\)’s
satisfy the weaker conditions for a generalized resolvent family,
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without being injective. It turns out that they are the resolvent of
an analytic family of subspaces T()\) in §* with negative imaginary
part (see §3): R(\) = (T(A) — A)™', neC — R, while (x) holds for a
generalized spectral family E(¢). We shall present these relationships
in such a way that they complete the results of McKelvey in [6].

The above results allow one to give an elementary treatment of
self-adjoint subspace extensions in possibly larger Hilbert spaces of
a given symmetric subspace S in $®. We introduce minimal self-
adjoint extensions and show that all minimal self-adjoint extensions
of S with the same spectral function in § are unitarily equivalent.
The main theorem is that every self-adjoint extension determines a
family of subspaces T(\) (e C — R) in £® such that

ScT(\)yc S*.

Conversely each such family T(\) determines (up to unitary equiva-
lence) a minimal self-adjoint extension of S. It is possible to restrict
this family to a certain subspace of $* such that one obtains a family
of operators with similar properties as the family of subspaces. An-
other principal result is the description of all families of T(\) in
terms of analytic contractions between the deficiency spaces of S.
This includes the original theorem due to Straus [12].

The Cayley transform for linear manifolds in §® plays an impor-
tant role throughout this paper. The definition of this transform
given here is slightly more general than that of Arens [2]. We use
the Cayley transform to analyze linear manifolds with negative im-
aginary part, symmetric manifolds and self-adjoint subspaces. This
includes the results of Phillips [10]. Self-adjoint extensions of sym-
metric subspaces are also studied by means of the Cayley transform.
We present some theorems which are slightly more general than the
results in [4]. Coddington’s description of all self-adjoint extensions
in possibly larger spaces is based on the corresponding results for
unitary extensions of isometric operators. Finally the Cayley trans-
form is used inv proving the subspace version of the above mentioned
theorem due to Straus [12]. This is suggested by results of McKelvey
in [6]. It was this last paper that formed the starting point of our
work.

In §2 we give some preliminary results and a definition of the
Cayley transform for linear manifolds in §°. Linear manifolds with
negative imaginary part are analyzed in §3. Every contraction op-
erator in  is the Cayley transform of a linear manifold with nega-
tive imaginary part in §? and conversely. A result due to Arens
is: Every unitary operator in & is the Cayley transform of a self-
adjoint subspace in $* and conversely. Our definition of maximality
of a linear manifold with negative imaginary part is different from
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the one given by Phillips [10]. In terms of Cayley transforms our
definition seems the more natural one. We also prove that certain
(in particular self-adjoint) subspaces can be written as the orthogonal
sum of a purely multi-valued part and the graph of a corresponding
densely defined operator in a subspace of $. Section 4 is based on
McKelvey’s paper [6]. We study noninjective resolvents and gener-
alized resolvents and show how they are related to certain subspaces
in 9. We include some of McKelvey’s results for completeness.
Unitary extensions in a possibly larger Hilbert space of a given
isometric operator are considered in §5. The description of all such
extensions seems to be new. The results of the preceding sections
are applied in §6, where we finally consider self-adjoint subspace
extensions of a symmetric subspace.

We shall make use of results and notations as given by Coddington
in [4]. We wish to thank Professor Coddington for providing us
with several of his papers before publication. We understand that
some years ago Professor McKelvey knew already about some of the
theorems which we prove here, but did not publish them.

2. Some preliminaries. In this section we shall collect several
basic observations concerning linear manifolds in §* = $ P $ where
9 is a Hilbert space. For linear manifolds T and S in $* we shall
use the following definitions and notations:

DT) = {feD/{f,9te T for some ge H},
R(T) = {ge O/, gye T for some fc O},
T(f) = {9/{f, gt e T} for fe (T),
T = {{g, fY{f, 9} e T},
wW(T)={fe9/{f,0te T}
T+ S={{f, 9}/g = h + k for some &, k such that {f, }e T, {f, k}e S},
T — = {f, 9 — M{f, g} e T} for neC,
ST = {{f, K}/{f, 9} T, {g, k} € S for some g e §},
aT = {{f, agl/{f, g} e T} for acC,
T* = {{h, k} € ©/(g, h) = (f, k) for all {f, g}e T}

In addition we shall use

T+S={f+h g+ k/{f,0)eT, {h kleS}, T and S linearly
independent

TAHS=T+S, T and S orthogonal in $?
TS S = {{f, g} T orthogonal to S},
T =90 T.
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The linear manifold T is an operator if and only if T(0) = {0}. If
T is an operator in the traditional sense, then in this paper T is
frequently identified with its graph. Conversely, if T is an operator
in the sense of this paper then there is an operator in the traditional
sense with which T can be identified. The adjoint of T is a closed
linear manifold (subspace). Let T be the closure of 7. Then

Tex = T,

(aT)y* =aTl* acC,

(T = (%",

Sc T implies T* c S*,

v(T*) = R(T)*.
For a subspace T in £ we define T, by T. = {{0, g} T} and T, by
T,=T3S T, Then T, is a closed operator in § with D(T,) = D(T).

THEOREM 2.1 (Arens). If T is a subspace in £°, then
(1) T, = {0} T(0),

(ii) T(0) = (D(T*)",

(iii) D(T,) = DT) is dense in (T*(0))*,

iv) R(T.) < T(0)-.

ProposiTION 2.2. If T is o subspace in £2, then R(T) = if
and only if R(T,) = S T(0).

LeMMa 2.3. Let T be a subspace in 2. Then R(T) is closed if
and only if R(T*) is closed.

Proof. Let R(T) be closed and let », be a sequence in R(T*)
converging to v€ $ as n — o, There exist elements u, € D(T*) such
that {u,, v,} € T*, hence

(U, b) = (v, @)

for all {a, b} T. This implies that %, (%, is the projection of u, to
R(T)) converges weakly in the Hilbert space R(7). Thus there ex-
ists an element we R(T) such that

(w, b) = (v, )

for all {a, b} T. Therefore {w, v}c T* and ve R(T*). For the proof
of the converse we use the equality T = T**.

LEMMA 2.4, Let T be a linear manifold in $ and R(\) =
(T - M) nveC. If n, peC are such that R(\) and E(t) are opera-
tors defined on all of 9, then
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E(\) — B(1) = (v — HE(M)E(Y) ,
and RB(\) and R(t) commute.

Proof. Let he ® and R()h = k. Then {k,h}eT — ¢ or
{k, h + ¢k} e T and hence {k, h + (¢t — Nk}e T — x. Thus RNk +
(¢ — NR(R] = R()h for all he 9.

A linear manifold U in $° is called unitary if U* = U™'. Arens
proved that a unitary subspace is an isometric operator with D(U) =
RO) = .

A linear manifold S is called symmetric if Sc S* and a linear
manifold H is self-adjoint if H = H*.

LEMMA 2.5. Let S be a symmetric linear manifold in 9. If
there 1s a number ne€C such that R(S — N) = R(S — \) = 9, then S
18 self-adjoint.

