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SELF-ADJUSTING HEAPS* 

DANIEL DOMINIC SLEATORt AND ROBERT ENDRE TARJANt 

Abstract. In this paper we explore two themes in data structure design: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAamortized computational 
complexity and self-adjustment. We are motivated by the following observations. In most applications of 
data structures, we wish to perform not just a single operation but a sequence of operations, possibly having 
correlated behavior. By averaging the running time per operation over a worst-case sequence of operations, 
we can sometimes obtain an overall time bound much smaller than the worst-case time per operation 
multiplied by the number of operations. We call this kind of averaging amortization. 

Standard kinds of data structures, such as the many varieties of balanced trees, are specifically designed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
so that the worst-case time per operation is small. Such efficiency is achieved by imposing an explicit 
structural constraint that must be maintained during updates, at a cost of both running time and storage 
space. However, if amortized running time is the complexity measure of interest, we can guarantee efficiency 
without maintaining a structural constraint. Instead, during each access or update operation we adjust the 
data structure in a simple, uniform way. We call such a data structure self-adjusting. 

In this paper we develop the skew heap, a self-adjusting form of heap related to the leftist heaps of 
Crane and Knuth. (What we mean by a heap has also been called a “priority queue” or a “mergeable 
heap”.) Skew heaps use less space than leftist heaps and similar worst-case-efficient data structures and are 
competitive in running time, both in theory and in practice, with worst-case structures. They are also easier 
to implement. We derive an information-theoretic lower bound showing that skew heaps have minimum 
possible amortized running time, to within a constant factor, on any sequence of certain heap operations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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1. Introduction. Many kinds of data structures have been designed with the aim 
of making the worst-case running time per operation as small as possible. However, 
in typical applications of data structures, it is not a single operation that is performed 
but rather a sequence of operations, and the relevant complexity measure is not the 
time taken by one operation but the total time of a sequence. If we average the time 
per operation over a worst-case sequence, we may be able to obtain a time per operation 
much smaller than the worst-case time. We shall call this kind of averaging over time 
amortization. A classical example of amortized efficiency is the compressed tree data 
structure for disjoint set union [ 151, which has a worst-case time per operation of 
O(1og n )  but an amortized time of O(a(rn, n ) )  [13], where n is the number of elements 
in the sets, rn is the number of operations, and a is an inverse of Ackerman’s function, 
which grows very slowly. 

Data structures efficient in the worst case typically obtain their efficiency from an 
explicit structural constraint, such as the balance condition found in each of the many 
kinds of balanced trees. Maintaining such a structural constraint consumes both running 
time and storage space, and tends to produce complicated updating algorithms with 
many cases. Implementing such data structures can be tedious. 

If we are content with a data structure that is efficient in only an amortized sense, 
there is another way to obtain efficiency. Instead of imposing any explicit structural 
constraint, we allow the data structure to be in an arbitrary state, but we design the 
access and update algorithms to adjust the structure in a simple, uniform way, so that 
the efficiency of future operations is improved. We call such a data structure sey- 
adjusting. 

* Received by the editors October 12, 1983, and in revised form September 15, 1984. 
t AT&T Bell Laboratories, Murray Hill, New Jersey 07974. 
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Self-adjusting data structures have the following possible advantages over 

explicitly balanced structures: 
(i) They need less space, since no balance information is kept. 
(ii) Their access and update algorithms are easy to understand and to implement. 
(iii) In an amortized sense, ignoring constant factors, they can be at least as 

Self adjusting structures have two possible disadvantages: 
efficient as balanced structures. 

(i) More local adjustments take place than in the corresponding balanced struc- 
tures, especially during accesses. (In a balanced structure, adjustments usually take 
place only during updates, not during accesses.) This can cause inefficiency if local 
adjustments are expensive. 

(ii) Individual operations within a sequence can be very expensive. Although 
expensive operations are likely to be rare, this can be a drawback in real-time applica- 
tions. 

In this paper we develop and analyze the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAskew heap, a self-adjusting form of heap 
(priority queue) analogous to leftist heaps [4], [7]. The fundamental operation on 
skew heaps is melding, which combines two disjoint heaps into one. In 0 2 we present 
the basic form of skew heaps, which use top-down melding. In 0 3 we discuss skew 
heaps with bottom-up melding, which are more efficient for insertion and melding. In 
P 4 we study various less common heap operations. In 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 we show that in an amortized 
sense skew heaps are optimal to within a constant factor on any sequence of certain 
operations. Section 6 compares skew heaps to other heap implementations, and contains 
additional remarks and open problems. The appendix contains our tree terminology. 

This paper represents only a part of our work on amortized complexity and 
self-adjusting data structures; companion papers discuss self-adjusting lists zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 121 and 
self-adjusting search trees [13). Some of our results have previously appeared in 
preliminary form [ 113. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2. Skew heaps. A heap (sometimes called a priority queue [8] or mergeable heap 
[l]) is an abstract data structure consisting of a set of items selected from a totally 
ordered universe, on which the following operations are possible: 

function make heap(h): Create a new, empty heap, named h. 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfind min(h): Return the minimum item in heap h. If h is empty, return 

procedure insert(x, h): Insert item x in heap h, not previously containing it. 
function delete min(h): Delete the minimum item from heap h and return it. If 

function rneZd(h,, h,): Return the heap formed by taking the union of disjoint 

the special item “null”. 

the heap is initially empty, return null. 

heaps h,  and h,. This operation destroys h,  and h,. 

