The Dynamic Trees Problem

. . « Dynamic trees:
Self-AdJ ustmg TOp Trees = Goal: maintain an n-vertex forest that changes over time.
« link(v,w): creates an edge between vertices v and w.
« cut(v,w): deletes edge (v,w).
= Application-specific data associated with edges and/or vertices.
« Concrete examples:
= Find minimum-weight edge in the path between any two vertices.
= Add a value to all edges in the path between two vertices.

= Find total weight of all vertices in a subtree.
« O(log n) time per operation.
Robert Tarjan (Princeton University/HP)

= map arbitrary tree onto balanced tree.
Renato Werneck (Princeton University)
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Contractions: Rake and Compress Contractions: Rake and Compress

Proposed by Miller and Reif [1985] (parallel setting). « Contraction:

REICH = Series of rakes and compresses;

e
= Eliminates a degree-one vertex. s = Reduces a tree to a single cluster (edge).

= Collapses edge onto successor. « Top tree embodies a contraction:
« Assumes circular order of edges.

= Direct access only to root cluster.

Compress: = User defines what information to store in parent.
= Eliminates a degree-two vertex. = Any order of rakes and compresses is “right”:

= Combines two edges into one. « root will have the correct information.

. . « Balanced: updates in O(log n) time.
Original edges and resulting edge are clusters.

« Alstrup et al. [1997] use topology trees: high overhead.

« We show a direct implementation.
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Representation

» Consider some unrooted tree:

Representation
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Representation

« Pick a degree-one vertex as root, direct all edges towards it.

« We call this a unit tree (rooted tree with degree-one root).

 Pick a root path:
= starts at some leaf;

= ends at the root.

W
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Representation

« Represent the root path as a binary tree:
= Leaves: base clusters (original edges).

= Internal nodes: compress clusters.

« What if the degree of a vertex is not two?
= Recursively represent each subtree rooted at the vertex.

« At most two because of circular order.

Dynamic Trees

Representation

Dynamic Trees

« What if the degree of a vertex is not two?

= Recursively represent each subtree rooted at the vertex.

= Before vertex is compressed, rake subtree onto adjacent cluster.
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Representation Representation

« Representation:

How does the recursive representation work?

= Up to four children per node (up to two foster children). = Must represent subtrees rooted at the root path.
= Meaning: up to two rakes followed by a compress.

= Example: N, = compress(rake(X, ce), rake(Z, ef)) = cf
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Representation Representation

How does the recursive representation work?

How does the recursive representation work?
= Must represent subtrees rooted at the root path. = Must represent subtrees rooted at the root path.
= Each subtree is a sequence of unit trees. = Each subtree is a sequence of unit trees.

= Represent each unit tree recursively.
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Representation Representation

How does the recursive representation work?

« Interpretations:
= Must represent subtrees rooted at the root path.

= User interface: tree contraction.
= Each subtree is a sequence of unit trees.

sequence of rakes and compresses;

= Represent each unit tree recursively. + asingle tree;

= Build a binary tree of rakes. .

similar to topology trees and RC-trees.
Implementation: path decomposition.
maximal edge-disjoint paths;

hierarchy of binary trees (rake trees/compress trees).
similar to ST-trees.

(Each circle is rake cluster.)

Dynamic Trees

Dynamic Trees




Self-Adjusting Top Trees

Self-Adjusting Top Trees

« Topmost compress tree represents the root path.

= Top tree interface allows the user to access the root path only.

= expose makes a node v part of the root path (and/or changes root).

« Main tools: splay and splice.

expose(v)

« Splaying: series of rotations within a rake/compress subtree:
= keeps subtree “balanced” (in the amortized sense);

= brings vertex to the root of the subtree.

rotate right
—

rotate left

data structure

actual tree
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Self-Adjusting Top Trees

« Splice: changes the partition of the original tree into paths.

splice(X)
=

actual tree

data structure
splice(X)
—
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Links

« link(v,w): first expose v and w, then rearrange appropriately.

link(v,w)
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Self-Adjusting Top Trees

expose(v) in 3 passes:
1. Splay within each binary tree between v and the root;
2. perform a series of splices;

3. splay within the final tree.

Main result: O(log n) amortized time.
p"

expose(v)
—_—

\
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Hidden Details

Exposing the vertex is slightly different from changing the root.
Top tree nodes represent edges; must also associate with vertices.
Degree of vertices exposed matters (special cases).

Left-right relation must be relaxed in compress trees.

Must call user-defined functions in the appropriate order.
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Practical Considerations Further Work

« Compress node: « Worst-case variant?
= Actually represents up to 3 clusters. « Careful experimental study:

= Could be implemented as one cluster = one node. = Top trees tend to be slower than ET-trees and ST-trees, but:
« Splaying and splicing get slightly more complicated. « More generic:
« Special cases (application-dependent):
= No circular order:
« Compress nodes have at most 3 (not 4) children. « Much easier to adapt to different applications;
« Simpler splices. « Easier to reason about.
= Trivial rakes: essentially ST-Trees. = How does it compare to RC-trees?
« No rake trees.

« No pointers to “middle children” (dashed edges).

Dynamic Trees Dynamic Trees