Proof. Let {f, g}eS* then {f,g— rf}eS* — x. There exists
an element v € O(S) such that {&, g — Avf}€ S — x. Hence {f — u, 0} ¢
S* —x. However, v{(S* —\) = (RS — 1) ={0}. Thus f=u or
{f,g —xf}eS~— X and {f, g}eS. This shows S* < S and proves the
lemma.

For a linear manifold T in $* and for » € C we define the Cayley

transform C, by
CAT) ={{g —nf, 0 — XIS, g e T} .

Then Cy(T) is a linear manifold in £* with D(Cy(T)) = R(T — 1) and
R(CAT)) = R(T — X). Note that for xe R C(T) reduces to the iden-
tity operator on R(T — A}. The transform F, with A ¢ C is defined by

FAT) = {{g — fing — NS, 9y e T

If T is a linear manifold in §% then sois F(T). We have D(F(T)) =
R(T— I) and R(F(T)) = ROT — r). For ne R FT) reduces to
multiplication by A on T — I).

LEMMA 2.6. Let T and S be linear manifolds in $* and let v € C —
R, then

(i) T=CFAT)) = FAC(T)),

(ii) TCS=C(T)cCS) = Fy(T)c FAS),

(iii) C_AT)=CA—T), F_(T)= —F«(T),

(iv) C(T) = (CAT)) ", F(T) = F(T7),

(v) C(T*) = (CATY)*, FAT*) = (FAT)",

1 Several assertions are valid for more values of A
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(vi) CAT - S) = CAT) 4 C«S), FT + S) = F(T) + FYS),
(vii) CATXO0) = (T — N), FTY0) =T — I),

(vii) D(T) = R(CAT) — I) = R(FAT) — N),

(ix) T(0) = »(CAT) — I) = v(F(T) — ),

(x) T is closed = C{T) is closed = F(T) is closed.

LEMMA 2.7. Let T and S be linear manifolds in £ and let
e {t, —1i}, then'

(1) C(=T) =(CAT), F—T)=(F«LTN

(ii) C(T™) = —(CT) ™, FAT™) = —F(T),

(iiiy T 1L S=CyT) L C{S)= F(T) L F«S),

(iv) CATD S) = CAT)D CAS), FXT D S) = F(T) D F«S).

3. Various linear manifolds and their Cayley transforms, A
linear manifold 7 in §® is said to have the property Im T'< 0 if
Im(f,9) =0 for all {f,9}eT. The property Im7T =0 is defined
analogously. Hence a linear manifold S in £* is symmetric if and
only if InS <0 and ImS = 0. A linear manifold T has the property
Im T £ 0, if and only if for some (and hence for all) A€ C*? and for
all {f, g} € T the following inequality holds

B  Im(f, 9 = Nf) = AmMN(, ) + Im(f, 9) = ImA)S, f) .

A consequence of (3.1) is
(3.2) llg = 2fll = Adm M) f]l, e CT,
for all {f, gje T.

THEOREM 3.1. Let T be a linear manifold in £ with Im T <
0. Then

(i) (T — A)* is an operator, e CH,

(i) (T =N =1Imx, reCF,

(i) «of R(T — N\) is closed for e C*, then T 1is closed.
If in addition T is closed, then for all ve C*

@{iv) R(T — \) is closed,

(v) W(T =N =T* = N),

(vi) R(T*—N) = 9.

Proof. The inequality (3.2) shows that

(T =27 ={lg — N, IS, g}e T}

is an operator, which satisfies (ii). Now let R(T — \) be closed for
some »e€C* and let {u,, v,} €T converge to {u, v} in £ as n — oo,

L Several assertions are valid for more values of 4.
2 'We shall use the notations Ct = {2€ C/Im1> 0} and C~ = {2 C/Im 2 < 0}.
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Hence {u,, v, — 2u,} e T — X converges to {u, v — Au} € £* as n — co.
Thus v — M€ R(T — 1) and there exists an element weD(T) such
that {w, v — Mu}e T'— A. We apply (3.2) to the element {u, —w, v, —
v —Mw — w)}e T to obtain

o, — vl + IMlw — .l = AdmMjjw, — w]] .

This shows w = we®(T), {u,v}e T and T is closed. This proves
(iii). In order to prove (iv) we let v,€ R(T — \) converge to v€ 9
as n— co for some v e C*. Then there exist elements u, ¢ D(T) such
that {u,, v,}€ T — A, From (3.2) we obtain

How — v ll = AmMilw, — wall

which shows that u, converges to some u€$ as n— . Hence
{w,, v,} converges to {u, v}e T — A, since T is closed. Thus ueD(T)
and veJT —N) and R(T — ) is closed. In general we have
(BT — N)) = v{T* — ), therefore the assertion (iv) implies (v). We
also have (R(T* — \))* = (T — \) for T is closed. The assertion (vi)
follows from (i), (iv), and Lemma 2.3.

In §2 we have introduced the Cayley transform for linear mani-
folds in $* We shall now use this transform to analyse linear
manifolds 7" in §* with Im 7 < 0.

THEOREM 3.2. Let T be a linear manifold in $* with Im T < 0.
If xeC" then

(i) CAT) is an operator,

i) el = 1.

Proof. Consider Ci(T){0). If g=x for {f, gleT then
—~ImX)(f, f) = 0, which implies f=¢ = 0. This proves (i). For
{f, g}e T we have

g — MIF =gl — Mf 9) — Mg, £) + INFIFIF .
Hence
g = XIF — flg = NI = —4Im ) Im(f, 9) =0,
which shows (ii).
TBEOREM 3.3. Let V be a linear operator in £ defined on D(V)

with || V|| < 1. If xeC* then Fy(V) is a linear manifold in $*
with Tm F{(V) < 0.

Proof. For heD(V) we find
Im((V — Dh, WV — k) = Am A)(h, k) — (Vh, VL))



78 A. DIJKSMA AND H. S. V. DE SNOO
which proves the theorem.

The preceding theorems show that there exists a one-to-one cor-
respondence between the linear manifolds T in $* with Im 7'< 0 and
the linear operators V in § with {| V|| < 1. We shall now consider
the linear manifolds in $?* which correspond to the linear contractions
defined on all of 9.

We shall say that the linear manifold 7T in & with Im 7T < 0 is
maximal (denoted by Im T < 0 (max)) if the existence of a linear
manifold S in §* with T S and Im S < 0 implies S = T. The prop-
erty Im 7 = 0 (max) is defined analogously.

THEOREM 3.4. Let T be a linear manifold in $* with Im T < 0.
(i) If Im T < 0 (max) then R(T — \) = § for all AeC™.
() If R(T — ) = § for some neC* then Im T < 0 (max).

Proof. Let Im T < 0 (max) and suppose D(C(T)) = R(T — ) is
not equal to § for some neC*. Then CyT) can be extended to a
contraction defined on the closure of (C(T)) and further extended
to a contraction defined on all of § in a trivial way. By Theorem 3.3
this contraction is the Cayley transform of a linear manifold S in §°
with Im S £ 0, such that C(T)c CS), but then by Lemma 2.6 we
obtain T'C S, T'# S, which contradicts the maximality of 7. Hence
R(T — N) = 9 for all A e C*. This proves (i). Now suppose R(T — ) =
» for some xeC* and let TS, ImS <0. Then C(T)c Cx(S) by
Lemma 2.6 and hence D(Ci(S)) = § which shows Cy(T) = CxS) but
this implies T = S. Hence T is maximal.