There are several ways to implement heaps in a self-adjusting fashion. The one 
we shall discuss is an analogue of the leftist heaps proposed by Crane [4] and refined 
by Knuth [8]. To represent a heap, we use a heap-ordered binary tree, by which we 
mean a binary tree whose nodes are the items, arranged in heap order: if p ( x )  is the 
parent of x, then p ( x )  < x. (For simplicity we shall assume that each item is in at most 
one heap; this restriction is easily lifted by regarding the tree nodes and heap items 
as distinct, with a pointer in each tree node pointing to the corresponding heap item.) 
To represent such a tree we store with each item x two pointers, left(x) and right(x), 
to its left child and right child respectively. If x has no left child we define l e f ( x )  = null; 
if x has no right child we define right(x) =null. Access to the tree is by a pointer to 
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its root; we represent an empty tree by a pointer to null. We shall sometimes denote 
an entire tree or subtree by its root, with the context resolving the resulting ambiguity. 

With a representation of heaps as heap-ordered binary trees, we can carry out the 
various heap operations as follows. We perform zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmake zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAheap( h)  in O( 1) time by initializ- 
ing h to null. Since heap order implies that the root is the minimum item in a tree, 
we can carry out find rnin in 0(1)  time by returning the root. We perform insert and 
delete rnin using meld. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATo carry out insert(x, h), we make x into a one-node heap and 
meld it with h. To carry out deZetemin(h), we replace h by the meld of its left and 
right subtrees and return the original root. 

To perform meld( hl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, h2), we form a single tree by traversing the right paths of hl 
and h l ,  merging them into a single right path with items in increasing order. The left 
subtrees of nodes along the merge path do not change. (See Fig. 1.) The time for the 
meld is bounded by a constant times the length of the merge path. To make melding 
efficient, we must keep right paths short. In leftist heaps this is done by maintaining 
the invariant that, for any node x, the right path descending from x is a shortest path 
down to a null node. Maintaining this invariant requires storing at every node the 
length of a shortest path down to a missing node; after a meld we walk back up the 
merge path, updating shortest path lengths and swapping left and right children as 
necessary to maintain the leftist property. The length of the right path in a leftist tree 
of n nodes is at most [log nJ I ,  implying an O(1og n )  worst-case time bound for each 
of the heap operations, where n is the number of nodes in the heap or heaps involved. 

In our self-adjusting version of this data structure, we meld by merging the right 
paths of the two trees aad then swapping the left and right children of every node on 
the merge path except the lowest. (See Fig. 1.) This makes the potentially long right 
path formed by the merge into a left path. We call the resulting data structure a skew 
heap. 

In our analysis of skew heaps, we shall use the following general approach. We 
associate with each possible collection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS of skew heaps a real number O(S) called the 
potential of S. For any sequence of m operations with running times t , ,  tz ,  * - * , t,, 
we define the amortized time ai of operation i to be ai = ti + ai -ai-:, where ai, for 
i = 1,2, - - * , m, is the potential of the skew heaps after operation i and a0 is the 
potential of the skew heaps before the first operation. The total running time of the 
sequence of operations is then 

m m rn 

i = l  i = l  i = l  

1 t i =  1 (a,-aJi++ii-l)=a'o-aJ,+ c ai. 

That is, the total running time equals the total amortized time plus the decrease in 
potential from the initial to the final collection of heaps. In most of our analyses the 
potential will be zero initially and will remain nonnegative. If this is the case then the 
total amortized time is an upper bound on the actual running time. 

This definition is purely formal; its utility depends on the ability to choose a 
potential function that results in small amortized times for the operations. Whenever 
we use this technique we shall define the potential of a single heap; the potential of 
a collection is the sum of the potentials of its members. Intuitively, a heap with high 
potential is one subject to unusually time-consuming operations; the extra time spent 
corresponds to a drop in potential. 

We shall prove an O(1og n )  bound on the amortized time of skew heap operations. 
To do this we define the potential function using an idea of Sleator and Tarjan [9], 

I 

' Throughout this paper we use base-two logarithms. 
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FIG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA meld zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof two skew heaps. (a) Merge of the righr paths. (b) Swapping of children along the path 
formed by the merge. 

[lo]. For any node x in a binary tree, we define the weight w t ( x )  of x as the number 
of descendants of x, including x itself. We use the weights to partition the nonroot 
nodes into two classes: a nonroot node x is heavy if w t ( x ) >  w t ( p ( x ) ) / 2  and right 
otherwise. We shall regard a root as being neither heavy nor light. The following 
lemmas are immediate from this definition. 

LEMMA 1. Of the children of any node, at most one is heavy. 
Proof: A heavy child has more than half the weight of its parent. This can be true 

of only one child. 0 
LEMMA 2. On any path from a node x down to a descendent y ,  there are at most 

[log ( w t ( x ) /  w t ( y ) )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ right nodes, not counting x. In particular, any path in an n-node tree 
contains at most [log n J right nodes. 

Proof: A light child has at most half the weight of its parent. Thus if there are k 
light nodes not including x along the path from x to y ,  w t ( y )  5 ~ t ( x ) / 2 ~ ,  which implies 
ks log  ( w t ( x ) / w t ( y ) ) .  0 

We define the potential of a skew heap to be the total number of right heavy 
nodes it contains. (A nonroot node is right if it is a right child and left otherwise.) 
The intuition justifying this choice of potential is as follows. By Lemma 2, any path 
in a skew heap, and in particular any path traversed during melding, contains only 
O(1og n )  light nodes. Any heavy node on such a path is converted from right to left 
by the meld, causing a drop of one in the potential. As we shall prove rigorously below, 
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this implies that any melding time in excess of O(1og n) is covered by a drop in the 
potential, giving an amortized melding time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(1og n). 