COROLLARY 3.5. Let T be a linear manifold in §* with Im T <
0 (max). Then T is closed.

Proof. By Theorem 8.4 we have R(T — \) = & for all AeC*,
The assertion of the corollary now follows from Theorem 3.1.

If T is a linear manifold in £ it is clear that Im 7 < 0 if and
only if Im(—7)=0. Also Im 7 = 0(max) if and only if Im(—T) =
0 (max).

THEOREM 3.6. Let T be a subspace in £:. Then Im T = 0 (max)
iof and only if Im T* = 0 (max).

Proof. Let Im T < 0 (max). Since Im 7* = 0 (max) if and only
if Im(—T%*) < 0 (max), it suffices to prove Im (—T*) < 0 (max). By
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Lemma 2.6 we have with v e C*
CA—=T%) = C_(T*) = (C_:(T))* .

Since —Xe C* it follows that C_3(T) is a contraction and hence so is
(Cx(T))* so that Im(—T*) <0 by Theorem 38.3. Also we have
R(=T* — \) = R(T* — (=) = $ by Theorem 3.1. The assertion fol-
lows from Theorem 3.4. Conversely let Im T* = 0 (max). Since T is
closed T = T** and we have Im T < 0(max) by the previous argu-
ment. This completes the proof.

THEOREM 3.7. Let T be a linear manifold in £* and B(\) =
(T'—- M1, vel.

(i) If Im T < 0 (max) then for all ne Ct R(\) exists as a linear
operator defined on all of $ and

(3.3) Im (ROYR, b) = m M| ROE P, he $

(ii) If for some e C" R(\) ewists as a linear operator defined
on all of © and setisfies (3.8) then Im T < 0 (max).

Proof. Since Im T < 0 (max) we have DR\ =WT -\ =9
for all xeC* by Theorem 3.4. Let he® and k= RE(\)k then
{k, h + Xk} e T. Hence

0= Imk, b+ k) = Im(BOYA, b+ MBOVR)

which implies (3.8). This proves (i). In crder to prove (i) we note
that for the given Ne CT R(T — \) = DRy = . If {h, k}e T, then
Rk — \h) = h. Applying (3.8) we find

Imh, I — M) = (Cm )[4 |

and this gives Im (k, k) = 0. The assertion (ii) follows from Theorem
3.4.

TuroreM 3.8. Let V be o linear operator in § defined on DV)
with || V|| < 1.

(1) If RV — I) is dense in 9, then V — I is injective.
In eddition we let V) = §.

(ii) If V — I is injective, then R(V — I) is dense in $.

(iil) If V, is the westriction of V to SOV — I), then V, s
an operator in & O WV — I and WV, — I) is dense in QS WV — I).

Proof. For the proof of (i) we refer to Phillips [10, p. 200].
In order to prove (ii) we use a simple result which can be found in
[13, p. 8]: W V—-I)=yV*—1I) if V is a contraction. Hence
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RV — D))" =»(V* — I) = »(V — I) = {0}. This shows that R(V — I)
is dense in §, which is (ii). Finally we note that for all yc & and
zey(V — I) we have

(Vy, 2) = (y, 2) .
This implies Vy L w(V — I) for all ye H O w(V — I).

COROLLARY 8.9. Let T be a linear manifold in §* with Im T <
0. If D(T) is dense in 9, then T is an operator.

Proof. It follows from Lemma 2.6 that R(CT) — I) = D(T) is
dense in . For Ae C* Theorem 3.8 implies that C(T) — I is injec-
tive. However, by Lemma 2.6 we have v(C(T) — I) = T(0), hence
we find T(0) = {0}.

Let T be an operator in © with Im T < 0. We shall say that
T is operator maximal if the existence of an operator S in § with
Tc S, Im S <0 implies that S = T.

An immediate consequence of Corollary 3.9 is, that a densely
defined operator T with Im T < 0 is maximal if and only if it is
operator maximal. Hence by Corollary 3.5 a densely defined operator
T with Im T < 0 which is operator maximal is necessarily closed.

The concept of operator maximality is due to Phillips [10], who
gave the following result. Our proof is based on Theorem 3.8.

LEmMMA 3.10. Let T be an operator in © with ImT <0. If T
1s operator maximal and closed, then D(T) is dense in 9.

Proof. As in [10] it can be shown that R(T — ) = § for e C*.
For such \, C(T) is a contraction with D(C(T)) = $ and v(C(T)—I) =
T(0) = {0}. Applying Theorem 3.8 we find D(T) = R(C(T) — I) is
dense in 9.

COROLLARY 38.11. Let T be an operator in & with Im T < 0.
Then T is mazimal if and only if T is operator maximal and closed.

For an example of an operator T in © with Im T £ 0, which is
operator maximal, but not closed (and hence not maximal) we refer
to Phillips {10].

THEOREM 3.12. Let T=T,D T, be a linear manifold in £°
with Im T < 0(max). Then T, is a densely defined operator in
6 T(0) with Im T, < 0 (max).
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Proof. Since T is maximal it follows from Theorem 3.4 that
R(T — i) = © and hence by Proposition 2.2 we have R(T, — 1) = $ S
T(0). This implies DC(T,)) = $ S T(0). From Lemma 2.6 we infer
that W(CA(T) — I) = T(0). Hence C/(T,) is the restriction of C(T") to
SO uCLT) — I). An application of Theorem 3.8 completes the proof.

We shall now present analogous results for symmetric linear
manifolds S in $°% A linear manifold S in §° is symmetric if and
only if for some (and hence for all) e C — R and for all {f, g} S.

(3.4) Im(f, 9 = Nf) = Am N, f) .
A consequence of (3.4) is
(3.5) lg —xfllz [ Imx[l fl,veC— R,

for all {f, g} e S.

THEOREM 3.13. Let S be o symmetric linear manifold in .
Then

(iy (S—N)" is an operator, neC — R,

(i) =M =Y/Imr|, veC— R,

(iii) if RS — N) is closed for some neC — R, then S is closed.
If in addition S is closed, then for all neC — R

(iv) RS — \) 4s closed,

(v) RS =) = (S — D),

(v} FUS* —r) = &.

THEOREM 3.14. Let S be a symmetric linear manifold in £°.
If xe C— R then C\S) is an isometric operator.

THEOREM 3.15. Let V be an isometric operator in © defind on
DV)., If xeC— R then Fy(V) is ¢ symmetric manifold in

We shall say that the symmetric linear manifold S in & is
maximal if the existence of a symmetric linear manifold T in $*
with S 7 implies T = S.

TumoreM 3.16. Let S be a symetric linear manifold in .

(1) If 8 ts mazimal then RS — N) =  for all ne CT or for all
rve .

(il) If RS —N) = & jor some neC* or for some AcC™ then S
1s maximal,

COROLLARY 3.17. Let S be a mazimal symmetric linear manifold
in . Then S is closed.
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THEOREM 3.18. Let S be a symmetric linear manifold in £*
and B(\) = (S — 2\t neC.

(i) If S 1is maximal, then for all xe C* or for all N C~ R(\)
exists as a linear operator defined on all of © and

(3.6) Im (ROWYh, b) = (m \)|| RORIP, ke $ .

(ii) If for some neC* or for some ne C~ R(\) exists as a linear
operator defined on all of © and satisfies (8.6) then S is maximal.

Operator maximality for symmetric operators is defined in an
obvious way. We shall not state explicitly the results corresponding
to Lemma 3.10 and Corollary 8.11. The next result was proved by
Bennewitz [3] in a different way.

THEOREM 3.19. Let S= S, 8., be a maximal symmetric linear
manifold in . Then S, is a densely defined, maximal symmetric
operator in H S S(0).

Finally we present some results for self-adjoint subspaces in £?
cf. [2] and [4].

THEOREM 3.20. Let H be a self-adjoint subspace in . Then
Jor all xeC— R

(1) (H—2X\)"' 18 an operator,

(i) [[H—=MN"{=1Y[Imx],

(i) RH — ) = 9.

THEOREM 3.21. Let H be a self-adjoint subspace in £°. Then
for all xe C — RCY(H) is a unitary operator in 9.

Proof. By Theorem 8.14 Cy(H) is isometric. Theorem 3.20 shows
that D(C(H)) = R(H — ) and R(C(H)) = R(H — A) are equal to all
of ©. Hence C,(H) is unitary.

THEOREM 3.22. Let U be a wunitary operator in H. For all
veC — R F(U) is a self-adjoint subspace in 9.

Proof. By Theorem 3.15 F(U) is symmetric. We also observe
that R(F(U) — N) = R(F(U) — ) = . Hence application of Lemma
2.5 shows that F(U) is self-adjoint.

THEOREM 3.23. Let H= H,D H, be a self-adjoint subspace in
$* Then H, is a densely defined self-adjoint operator in $ & H(0).



SELF-ADJOINT EXTENSIONS OF SYMMETRIC SUBSPACES 83

4, Various linear manifolds and corresponding operator famil-
ies. Let R(9) denote the elass of all functions R from C— R to
B($) (all bounded linear operators defined on all of §) such that

(4.1) R(\)* = R(\), »neC — R,
(4.2) B(\) — R = (v — ROME(), \, teC— R.
Note that (4.1) and (4.2) imply the inequality

1
HR(N)Hém,keC~R.

THEOREM 4.1. (1) Let ReR(9), then the linear manifold H de-
Jfined by

(4.3) H = {{ROYh, NROWE + h}/he §},veC — R,

is self-adjoint in $* and RB(\) = (H — A)"'(Ae C — R).

(ii) Let H be a self-adjoint subspace in £ and let RB(\) =
(H=—2)"'"(veC—R). Then RcR(D) and (4.3) holds.

(iiiy If ReR(D) and the self-adjoint subspace H in §* are con-
nected by (4.8) then

v(R(\) = H(0), »eC — R .

Proof. In order to show that I defined by (4.3) does not depend
on A we denote the righthand side of (4.8) by H(\). It clearly suf-
fices to show H(\) < H(y) for n, e C — R. This inclusion holds on
account of (4.2) because

(ROVR, NRQWE + b} = {R(p)k, pR(0E + I}

where for hc © the element ke  is defined by &k = h + (v — RO)A.
Since H — ) = {{R(\)h, k}/he ©} = R(\)™, we have

H* = %= (H— 3" = (RO = (RM) " = (RO = H-T,

which is equivalent to H = H*. This proves (i), If H = H* and
R(\) = (H— A\)"' then R(A)e B(§) for ne¢C— R by Theorem 3.20.
Thus (4.2) follows from Lemma 2.4, and (4.1) follows by direct veri-
fication. This proves (ii). In order to prove (ill) we note
Fev(B() == {f, 0}e R(\) == {0, f}e H == e H(0) .
Let E(9) denote the class of all functions K from R to B(9)
such that

(4.4) E@)* = E@), te R,
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(4.5) E{)E(s) = E(min (¢, 9)), t, se€ R,
(4.6) lim E(t) = 0 (strong) .

)

We assume E to be right continucus (strong). Note that E{ec) exists
(strong limit) and is an orthogonal projection, cf. [11.

TeEOREM 4.2. (1) Let Eec E(D), then the function E defined by

(4.7) R@%:gtlkdﬂﬁheC—R,
belongs to R(D).

(ii) Let ReR(D) then there ewists a function K e E(D) such that
(4.7) holds.

(i) If E<E®) and ReR(D) are connected by (4.7) then

Y(E(=)) = v(R(\), ne C — R..

The proof of (i) is straightforward, while (i) depends upon a
representation theorem of Nevanlinna (cf. [1]). For details we refer
to [1], [6], and [11].

We have now scen that to every self-adjoint subspace H in £?
there exists a function K< E(9) such that

- =" 2

4

dE(t) .

On the other hand, since C,(H) is a unitary operator in § there exists
a spectral family F such that

QGDzS?ﬂ%F@.

THEOREM 4.3. H(t) = F(s) with t = —cotg s/2.

Proof. If »eC — R then H = F,(C(H)) implies R{\) =
(CAHY — D[t — MC(HY + (v + 917, Hence

g“ ! dEm):§“ e —1 dF(s),neC — R .
I R Ve P

Vi

Setting ¢ = —cotg 5/2 we obtain the desired result.

The above results show that a self-adjoint subspace H in $*
determines, and is determined by, each of the functions Re R(9) and
EeE{($). Let R(\) and E.(t) be the restrictions of RB(\) and E(t) to
$ © H(0) respectively. Theorem 3.23 shows the decomposition H =
H,. @& H., where H, is a densely defined self-adjoint operator in § ©
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H(0). We then have R.(\) = (H, — 2\)™* and

1

dE(t
T B

R =

with F, () =1 in SO H(0).

We will now present similar results for function classes extend-
ing R($) and E(9). In particular the self-adjoint subspace in Theo-
rem 4.1 will be replaced by an analytic family of subspaces.

Let R(9) denote the class of all functions R from C — R to B(9)
such that

(4.8) ROW* = R(\), veC— R,

4.9) R is holomorphic on C — R,

(4.10) WROR P = I EMADL) 46 yco— R,
Im»x

We remark that R(9) C R(9D).

LEMMA 4.4. Let Re R(9), then v(R(\))=v(R(t)) for all », 1 C —
R.

Proof. From (4.10) it follows that v(R(\)) = {h € &/(RO)R, h) = 0}
for e C — R. The condition (4.8) implies

V(BQ) = {he O/(BM, h) = 0} = {he §/(h, EO)h) = 0} = v(B()) .