Suppose we begin with no heaps and carry out an arbitrary sequence of skew 
heap operations. The initial potential is zero and the final potential is nonnegative, so 
the total running time is bounded by the sum of the amortized times of the operations. 
Furthermore, since the potential of a skew heap of n items is at most n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1, if we begin 
with any collection of skew heaps and carry out an arbitrary sequence of operations, 
the total time is bounded by the total amortized time plus O(n), where n is the total 
size of the initial heaps. 

The amortized time of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfind min operation is O( l) ,  since the potential does not 
change. The amortized times of the other operations depend on the amortized time 
for meld. Consider a meld of two heaps hl and h2, containing nl and n2 items, 
respectively. Let n = nl + n2 be the total number of items in the two heaps. As a measure 
of the melding time we shall charge one per node on the merge path. Thus the amortized 
time of the meld is the number of nodes on the merge path plus the change in potential. 
By Lemma 1, the number of light nodes on the right paths of h,  and h2 is at most 
[log nlJ and [log n2J, respectively. Thus the total number of light nodes on the two 
paths is at most 2 [log n J - 1. (See Fig. 2.) 

# LIGHT s [log nc] 
# HEAVY k, 

U 

:AVY ' 8  k3 I [log nJ 

FIG. 2. Analysis of righr heavy nodes in meld. 

Let kl and k2 be the number of heavy nodes on the right paths of hl and h2, 
respectively, and let k3 be the number of nodes that become right heavy children of 
nodes on the merge path. Every node counted by k3 corresponds to a light node on 
the merge path. Thus Lemma 2 implies that k3 5 [log n]. 



SELF-ADJUSTING HEAPS 57 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The number of nodes on the merge path is at most zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ [log n, J + k, + [log n2J + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 + 2 [log n J + kl + k2. (The “2” counts the roots of hl and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh2 .) The increase in potential 
caused by the meld is k3 - kl - k2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 [log n J - kl - k2. Thus the amortized time of the 
meld is at most 3 [log n J + 1. 

THEOREM 1. The amortized time of an insert, delete min, or meld skew heap operation 
is O(1og n) ,  where n is the number of items in the heap or heaps involved in the operation. 
The amortized time of a make heap or find min operation is O( 1). 

Prooj The analysis above gives the bound for find min and meld; the bound for 
insert and delete min follows immediately from that of meld. 0 

One may ask whether amortization is really necessary in the analysis of skew 
heaps, or whether skew heaps are efficient in a worst-case sense. Indeed they are not: 
we can construct sequences of operations in which some operations take O ( n )  time. 
For example, suppose we insert n, n + 1, n - 1, n + 2, n - 2, n + 3, * - * , 1 ,  2n into an 
initially empty heap and then perform delete min. The tree resulting from the insertions 
has a right path of n nodes, and the delete min takes fl( n )  time. (See Fig. 3.) There 
are similar examples for the other versions of skew heaps we shall consider. 

FIG. 3. Insertion of 5 ,  6. 4, 7, 3, 8, 2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, 1, 10 into an initially empry heap, followed by deleternin (a) 
7ke heap afer two insedons. (b) Insertion of 2 and 9. (c )  7ke deleternin operation 
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The following programs, written in an extension of Dijkstra’s guarded command 

language [ 5 ] ,  implement the various skew heap operations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVal parameter to a 
function or procedure is called by value; a var parameter is called by value and result. 
The double arrow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“t*” denotes swapping. Parallel assignments all take place simul- 
taneously. 

function make heap; 
return null 

end make heap; 

function find min(va1 h);  
return h 

end f ind min; 

procedure insert(va1 x, var h ) ;  
left(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:= right(x) := null; 
h := mefd(x,  h )  

end insert; 

function delete min(var h); 
var x; 
x :=  h ;  h:= meld(left(h), righr(h)); returnx 

end delete min; 

Our implementation of meld differs slightly from the informal description. The 
program traverses the two right paths from the top down, merging them and simul- 
taneously swapping left and right children. When the bottom of one of the paths is 
reached, the remainder of the other path is simply attached to the bottom of the merge 
path, and the process terminates. Only the nodes visited have their children exchanged; 
the last node whose children are exchanged is the lowest node on the one of the two 
paths that is completely traversed. (See Fig. 4.) In the informal description, all nodes 
on both right paths are visited. Theorem 1 holds for the actual implementation; the 
same proof applies if k ,  and k,  are redefined to be the number of heavy nodes on the 
right paths of h, and h, actually traversed during the meld. 

We shall give two versions of meld: a recursive version, rmefd, and an iterative 
version, imeld. The recursive version uses an auxiliary function xmeld to do the actual 
melding, in order to avoid redundant tests for null. 

function rmeld(va1 h,, h2);  

end rmeld; 

function xmefd(va1 h, , h,); 
[ h2 # null] 
if h,  = null + return h2 fi; 
if h, > h2 -+ h,c*h, fi; 
l e f ( h , ) ,  right(h,) := xmeld(right(h,), h,), fefr(h,); 
return h,  

end xmeld; 

The iterative version of meld uses four variables, x, y ,  h, , and h,, and maintains 
the following loop invariant: if left(y) is replaced by null, then x, h , ,  and h, are the 
roots of three disjoint heaps containing all the nodes; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy is the bottommost node of 
the left path down from x (the merge path) and is such that y < min { h,  , h,}. 

return if h, = null + hl B h2 # null + xmeld ( h ,  , h,) fi 
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B 
FIG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAImplemented version of top-down melding. 