So it suffices to prove the lemma for », g C*. For he $ we define
#(\) = (R(\)h, k), then by (4.9) ¢ is analytic in C* and by (4.10)
Imgé(n) = 0 for ve €. Suppose ¢(n,) = 0 for A, C*. Choose r > 0
such that {A/[x — x| = r}cC*. For all p with 0 < o < r we have

o 1 (2 1 =, 30
Taking imaginary parts we obtain Im ¢(n, + 0¢*’) = 0 for all o with
0=po<r and 4 with 0 £ 0 £ 2r. This shows that ¢(\) = 0 for all
reC" and hence for all xe C — R. This completes the proof.

In order to prove a result corresponding to Theorem 4.1 we in-
troduce the class T(9) of functions T from C — R into the linear
manifolds on $* such that

(4.11) Im T(\) < 0 (max), e C*
(4.12) T(Y) = T(\*, ve C,

(4.13) C.(T(\)) defines a holomorphic function in x e C* for some
(and hence for all) peC,
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Note that if H is a self-adjoint subspace in $* and if we set
T(\) = H for all neC — R, then Te T(D).

THEOREM 4.5. (i) Let Re R(9), then the function T defined by
(4.14) T = ({RO)R, ABQODR + R} ke D}, veC — R,

belongs to T(9) and R(\) = (T(A\) — N)'(A e C — R).

(ii) Let Te T(§) and let R(\) = (T(A\) — AN)*(nveC — R). Then
Re R(9) and (4.14) holds.

(iii) If Re R(D) and Te T(DH) are connected by (4.14), then

y(R(\) = T(W(0), neC — R.
Proof. Let T(\) be defined by (4.14), then it follows from (4.10)
for all e C* that
Im (RQ\)h, AB(MR + h) =0, e D,

which shows Im T(\) < 0. The assertion (4.12) follows directly from
T(\) — X = R(\)*. Since R(T(\) — 1) = D(RMN)) = &, T(») is maximal
by Theorem 8.4. For A, #€ C* we consider

CirTO) = {{g — N, 9 — pfH{S, 9} e TV} .

It is clear that C,.(T(\)) is an injective operator, mapping all of &
onto itself, and also that

Co(T) =T+ (v — RO .
Therefore the inverse of G, .(T(\))
(4.15) Co TN =T+ (v — RN = Cu i T(V)

is a bounded operator defined on all of © and holomorphic (in A) in
C*. It is straightforward that (T(») — )™ is a bounded operator
defined on all of § and

(4.16) (TN — )7 = BO)C, (T(N))
and also that
(4.17) CATO) = I+ (¢t — BTN — )7

Taking (4.15), (4.16), and (4.17) together we find
CATMN) =TI+ (¢ — BRI + (v — RN .

Hence C(T(\)) defines a holomorphic function in A e C*t (for e CH).
This proves (i). Now we let Te T($) and R(\) = (T(rx) — X)7'. The
assertions (4.8) and (4.10) follow directly from (4.11) and (4.12). Using
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T(\) = F.(CAT(\)) we obtain
T = {CATC) — Dh, (2CAT(\) — MR}/ e D)
or
RO = ({( = VCATONE + (n — ik, (CATO)) — Dhjhe $)
which shows
(4.18)  R(\) = (CATO) — Dt = MCLTRN) + (v — ]
For X\, #£€ C* we have
N> - ]
and this shows that for » = ¢ and for \ = ¢ the linear manifold

[(22 = MCTO)) + (v — A1

is a bounded operator defined on all of §. This together with (4.18)
implies that the function R is holomorphic in C*. From (4.8) we
obtain the holomorphy of R in all of C — R. This proves (ii). The
proof of (iii) is straightforward.

Lemma 4.4 and Theorem 4.5 show that for 7T e T(9) the space
T(\)(0) does not depend on AeC — R. We shall therefore use the
notation T(0) to indicate the space T(1\)(0).

Let E($) denote the class of all functions K from R to B(9)
such that

4.19) 0= (E@®h, ) £ (E(h, By < (h, h),t <s, he ©,
(4.20) lir_n E{#) =0 (strong).

We assume F to be right continuous (strong). Note that E{(c) exists
(strong limit) and E(e) < I, c¢f. [1]. We remark E(9)c E(9D).

THEOREM 4.6. (i) Let E e E(D), then the function R defined by
4.7) belongs to R(D).

(i) Let Re R(D) then there exists a function Ke E(9) such
that (4.7) holds.

(i) If Ke E(Q) and Re R(D) and connected by (4.7) then

W(E(=)) = y(R(\), ve C — R .

For the proof we refer to [6]. Analogous to the decomposition
Theorems 3.12 and 3.23 we now state a decomposition theorem for
TeT(®). By T.9) we denote the class of all functions T from
C — R into the densely defined linear operatorsin £ such that (4.11),
(4.12), and (4.13) hold.
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THEOREM 4.7. Let Te T(9) and let T, denote the function defined
on C — R with values T(\), given by the decomposilion

T = T(\), B T(\)., veC — R .
Then T,e TA(H S T(0)).

Proof. It follows from Theorems 3.12 and 4.5 that T(\), is a
densely defined linear operator in § © T(0) with Im T(\), = 0 (max).
C.((T(\)),) is a restriction of C.((T(\))) to & T(0); hence for preC*
it defines a holomorphic function (of \) in C*. Restricting the rela-
tion (4.12) to & T(0) we find

T(A)s = (T(A))*, ve CF

where the adjoint is now taken in  © 7T(0). This proves the theorem.

We remark that a function Te T(9) determines, and is deter-
mined by, each of the functions Re R($) and Ec E(9). Let R,(\)
and F,(t) be the restrictions of R(\) and E(f) to  © T(0) respectively.
From Theorem 4.7 we have the decomposition T(\) = T(\), D T(NV)..
with T(\), determining a function T,e T.( S T(0)). We find the
relations R.(A) = (T(\), — \)* and

1

dE(t) .
T G

B0 = |

It does not necessarily follow that E(c) =1 in $ & T(0).

Let © and & be Hilbert spaces suct that § & and let P be the
orthogonal projection of & onto . If E<E(R) and E(t) = PE(l) s,
then Ec E(9). Also E(w) = I implies E(e=) = I, and E(4) = 0 im-
plies E(4) = 0. Here we use the notation E(4) = E(b) — E(a) for the
interval 4 = (a, b], correspondingly for E(4). We shall now state a
converse result. It is a generalization of a theorem of Naimark [8],
due to McKelvey [6].

THEOREM 4.8. Let Eec E(©). Then there exists o Hilbert space
& such that H & and a function K E(R) such that

(i) E@) = PE(t)|s, where P is the projection of & onto 9,

(ii) R s spanned by  and {E@)h ke D, t € R},

(i) E(e=) =1 if and only if E(w)=1I, E(4) =0 if and only
if E(4) = 0.

5. Unitary extensions of isometric operators. Before we con-
sider self-adjoint extensions of symmetric subspaces we shall present
the corresponding theory for unitary extensions of closed isometric
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operators. In this section all isometric operators are supposed to be
closed. For reference we state the following simple result.

THEOREM 5.1. Let V be an isometric operator in O, and let V'
be an isometric extension of V in ©. Then

(5.1) Vi=VOW

where W is an isometric operator mapping a subspace of § S D(V)
nto & O R(V). Conversely let V and W be as above, then V' defined
by (5.1) is an isometric extension of V in 9.

For a given isometric operator V in § there do not necessarily
exist unitary extensions on §. But if we extend V in the trivial
way to a contraction operator 1' with D(T) = ©, then as Halmos
showed (cf. [13]) there exists a Hilbert space & with $§C & and a
unitary operator U on 8 such that Tc PU, where P is the orthogonal
projection of & onto $. Since V is isometric it follows that V < U.

The following theorem shows how all unitary extensions of a
given isometric operator are to be constructed.

THEOREM 5.2. Let V, be an isometric operator in ,. Let V,.C
U where U is a unitary operator on & = , P D,. Let V, be the
restriction of U to the subspace {f € O,/Uf€ O,} of H.. Then V, is
an isometric operator in O, such that

(5.2) dim (. © (V) = dim (9, © D(V)) .

dim (9, © DVY)) + dim (£, © D(V,))
= dim (9, © R(V)) + dim (D, © R(V) ,

and U can be written in the form

(5.3)

(5.4) U=V, V.6 W
where W is an tsomelric operator in , P O, such that

DW) = (2. 0D(V) D (L.©3D(V)),
RW) = (£, O R(V)) D (9. 0 R(V2) ,

(5.6) P.W™ maps 9, R(V,) one to one into H, O D(V)

(5.5)

or equivalently
(5.7 P,W maps $, © D(V,) onto £, R(V)),

where P,(j =1, 2) is the orthogonal projection from ©, P 9, onto H;.
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Conversely, suppose that for a given isometric operator V, in
D, there are a Hilbert space £, an isomelric operator V, in £,
satisfying (5.2) and (5.3) and an isometric operator W in & = 9, P &,
satisfying (5.5) and (5.6). Then U defined by (5.4) is unitary on £
and V, has the property that D(V,) = {f € £,/ Uf e $,}.

Proof. Define W as the restriction of U to (W) given in (5.5).
It is clear that V, and W are isometric. Since U is unitary and
maps D(V) D D(V,) onto K(V) B R(V,), U and hence W maps 8O
(V) DDV,) = DW) onto KO R(V.) HR(VL) = R(W). Henee
(5.5) holds and thus (5.3) holds also. The decomposition (5.4) of U
is now evident. Next we prove (5.6) from which (5.2) immediately
follows. Suppose that for some uwe , OR(V,) P W'u=0. Then
Y= W uecH, & D(V,). Hence y and Uy = Wy = u belong to 9..
By definition of D(V), y € DV,) N (9, © D(V,) = {0}. Henee u = 0.
This proves (5.6). If ue$H, ©O NV, and ye O, O D(V)), then

(5.8) (PWu, y) = (u, P,Wy) .

If P,W'u = 0 then the lefthand side and so also the righthand side
of (5.8) equals zero for all ye 9, © D(V,). Hence (5.7) implies (5.6).
If (u, P,Wy) =0 for all vy, & DV, then by (5.8) P.W'u = 0.
Hence (5.6) implies (5.7).

We now prove the second part of the theorem. The operator U
defined by (5.4) maps all of & isometrically onto & and hence is
unitary. Clearly we have D(V,)C{f e $,/Ufe ,}. On the other hand,
suppose that f and Uf belong to ©,. Then f=f, + f;, /1€ 9. O DV,)
and € D(V,) and hence f, and Wf, = Uf — V,f, belong to $,.. So
PWWf, = P.f, = 0 and hence by (5.6) this implies Wf, = 0. Hence
fi =0, ie., feD(V,). Thus V, bas the stated property.

COROLLARY 5.3. Let V be an isometric operator in . Then
there exists a wnitary extension of V on  if and only if

(5.9) dim ( ©R(V)) = dim (H © D(V)) .

If (5.9) holds then all unitary ewtensions U of V on © are of the
form U=VEW, where W 1is an isometry from S (V) onto
S ONRV) and conversely each W with this property determines o
unitary extension U of V by U= VP W.

Let V be an isometric operator in § and let U be a unitary
extension of Von & R, U is called a minimal extension if

(5.10) & ={UFfed, n=0,£1, x2, ---).
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(¢ > denotes “linear space spanned by”.) From the representation

(.11) U= S“e-iSdF(s)

0

where F' is the spectral family associated with U it follows that
(5.10) holds if and only if

= FG)fifed, selo, el .

Let U be a unitary extension of V on & Define & as the closure
of the linear subspace of & spanned by {U"f/fe , n = 0, £1, 2, ---}
and let U, be the restriction of U to &,. Then U, is a minimal
unitary extension of Von & and U, < U.

THEOREM 5.4. Let V be an isometric operator in . For j =
1,2 let U; be o minimal unitary extension of V in &; such that

(5.12) P U= PU» on &, n=2012 -

where P; is the orthogonal projection from 8£; on ©. Then there
exists an isomorphism @ from £, onto 8, such that Of =f for all
fed and U, = 0 'UQ.

Proof. Clearly (5.12) also holds for n = —1, —2, --.. Forf,gec
and 7 and m integers we have

(U, Urgy = (P.UM", 9) = (B.UI, 9) = (U2, Ug) .
From this and the minimality of U,(j = 1, 2) it follows that the con-
tinuous continuation @ (to all of &) of @' defined by

@’(}’jk Uf‘fn>: S UM, k=012 - foe$,

= n=—l

maps §, isomorphically onto &, and has the properties mentioned in
the theorem.
We note that (5.12) is equivalent to

(5.13) P.F(s) = P,Fy,(s) on §,sel0, 2r],

where F; is the spectral family associated with U; on £;(7 = 1, 2)
by (5.11).

6. Self-adjoint extensions of symmetric subspaces. For a linear
manifold S in §* we define the “deficiency space” M (S) or M, by

(6.1) M, = ({h, k} € S*/k = Mk}, veC.

Note that M, is a linear operator and for neC — R
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(6.2) D) = (RS — M) .

THEOREM 6.1. Let S be o symmetric subspace in . Then
(6.3) S*=8S+ M, 4+ M;;n¢eC— R.
For neli, —1} the direct sum in (6.3) s orthogonal:
S* =SS MO M, vel{i, —i}.
Furthermore,
dim M; = dim M, n e C*,
dim M, = dim M_, xe C™ .

The proof of this theorem can be given along the same lines as
the proof of the corresponding theorem for symmetric operators (cf.
[9]). For ne{i, —1i} (6.3) has been proved by Coddington [4].

From the previous section we deduce the following extension
theorems, which have been proved in a different manner for the case
ne{t, —i} by Coddington [4].

THEOREM 6.2. Let S be a symmetric subspace in . Let S be
a symmetric subspace extension of S in .  Then for fized e C — R

(6.4) S =S+ - VM,

where V is an isometry, mapping a subspace M of M, inio M.
Conversely, let S and V be as above then S defined by (6.4) is a
symmetric subspace extension of S in 9. For ne{i, —i} the direct
sum in (6.4) is orthogonal.