function imeld(va1 hl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, h2); 
var x ,y ;  
if h,  = null + return h2 B h2 = null + return hl fi; 
if h, > h2+ hlt*h2 fi; 

X, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY, hi right(hi):= hi,  hi rigWhi), lefi(hi); 
do h, # null + 

if h, > h2+ hlt*h2 ti; 
y, left(y), hl ,  right(hl):= h , ,  h , ,  right(hl), left(hJ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

od; 
left(y) := h z ;  
return x 

end imeld; 

Note. The swapping of h, and h2 in the loop can be avoided by writing different 
pieces of code for the cases h, > h2 and h, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 h2. The four-way parallel assignment can 
be written as the following four sequential assignments: left(y) := hl ; y := h, ; hl := 
right(y); right(y) := lefi(y). The assignment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“ y  := ht” can be deleted by unrolling the 
loop. With these changes a meld takes 0(1 )  time plus three assignments and two 
comparisons per node on the merge path. 

One possible drawback of skew heaps is the number of pointer assignments needed. 
We can reduce the pointer updating by storing in each node a bit indicating that the 
pointers to the left and right children have been reversed. Children can then be swapped 
merely by changing a bit. This idea trades bit assignments for pointer assignments but 
takes extra space and complicates the implementation. 

3. Bottom-up skew heaps. In some applications of heaps, such as in the computa- 
tion of minimum spanning trees [3], [16], it is important that melding be as efficient 
as possible. By melding skew heaps bottom-up instead of top-down, we can reduce 
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the amortized time of insert and meld to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(1) without affecting the time bounds of 
the other operations. If h, and h2 are the heaps to be melded, we walk up the right 
paths of h,  and h2, merging them and exchanging the children of all nodes on the 
merge path except the lowest. When reaching the top of one of the heaps, say h, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, we 
attach the root of h,  (the top node on the merge path) as the right child of the lowest 
node remaining on the right path of h2. The root of h, is the last node to have its 
children swapped, unless h, is the only node on the merge path, in which case no 
swapping takes place. (See Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. )  

FIG. 5.  Bottom-up melding. 

We can implement this method by storing with each node x an extra pointer 
up(x) ,  defined to be the parent of x if x is a right child, or the lowest node on the 
right path descending from x if x is a left child or a root. Thus right paths are circularly 
linked, bottom-up. (See Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.) We call this the ring representation. We shall consider 
alternative representations at the end of the section. 

FIG. 6. Ring representation of a skew heap, 
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Obtaining good amortized time bounds for the various operations on bottom-up 

skew heaps requires a more complicated potential function than the one used in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2. 
To define the potential, we need two subsidiary definitions. If T is any binary tree, 
we define the majorpath of T to be the right path descending from the root, and the 
minor path to be the right path descending from the left child of the root. (See Fig. 
6.) We define node weights and light and heavy nodes as in 8 2. We define the potential 
of a bottom-up skew heap to be the number of right heavy nodes in the tree plus twice 
the number of right light nodes on the major and minor paths. 

Consider a bottom-up meld of two skew heaps hl and h, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. We shall show that the 
amortized time of the meld is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO( l), if we count one unit of running time per node on 
the merge path. Let h3 be the melded heap, and suppose, without loss of generality, 
that h, is the heap whose top is reached during the meld. Let r be the root of h, . (See 
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. )  The merge path is the top part of the left path descending from r in h3.  It 
contains all nodes on the major path of h, and possibly some of the nodes on the 
major path of h,. The major path of h3 consists of the nodes on the major path of h2 
not on the merge path, node r, and, if the merge path contains two or more nodes, 
the minor path of hl . The minor path of h3 is the minor path of h2. The only nodes 
whose weights change during the merge are those on the major paths of hl and h,; 
the weights of these nodes can increase but not decrease. 

Consider the change in potential caused by the meld. Any node on the major path 
of h2 not on the merge path can gain in weight, becoming a right heavy instead of a 
right light node. Each such change decreases the potential by one. No such node can 
change from heavy to light, because the weights of both it and its parent increase by 
the same amount. Node r, the root of hl , becomes a node on the major path of h,, 
increasing the potential by one if r becomes heavy or two if r becomes light. The top 
node on the minor path of h, also can become a node on the major path of hj, 
increasing the potential by at most two. The remaining nodes on the minor path of h, 
and the nodes on the minor path of h2 are associated with no change in the potential. 

It remains for us to consider the nodes other than r on the merge path. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx be 
such a node. If x is originally heavy, it remains heavy but becomes left, causing a 
decrease of one in potential (the new right sibling of x is light). If x is originally light, 
its new right sibling may be heavy, but there is still a decrease of at least one in 
potential (from two units for x as a light node on a major path to at most one unit 
for the new right sibling of x, which is not on a major or minor path). 

Combining these estimates, we see that the amortized meld time, a, defined to be 
the number of nodes on the merge path, t, plus the change in potential, A@, satisfies 
a = t + A@ 5 5 :  the potential decreases by at least one for each node on the merge path 

I except r, and increases by at most two for r and two for the top node on the minor 
I path of h,. ' 

THEOREM 2. The amortized time of a make heap, jind min, insert, or meld operation 
on bottom-up skew heaps is O( 1). The amortized time for a delete min operation on an 
n-node heap is O(1og n ) .  

Boo$ Both the worst-case and amortized times of makeheap and findmin are 
0(1), since neither causes a change in potential. The O(1) amortized time bound for 
insert and meld follows from the analysis above. Consider a delete min operation on 
an n-node skew heap h. Deleting the root of h takes O( 1) time and produces two skew 
heaps h, and h, , whose roots are the left and right children of the root of h, respectively. 
This increases the potential by at most 4 log n :  there is an increase of two units for 
each light right node on the minor paths of h, and h,. (The major path of h, minus 
the root, becomes the minor path of h,;  the minor path of h becomes the major path 

' 
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of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.) The meld that completes the deletion takes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0(1) amortized time, giving a total 
amortized deletion time of O(1og zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn). 

Since any n-node bottom-up skew heap has a potential of O ( n ) ,  if we begin with 
any collection of such heaps and carry out any sequence of operations, the total time 
is bounded by the total amortized time plus O ( n ) ,  where n is the total size of the 
initial heaps. If we begin with no heaps, the total amortized time bounds the total 
running time. 

The ring representation of bottom-up skew heaps is not entirely satisfactory, since 
it needs three pointers per node instead of two. The extra pointer is costly in both 
storage space and running time, because it must be updated each time children are 
swapped. There are several ways to reduce the number of pointers to two per node. 
We shall discuss two in this section and a third in 0 4. 

One possible change is to streamline the ring representation by not storing right 
child pointers. An even more appealing possibility is to store with each node an up 
pointer to its parent and a down pointer to the lowest node on the right path of its 
left subtree. The up pointer of the root, which has no parent, points to the lowest node 
on the major path. The down pointer of a node with empty left subtree points to the 
node itself. We shall call this the bottom-up representation of a skew heap. 

Both of these representations will support all the heap operations in the time 
bounds of Theorem 2. We shall discuss the bottom-up representation; we favor it 
because swapping children, which is the local update operation on skew heaps, is 
especially easy. 

The implementations of make heap and find min are exactly as presented in 0 2. 
We shall give two implementations of insert. The first merely invokes meld. The second 
includes an in-line customized version of meld for greater efficiency. 

0 

procedure insert (Val x, var h ) ;  
up(x)  := down(x)  := x ;  
h := meld(x, h )  

i’ 
end insert; 

The more efficient version of insert tests for three special cases: h =null, x < h 
(x becomes the root of the new tree), and x > up(h )  ( x  becomes the new lowest node 
on the major path). In the general case, x is inserted somewhere in the middle of the 
major path by a loop that uses two local variables, y, and z; y is the highest node on 
the major path so far known to satisfy y > x, and z is the lowest node on the major 
path (after the swapping of children that has taken place so far). 

procedure insert (Val x ;  var h ) ;  
vary, z ;  
if h = null+ h := u p ( x )  := down(x)  := x ;  return fi; 

if x < h + d o w n ( x ) : = u p ( h ) ;  h : = u p ( x ) : = u p ( h ) : = x ;  return fi; 
if x >  u p ( h ) +  up(x) :=  u p ( h ) ;  down(x) := u p ( h ) : = x ;  return fi; 

y := z := up(h) ;  
do x < up( y) + y := up( y ) ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzt* down( y)  od; 

up(x ) ,  down(x)  := up( y), z ;  
up( y )  := up( h )  := x 

end insert; 

The following program implements meld. The program uses two variables, h3 and 
x, to hold the output heap and the next item to be added to the output heap, respectively. 
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function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmeld(va1 h, ,  h2); 
var h,, x ;  
if h,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnull + return h20 h2 = null + return h, fi; 
if up( h, )  c up( h2) -* h,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4+ h2 fi; 
[initialize h3 to hold the bottom right node of h, ]  
h3 := zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUP( hi ) ;  UP( hi )  := UP( h3); zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUP( h3) := h3; 

do hi # h3+ 

if up( h, )  < up( h2) + hl - h2 fi; 
[remove from h, its bottom right node, x ]  

[add x to the top of h3 and swap its children] 
up(x) :=  down(x) ;  down(x):= up(h3); h3:= up(h,):= x 

x :=  up(h, ) ;  up(h, ) :=  up(x) ;  

4; 
[attach h, to the bottom right of h2] 
w . 0 2 ) -  up(h3); 
return h2 

end meld; 
The only cleverness in this code is in the termination condition of the loop. Just 

before the last node is removed from heap hl, up(h, )  = h,, which means that at the 
beginning of the next iteration hl = h,, and the loop will terminate. The code contains 
an annoyingly large number of assignments. Some of these can be removed, and the 
efficiency of the program improved, by storing up(h , ) ,  up(h,),  and up(h,) in local 
variables and unrolling the do loop to store state information in the flow of control. 
This obscures the algorithm, however. 

Implementing delete zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmin poses a problem: there is no way to directly access the 
children of the root (the node to be deleted) to update their up pointers. We can 
overcome this problem by performing the deletion as follows: we merge the minor 
and major paths of the tree, swapping children all along the merge path. We stop the 
merge only when the root is reached along both paths. The following program imple- 
ments this method. The program uses four local variables: h3 is the output heap, y ,  
and y2 are the current nodes on the major and minor paths, and x is the next node to 
be added to the output heap. The correctness of the program depends on the assumption 
that an item appears only once in a heap. As in the case of meld, we can improve the 
efficiency somewhat by storing up(h3)  in a local variable and unrolling the loop. 

function delete min(var h ) ;  
var x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY,, y2, h3; 

if h = null -* return null fi; 

Y1, Y2:= U P ( h ) ,  down(h); 
if y1 < y2 + YI 4+y2 fi; 
if y ,  = h -* h = null; return y ,  fi; 
[initialize h, to hold y , ]  
h3 := y , ;  y ,  := up( y , ) ;  up(h3) := h,; 
do true+ 

if y,<y24+y2fi;  

if y ,  = h -* h := h,; return y1 fi; 
[remove x = yI from its path] 

[add x to the top of h3 and swap its children] 
up(x):= down(x) ;  down(x):= up(h,);  h3:= up(h3) :=x  

x : = y , ;  y , :=  U P ( Y 1 ) ;  

od 
end delete min; 
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The same potential function and the same argument used at the beginning of this 

section prove Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 for the bottom-up representation of skew heaps; namely, 
make heap and find min take 0(1) time (both amortized and worst case), insert and 
meld take 0 ( 1 )  amortized time, and delete min on an n-node heap takes O(1og n )  
amortized time. 