Proof. Let V = CyS), V' = Ci(S"), then V and V' are isometries
in . By Theorem 5.1 there exists an isometric operator W mapping
a subspace of § S D(V) = R(S — ) = D(M) (ef. (6.2)) into a sub-
space M, of YO R(V) = RS — N)* = D(M;) such that (5.1) holds.
Define the subspace M of M, by

M = {{h, Nh}h e M}
and the isometry V of M into M; by
(6.5) Vih, Nh} = {W'h, \W 'R} .
From (5.1) and Lemma 2.6 it follows that

S' = F,C(S) = FACAS) D W)
=S+FW=S+T- VM.
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For ne{t, —i} the direct sums are orthogonal by Lemma 2.7. By
defining W by means of (6.5) one can easily deduce the second part
of the theorem from the second part of the Theorem 5.1.

From the remarks following Theorem 5.1 one can deduce by using
the Cayley transform that each symmetric subspace in §* can be ex-
tended to a self-adjoint subspace in & for some Hilbert space & 2 9.

Let S; be a symmetric subspace in ©;, 7 =1,2. Then S, H S, is
a symmetric subspace in 9, P §,. Furthermore, let M,, M}, and M;
be defind for S, S, in (H,. D H,)% S, in $! and S, in §: by (6.1),
reC — R. Then

M,=M&M,veC—R.

By P; we denote the orthogonal projection from §, B §, onto §,; and

by P}» we denote the orthogonal projection from (£, P $.)° onto H;
defined by

PP{f, 9} = {P;f, Pig}, {f, 9} € (. D )’

for j =1, 2. Using these notations we state the following theorem.

THEOREM 6.3. Let S, be a symmetric subspace in $:. Let S.C
H, where H s a self-adjoint subspace in &, & = , P H.. Let S, =
HN 9 and let neC — R be fized. Then S, is a symmetric subspace
m 9 such thot

(6.6) dim M} < dim M; ,

(6.7) dim (M; & M}) = dim (M; @ M) ,
and H can be written in the form

(6.8) H=8&S.+UI- VM,
where V is an isometry in (9, P 9.)* such that
(6.9) DV) =M, and R(V)= M;,
(6.10) PPV maps M} one to one into M,

or equivalently
(6.11) PPV maps M; onto M} .

Conwversely, suppose that for a given symmetric subspace S, in
i there are a Hilbert space ,, a symmetric subspace S, in §; satis-
fying (6.6) and (6.7) for a fized n€ C — R and an isometric operator
Vin & & = 9, D 9, satisfying (6.9) and (6.10). Then H defined
by (6.8) is a self-adjoint subspace in R and S, has the property
that S, = HN i For ne{i, —i} the direct sum in (6.8) is orthogonal.
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Using the Cayley transform we can deduce this theorem from
Theorem 5.2 in a similar way as Theorem 6.2 is deduced from Theo-
rem 5.1. We omit the details.

COROLLARY 6.4. Let S be a symmetric subspace in £$:. Then
S has self-adjoint extensions in $? if and only if for some xe C — R

(6.12) dim M; = dim M; .

If (6.12) holds, then all self-adjoint extensions H of S in £* are of
the form

(6.13) H=S+I—- V)M,

where V is an isometry from M, onto M;. Conversely, each such
isometry determines a self-adjoint extension of S in $* by (6.13).
For ne{i, —1} the direct sum in (6.13) is orthogonal.

Let S be a symmetric subspace in $?. Let H be a self-adjoint
subspace extension of S in £, &R. We call the extension H
minimal if C,(H) is a minimal unitary extension of C(S). From the
remarks following Corollary 5.8 and Theorem 4.3 it follows that H
is minimal if and only if & is spanned by

{EQ)fIfe 9, teR}YU O

where E is the spectral function of H in & (cf. Theorems 4.1 and
4.2). Furthermore, it follows that each self-adjoint extension of a
symmetric subspace contains a minimal extension.

THEOREM 6.5. Let S be a symmetric subspace in H:. For j =
1, 2 let H; be a minimal self-adjoint subspace extension of S in &
such that

(6.14) PE(t) = P,E(t) on §,tcR,

where E; 1is the spectral function of H; in & and P;is the orthogo-
nal projection from R; onto . Then there exists an isomorphism
@ from R, onto B, such that &f =f for all feH and OV H, = H,
where O2: {2 — K2 15 defined by

Ok, k) = {Oh, Ok}, {k, k} e &2 .

Proof. Let V= C«S) and U; = C(H;), j=1,2. Then on ac-
count of Theorem 4.3 the relation (6.14) implies (5.13) and hence
(5.12) holds. Thus the conditions of Theorem 5.4 are satisfied, and
the isomorphism @ of Theorem 5.4 satisfies the conclusions of this
theorem.
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We shall now describe the self-adjoint extensions H in & of a
symmetric subspace S in §° in another way, analogous to the results
of Straus [12] for operator extensions. To this end let P be the
orthogonal projection of & onto $ and denote by P® the mapping
PO kY = {Ph, Pk}, {h, k}e &, It is not difficult to see that
Sc P®HC S*,

THEOREM 6.6. Let S be a symmetric subspace in 9°. Let H be
a self-adjoint subspace extension of S in &, & For xeC— R
let

(6.15) LOY = ({ROV, NRODh + R)/he $)

where B(\) = (H — \)™. Then L(\) is a symmetric subspace in K2,
Let

(6.16) T\ = PPLO), veC — R
then R(N) = (T — \)7%, where R(\) = PR(\) s,
(6.17) Sc T < S*

and Te T(D). Conversely, if Te T(H) satisfies (6.17) for a given
symmetric subspace S in ©%, then there exists a Hilbert space £ D 9
and o self-adjoint subspace extension H in & of S, such that T
satisfies (6.16), where L is defined by (6.15).

Proof. Since L(\) C H, it is symmetric. From (6.16) it follows
that
T\ = {ROORh, N"BOWR + h}/h e }
where R = PR ;¢ R(9). According to Theorem 4.5 we find T'¢ T(9).

The verification of (6.17} is straightforward. The second part of the
theorem follows from Theorem 4.8.

THEOREM 6.7. Let S be a symmetric subspace in $°. Then
(6.18) TeT(®) and STy < S* for all xeC — R
if and only if

TO) = S+ (I~ VONM: ,

(6.19) T =S+ T - V)M, ,

Jor all xe C* and fized preC*, where V(N) is an analytic contrac-
tion, mapping M into M,, i.e., (1) (VO){h, E}, {z, y}) is analytic in
C* for oll {h, k}e My, {w, y}e £, (2) of VO, k) = {f, g} then [[f]]* +
Ngllf £ AP+ E!% and where V(N) maps M. into Mz and is de-
termined by
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(VOIS g}, (R, BY) = (LS, 9}, VIR, B

for all {f, gy M, {h, k}c M;. (Hence V(\) is a contraction, analytic
in AeC)). If pt =1 the direct sums in (6.19) are orthogonal.