4. Other operations on skew heaps. There are a variety of additional heap 
operations that are sometimes useful. In this section we shall consider the following 
four: 

function make heap(s): Return a new heap whose items are the elements in set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs. 
function find alZ(x, h ) :  Return the set of all items in h less than or equal to x. 
procedure defete(x, h ) :  Delete item x from heap h. 
procedure purge(h): Assuming that each item in heap zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh is marked “good” or 

“bad”, delete enough bad items from h so that the minimum item left in the 
heap is good. 

The operation make heap(s) is an extension of make heap as defined in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5 2 and 
allows us to initialize a heap of arbitrary size. The operation f ind all is a form of range 
query. The delete operation allows deletion from a heap of any item, not just the 
minimum one. An alternative way to delete arbitrary items is with the purge operation, 
using lazy deletion: When inserting an item in a heap, we mark it “good”. When 
deleting an item we do not alter the structure of the heap but merely mark the item 
“bad”. Before any find min or delete min operation, we purge the heap. Lazy deletion 
is especially useful when items can be marked for deletion implicitly, as in the 
computation of minimum spanning trees using heaps [3], [la]. Deleting many bad 
items simultaneously reduces the time per deletion. The only drawback of lazy deletion 
is that a deleted item cannot be reinserted until it has been purged. We can overcome 
this by copying the item, at a cost of extra storage space. 

We shall begin by implementing the four new operations on the top-down skew 
heaps of 0 2. The operations make heap(s) and purge are best treated as special cases 
of the following more general operation: 

function heapify(s): Return a heap formed by melding all the heaps in the set s. 
This operation assumes that the heaps in s are disjoint and destroys them in 
the process of melding them. 

As discussed by Tarjan [16], we can carry out heapify(s) by repeated pairwise 
melding. We perform a number of passes through the set s. During each pass, we meld 
the heaps in s in pairs; if the number of heaps is odd, one of them is not melded until 
a subsequent pass. We repeat such passes until there is only one heap left, which we 
return. 

This method is efficient for any heap representation that allows two heaps of total 
size n to be melded in O(1og n)  time. To analyze its running time, consider a single 
pass. Let k be the number of heaps in s before the pass and let n be their total size. 
After the pass, s contains only [ k / 2 ]  S 2 k / 3  heaps. The time for the pass is O ( k +  
x!Eyl log ni), where ni is the number of items in the ith heap remaining after the pass. 
The sizes ni satisfy 1 d ni I n and 

~ 2 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx n i s n .  

The convexity of the log function implies that the time bound is maximum when all 

i = l  
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the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, are equal, which gives a time bound for the pass of O(k+log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( n l k ) ) .  Summing 
over all passes, the time for the entire heapify is 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( ‘‘‘;Kk’ (i) (k+  k log (( :) 2))) = 0 (k+ k log (2)) , 
where k is the original number of heaps and n is the total number of items they contain. 
For skew heaps, this is an amortized time bound. For worst-case data structures such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as leftist or binomial heaps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[2], [16], this is a worst-case bound. 

We can perform makeheap(s) by making each item into a one-item heap and 
applying heapify to the set of these heaps. Since k = n in this case, the time for make heap 
is O( n ) ,  both amortized and worst-case. 

We can perform purge( h)  by traversing the tree representing h in preorder, deletilid 
every bad node encountered and saving every subtree rooted at a good node encoun- 
tered. (When visiting a good node, we immediately retreat, without visiting its proper 
descendants.) We complete the purge by heapifying the set of subtrees rooted at visited 
good nodes. If k nodes are purged from a heap of size n, the time for the purge is 
O(k+ k log ( n /  k ) ) ,  since there are at most k+ 1 subtrees to be heapified. For skew 
heaps, this is an amortized bound. 

We can carry out findall on any kind of heap-ordered binary tree in time 
proportional to the size of the set returned. We traverse the tree in preorder starting 
from the root, listing every node visited that does not exceed x. When we encounter 
a node greater than x, we immediately retreat, without visiting its proper descendants. 
Note that since heap order is not a total order, find all cannot return the selected items 
in sorted order without performing additional comparisons. 

If find all is used in combination with lazy deletion and it is not to return bad 
items, it must purge the tree as it traverses it. The idea is simple enough: When traversing 
the tree looking for items not exceeding x, we discard every bad item encountered. 
This breaks the tree into a number of subtrees, which we heapify. It is not hard to 
show that a find all with purging that returns j good items and purges k bad items 
from an n-item heap takes O( j + k + k log ( n /  k)) amortized time. We leave the proof 
of this as an exercise. 

The fourth new operation is deletion. We can delete an arbitrary item x from a 
top-down skew heap (or, indeed, from any kind of heap-ordered binary tree) by 
replacing the subtree rooted at x by the meld of its left and right subtrees. This requires 
maintaining parent pointers for all the nodes, since deleting x changes one of the 
children of p ( x ) .  The amortized time to delete an item from an n-node heap is O(log n). 
In addition to the O(log n)  time for what is essentially a delete min on the subtree 
rooted at x, there is a possible additional O(1og n )  gain in potential, since deleting x 
reduces the weights of proper ancestors of x, causing at most log n of them to become 
light: their siblings, which may be right, may become heavy. 

By changing the tree representation we can carry out all the heap operations, 
including arbitrary deletion, top-down using only two pointers per node. Each node 
points to its leftmost child (or to null if it has no children) and to its right sibling, or 
to its parent if it has no right sibling. (The root, having neither a right sibling nor a 
parent, points to null.) Knuth calls this the “binary tree representation of a tree, with 
right threads”; we shall call it the threaded representation. (See Fig. 7.) With the threaded 
representation, there is no way to tell whether an only child is left or right, but for 
our purposes this is irrelevant; we can regard every only child as being left. From any 
node we can access its parent, left child, or right child by following at most two 
pointers, which suffices for implementing all the heap operations. 
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Now let us consider the four new operations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon bottom-up skew heaps. Assume 

for the moment that we use the ring representation. (See Fig. 6.) The operation 
heapify(s) is easy to carry out efficiently: We merely meld the heaps in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs in any order. 
This takes O( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk) amortized time if there are k heaps in s. In particular, we can initialize 
a heap of n items in O( n) time (amortized and worst-case) by performing n successive 
insertions into an initially empty heap. We can purge k items from a heap of n items 
in O( k+ k(1og n/k)) amortized time by traversing the tree in preorder and melding 
the subtrees rooted at visited good nodes in arbitrary order. The main contribution to 
the time bound is not the melds, which take O ( k )  amortized time, but the increase in 
potential caused by breaking the tree into subtrees: a subtree of size ni gains in potential 
by at most 41og ni because of the light right nodes on its major and minor paths. (See 
the definition of potential used in 0 3.) The total potential increase is maximum when 
all the subtrees are of equal size and is O(k+ k log ( n l k ) ) .  

The operation f indall is exactly the same on a bottom-up skew heap as on a 
top-down skew heap, and takes time proportional to the number of items returned. A 
findall with purging on a bottom-up skew heap is similar to the same operation on a 
top-down skew heap, except that we can meld the subtrees remaining after bad items 
are deleted in any order. The amortized time bound is the same, namely O ( j + k +  
k log ( n /  k ) )  for a f ind all with purging that returns zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj good items and purges k bad 
items from an n-item heap. 

Arbitrary deletion on bottom-up skew heaps requires changing the tree representa- 
tion, since the ring representation provides no access path from a left child to its 
parent. We shall describe a representation that supports all the heap operations, 
including bottom-up melding, and needs only two pointers per node. The idea is to 
use the threaded representation proposed above for top-down heaps, but to add a 
pointer to the lowest node on the right path. (See Fig. 7.) We shall call this extra 
pointer the down pointer. 

FIG. I. Threaded representation of a skew heap. All only children are regarded as being left. The dashed 
pointer is the down pointer, used only in the bottom-up version. 

When performing a heap operation, we reestablish the down pointer when 
necessary by running down the appropriate right path. For example, suppose we meld 
two heaps h,  and h2 bottom-up, and that heap h,  is exhausted first, so that the root 
of h, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, say r, becomes the top node on the merge path. We establish the down pointer 
in the melded heap by descending the new right path from r; this is the minor path 
in the original heap h,  unless the merge path contains only r, in which case r has a 
null right child. (See Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 . )  

To perform a deleternin operation, we descend the minor path of the heap to 
establish a down pointer for the left subtree, and then we meld the left and right 
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subtrees; the down pointer for the right subtree is the same as the down pointer for 
the entire tree. We perform zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApurge as described above for bottom-up skew heaps, 
establishing a down pointer for every subtree to be melded by traversing its right path. 

Arbitrary deletion is the hardest operation to implement, because if the deleted 
node is on the right path the down pointer may become invalid, and discovering this 
requires walking up toward the root, which can be expensive. One way to delete an 
arbitrary node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx is as follows. First, we replace the subtree rooted at x by the meld 
of its left and right subtrees, using either top-down or bottom-up melding. Next, we 
walk up from the root of the melded subtree until reaching either a left child or the 
root of the entire tree. During this walk we swap the children of every node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the 
path except the lowest. If the node reached is the root, we reestablish the left pointer 
by descending the major path (which was originally the minor path). 

By using an appropriate potential function, we can derive good amortized time 
bounds for this representation. We must approximately double the potential used in 
Q3, to account for the extra time spent descending right paths to establish down 
pointers. We define the potential of a tree to be twice the number of heavy right nodes 
not on the major path, plus the number of heavy right nodes on the major path, plus 
four times the number of light right nodes on the minor path, plus three times the 
number of light right nodes on the major path. Notice that a right node on the minor 
path has one more credit than it would have if it were on the major path. The extra 
credits on the minor path pay for a traversal of it when necessary to establish the down 
pointer. A straightforward extension of the analysis in 0 3 proves the following theorem. 

THEOREM 3. On bottom-up skew heaps represented in threaded fashion with down 
pointers, the heap Operations have the following amortized running times: 0(1) for  
make heap, find min, insert, and meld; O(1og n )  for delete min or delete on an n-node 
heap; O ( n )  for  make heap(s) on a set of size n;  O ( k +  k log ( n / k ) )  for  purge on an 
n-node heap zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi f  k items are purged; O( j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ k + k log ( n /  k ) )  for  j n d  all with purging on an 
n-node heap i f j  items are returned and k items are purged. 