Proof. Let (6.18) be satisfied and let z#eC~ be fixed. Since
Im TV £ 0 (max) and Im T(\) = 0 (max) for neCt, C.T(\)) and
CAT(\)) are contractions defined cn all of . From (6.18) we deduce
that

(6.20) CAT(N) = CAS) 4 W(N) ,
(6.21) CAT(N) = CAS) + W\,
where W(\) is the restriction of CAT(\)) to O B(CLS)) = D(My)
and W(\) is the restriction of Ci(T(N) to 9 O DCHS)) = D(M,).
Hence W(\) is an analytic contraction for ne C* and W{(\) is an
analytic contraction for XeC~. From (C.T()* = Ci(T()) (cf.
Lemma 2.6), R(CHS)) = 9O D(M,) and R(CAS)) = S S D(M;) we
derive

KW <D,
(6.22)  R(WQ)) CcDM;) ,

(WN)z, ¥) = (&, WR)y) for all xe D(M;), v DAM,) .

Define
(6.23) Voo, fi) = (Wz, p Wi}, € D)
and

(6.24) VOMy, ty} = (WY, Wy}, y € D(M,) -

Then V(\) and V(\) satisfy the descriptions in (6.19) and

FWQ) =T — VDM, ,
F W) = (I — VO M; .

Applying F,. to (6.20) and F; to (6.21) and using the last two eg-
ualities we find the relaticns (6.19).

Now let (6.19) be satisfied. Define W) and W{(\) by (6.23) and
(6.24). Then W(\) is an analytic contraction, mapping D(H;) into
DM, and since (6.20) also holds we conclude that C.(T()\)} is an
analytic contraction defined on all of §. Hence Im T(\) £ 0 (max).
Also (6.21) and (6.22) hold, and since S is symmetric we have

Now D(CAT(N)) = $ and since CAH{T (X)) and CH{(T(\))*) are operators
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they are equal. Applying F; we find T(\)* = T(\). Hence Te< T(9).
Clearly S< T'(\) © S*. Hence (6.18) holds.

Another way of describing all self-adjoint extensions H in & of
a symmetric subspace S in $* can be given via the class R(9), ef.
McKelvey [6].

THEOREM 6.8. Let S be a symmetric subspace in £°. Let H be
o self-adjoint subspace extension of S in &, Y For neC— R
let

(6.25) R(\) = PRV |

where R(\V) = (H — \)™ and P is the orthogonal projection of & onto
9. Then Re R(D) and

(6.26) ROYS ~NcIveC—~R.

Conversely, suppose that for some Re R(D) (6.26) holds. Then there
exists a Hilbert space 8D 9 and a self-adjoint subspace extension
H of S in &, such that R satisfies (6.25) for xe C — R,

Proof. Let R be defined by (6.25), then clearly Rec R(9). Let
T(\) =x+ R(\)™. Then Te T($) by Theorem 4.5 and 7T satisfies
(6.16). Hence by Theorem 6.6 the assertion (6.17) holds. But (6.17)
is equivalent to (6.26). The converse follows in a similar way from
the second part of Theorem 6.6.

Related to Theorem 6.8 is the following result, the operator
version of which is due to McKelvey [6]. The proof follows the same
lines as in [6].

THEOREM 6.9. Let S be a symmetric subspace in £°. Let
Re R(®) and Te T(9) be connected by T(\) =1 + R\, veC — R.
Suppose for some e C — R

(6.27) RO\V(S -,
or equivalently

(6.28) ScTX).
Then

(1) i r»eC(heC) then ImS=0(Im S = 0),
(1) if (6.27) holds for some neC* and for some ncC~, then S
s symmetric and (6.27) (or equivalently (6.28)) holds for all ne C—R.

Finally we return to the situation as described in Theorem 6.6.
Hence let S be a symmetric subspace in $® and let H be a self-
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adjoint subspace extension of S in &2. The subspace H defines a
function Te T(9) such that Sc T(A) < S8* We C — R). The function
Te T(9) gives rise to a function T, € T.(H © T(0)) according to Theo-
rem 4.7. On the other hand, the self-adjoint subspace H in & defines
a densely defined self-adjoint operator H, in & © H(0).

LemMA 6.10. (i) T(0) = $ n H(0),

(ii) T(0) c PH(0),

(i) (PO TO)N(E®S H() = 9O PH(0),
(iv) PR H(0) c % T(0).

Proof. Let he T(0), then {0, k} € T(\), hence h€  and PR(\)h =
0, where R(A) = (H —2\)"', ne C— R. This implies 2 € $ and B(\)R L ©.
Now

{BOV)R, NROR + h}e H
shows
MIBOYR P + (RO, h) = (h, RO\R) + N EO)RIFE .

Hence R(\)h = 0, while he 9, thus he H N H(0). Therefore T(0)c
9 n H(0), while the other inclusion is clear. This proves (i). A con-
sequence of (i) is 7(0) < H(0), which implies (ii). Hence $ © PH(0)C
$E T0). Now

GO TO)N &S H() = (90 TO)n & n (HO)')

and 9N (HO)Y) = $© PH(0). This proves (iii). Let e &S H(0),
then Phe $ and (k, w) = 0 for all ke H(0), hence certainly (2, u) = 0
for all we N H(0) = T(0). This proves (iv).

We have already noted that S P® H  S*, but then also PP H,_ C
S* or PH(0) c S*(0). In case S is a densely defined symmetric op-
erator in §, then this inclusion shows H(0) L §, and by Lemma 6.10
we find 7(0) = {0}. Hence T is a function, with densely defined
operators as values. It is clear that a densely defined symmetric
operator S has self-adjoint operator extensions: If H is a self-adjoint
subspace extension in £, then H, is a self-adjoint operator extension
in 8 H(0). Any function E e E(9) which is associated with T'e T(9)
via Theorems 4.5 and 4.6 has the property that E(e) is the identity
on 9.

The situation may be quite different if S is any symmetric sub-
space in 9. The self-adjoint extension H in &* generates a densely
defined self-adjoint operator H, in £ © H(0); also H gives rise to a
function T'e T(9) according to Theorem 6.6, This function T'c T($)
itself generates an operator-valued function T, e T.(9 & T(0)), accord-
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ing to Theorem 4.7. Let E, be the restriction to 8 H(0) of the
spectral function E ¢ E(®) belonging to H via Theorems 4.1 and 4.2,
and let E, be the restriction to & T'(0) of the spectral function
Ec E(9) belonging to the function Te T(9) via Theorems 4.5 and
4.6. The relation

(6.29) E(t) = PE(t)]s, tc R,

is easily established, since R(\) = PR(\)|s, v€C — R (cf. the proof
of Theorem 6.6). From (6.29) we conclude

(6-30) E(t) = PE(®) lserw »
while we already have
(6.31) PE(t) = PEQ) lsonw -

The assertions (6.30) and (6.31), together with Lemma 6.10 show that
on O PH(0) the functions £, and PE, coincide.!
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