5. A lower bound. The notion of amortized complexity affords us the opportunity 
to derive lower bounds, as well as upper bounds, on the efficiency of data structures. 
For example, the compressed tree data structure for disjoint set union is optimal to 
within a constant factor in an amortized sense among a wide class of pointer manipula- 
tion algorithms [ 151. We shall derive a similar but much simpler result for bottom-up 
skew heaps: in an amortized sense, skew heaps are optimal to within a constant factor 
on any sequence of certain heap operations. 

To simplify matters, we shall allow only the operations meld and delete min. We 
assume that there is an arbitrary initial collection of single-item heaps and that an 
arbitrary but fixed sequence of meld and deletemin operations is to be camed out. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An algorithm for carrying out this sequence must return the correct answers to the 
deletemin operations whatever the ordering of the items; this ordering is initially 
completely unspecified. The only restriction we make on the algorithm is that it make 
binary rather than multiway decisions; thus binary comparisons are allowed but not 
radix sorting, for example. 

Suppose there are a total of m operations, and that the ith deletemin operation 
is on a heap of size ni. If we carry out the sequence using bottom-up skew heaps, the 
total running time is O ( m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ x i  log n i ) .  We shall prove that any correct algorithm must 
make at least C i  log ni binary decisions; thus, if we assume that any operation takes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a( 1) time, bottom-up skew heaps are optimum to within a constant factor in an 
amortized sense. 
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The proof is a simple application of information theory. The various possible 

orderings of the items produce different correct outcomes for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdelete rnin instructions. 
For an algorithm making binary decisions, the binary logarithm of the total number 
of possible outcomes is a lower bound on the number of decisions in the worst case. 
The ith delete rnin operation has ni possible outcomes, regardless of the outcomes of 
the previous delete rnin operations. (Any item in the heap can be the minimum.) Thus 
the total number of possible outcomes of the entire sequence is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAni ni, and the number 
of binary decisions needed in the worst case is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACi  log ni. 

This lower bound is more general than it may at first appear. For example, it 
allows insertions, which can be simulated by melds. However, the bound does not 
apply to situations in which some of the operations constrain the outcome of later 
ones, as for instance when we perform a deletemin on a heap, reinsert the deleted 
item, and perform another delete rnin. 

6. Remarks. The top-down skew heaps we have introduced in 9 2  are simpler 
than leftist heaps and as efficient, to within a constant factor, on all the heap operations. 
By changing the data structure to allow bottom-up melding, we have reduced the 
amortized time of insert and meld to 0(1), thereby obtaining a data structure with 
optimal efficiency on any sequence of meld and delete rnin operations. Table 1 summar- 
izes our complexity results. 

TABLE 1 
Amortized running times of skew heap operations. 

top-down bottom-up 

skew heaps skew heaps 

make heap 
find min 
insert 
meld 
delete min 
delete 

Several interesting open problems remain. On the practical side, there is the 
question of exactly what pointer structure and what implementation of the heap 
operations will give the best empirical behavior. On the theoretical side, there is the 
problem of extending the lower bound in 9 5 to allow other combinations of operations, 
and of determining whether skew heaps or any other form of heaps are optimal in a 
more general setting. Two very recent results bear on this question. Fredman (private 
communication) has shown that the amortized bound of O( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ k log ( n /  k ) )  we derived 
for k deletions followed by a find rnin is optimum for comparison-based algorithms. 
Fredman and Tarjan [6 ]  have proposed a new kind of heap, called the Fibonacci heap, 
that has an amortized time bound of O(1og n )  for arbitrary deletion and 0(1) for 
findrnin, insert, meld, and the following operation, which we have not considered in 
this paper: 

decrease(x,y, h) :  Replace item x in heap h by item y, known to be no greater 

The importance of Fibonacci heaps is that decrease is the dominant operation in 
many network optimization algorithms, and the use of Fibonacci heaps leads to 
improved time bounds for such algorithms [6 ] .  The Fibonacci heap cannot properly 
be called a self-adjusting structure, because explicit balance information is stored in 
the nodes. This leads to the open problem of devising a self-adjusting heap implementa- 

than x. 
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tion with the same amortized time bounds as Fibonacci heaps. Skew heaps do not 
solve this problem, because zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdecrease (implemented as a deletion followed by an 
insertion or in any other obvious way) takes R(1og n )  amortized time. 

More generally, our results only scratch the surface of what is possible using the 
approach of studying the amortized complexity of self-adjusting data structures. We 
have also analyzed the amortized complexity of self-adjusting lists, and in particular 
the move-to-front heuristic, under various cost measures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA121, and we have devised a 
form of self-adjusting search tree, the splay tree, which has a number of remarkable 
properties and applications zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[13]. The field is ripe for additional work. 

Appendix. 
Tree terminology. We consider binary trees as defined by Knuth [6]: every tree 

node has two children, a left child and a right child, either or both of which can be 
the special node null. If node y is a child of node x, then x is the parent of y,  denoted 
by p ( y ) .  The root of the tree is the unique node with no parent. If x = p ' ( y )  for some 
i 10, x is an ancestor of y and y is a descendant of x; if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi > 0, x is the proper ancestor 
of y and y a proper descendant of x. The right path descending from a node x is the 
path obtained by starting at x and repeatedly proceeding to the right child of the 
current node until reaching a node with null right child; we define the lefr path 
descending from x similarly. The right path of a tree is the right path descending from 
its root; we define the Zefi path similarly. A path from a node x to a missing node is 
a path from x to null, such that each succeeding node is a child of the previous one. 
The direction from parent to child is downward in the tree; from child to parent, upward. 
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