The Dynamic Trees Problem

. . « Dynamic trees:
Self-AdJ ustmg TOp Trees = Goal: maintain an n-vertex forest that changes over time.
« link(v,w): creates an edge between vertices v and w.
« cut(v,w): deletes edge (v,w).
= Application-specific data associated with edges and/or vertices.
« Concrete examples:
= Find minimum-weight edge in the path between any two vertices.
= Add a value to all edges in the path between two vertices.

= Find total weight of all vertices in a subtree.
« O(log n) time per operation.
Robert Tarjan (Princeton University/HP)

= map arbitrary tree onto balanced tree.
Renato Werneck (Princeton University)

Dynamic Trees

Data Structures Data Structures

ST-trees ST-trees Topology RC-trees Top Trees ET-trees ST-trees ST-trees Topology RC-trees |Top Trees| ET-trees
[ST83] [ST85] [Fre85] [ABHWO3] [AHALT97] [HK95] [5T83] [ST85] [Fre85] [ABHWO3]|[AHALT97]| [HK95]

Arbitrary subtree

; YES YES Arbitrary subtree
queries?

; YES YES
queries?
Arbitrary path

) YES YES Arbitrary path YES YES
queries? queries?

Simple to . . X Simple to X . .
implement? fairly fairly fairly implement? fairly fairly fairly
Generic

Generic
interface? YES

Interface? YES

O(log n) worst YES YES YES O(log n) worst YES YES YES
case? case?
Principle path path tree tree tree linearization path path

Principle tree tree tree contr./ | linearization
decomp. decomp. contraction contraction contraction (Euler tour) p

decomp. decomp. contraction contraction [path decomp.| (Euler tour)

Dynamic Trees Dynamic Trees

Contractions: Rake and Compress Contractions: Rake and Compress

Proposed by Miller and Reif [1985] (parallel setting). « Contraction:

REICH = Series of rakes and compresses;

e
= Eliminates a degree-one vertex. s = Reduces a tree to a single cluster (edge).

= Collapses edge onto successor. « Top tree embodies a contraction:
« Assumes circular order of edges.

= Direct access only to root cluster.

Compress: = User defines what information to store in parent.
= Eliminates a degree-two vertex. = Any order of rakes and compresses is “right”:

= Combines two edges into one. « root will have the correct information.

. . « Balanced: updates in O(log n) time.
Original edges and resulting edge are clusters.

« Alstrup et al. [1997] use topology trees: high overhead.

« We show a direct implementation.

Dynamic Trees Dynamic Trees

Representation

» Consider some unrooted tree:

Representation

Dynamic Trees

Representation

« Pick a degree-one vertex as root, direct all edges towards it.

« We call this a unit tree (rooted tree with degree-one root).

 Pick a root path:
= starts at some leaf;

= ends at the root.

W

Dynamic Trees

Representation

Dynamic Trees

Representation

« Represent the root path as a binary tree:
= Leaves: base clusters (original edges).

= Internal nodes: compress clusters.

« What if the degree of a vertex is not two?
= Recursively represent each subtree rooted at the vertex.

« At most two because of circular order.

Dynamic Trees

Representation

Dynamic Trees

« What if the degree of a vertex is not two?

= Recursively represent each subtree rooted at the vertex.

= Before vertex is compressed, rake subtree onto adjacent cluster.

Dynamic Trees

Representation Representation

« Representation:

How does the recursive representation work?

= Up to four children per node (up to two foster children). = Must represent subtrees rooted at the root path.
= Meaning: up to two rakes followed by a compress.

= Example: N, = compress(rake(X, ce), rake(Z, ef)) = cf

Dynamic Trees

Dynamic Trees

Representation Representation

How does the recursive representation work?

How does the recursive representation work?
= Must represent subtrees rooted at the root path. = Must represent subtrees rooted at the root path.
= Each subtree is a sequence of unit trees. = Each subtree is a sequence of unit trees.

= Represent each unit tree recursively.

Dynamic Trees

Dynamic Trees

Representation Representation

How does the recursive representation work?

« Interpretations:
= Must represent subtrees rooted at the root path.

= User interface: tree contraction.
= Each subtree is a sequence of unit trees.

sequence of rakes and compresses;

= Represent each unit tree recursively. + asingle tree;

= Build a binary tree of rakes. .

similar to topology trees and RC-trees.
Implementation: path decomposition.
maximal edge-disjoint paths;

hierarchy of binary trees (rake trees/compress trees).
similar to ST-trees.

(Each circle is rake cluster.)

Dynamic Trees

Dynamic Trees

Self-Adjusting Top Trees

Self-Adjusting Top Trees

« Topmost compress tree represents the root path.

= Top tree interface allows the user to access the root path only.

= expose makes a node v part of the root path (and/or changes root).

« Main tools: splay and splice.

expose(v)

« Splaying: series of rotations within a rake/compress subtree:
= keeps subtree “balanced” (in the amortized sense);

= brings vertex to the root of the subtree.

rotate right
—

rotate left

data structure

actual tree

Dynamic Trees

Self-Adjusting Top Trees

« Splice: changes the partition of the original tree into paths.

splice(X)
=

actual tree

data structure
splice(X)
—

Dynamic Trees

Links

« link(v,w): first expose v and w, then rearrange appropriately.

link(v,w)

Dynamic Trees

Dynamic Trees

Self-Adjusting Top Trees

expose(v) in 3 passes:
1. Splay within each binary tree between v and the root;
2. perform a series of splices;

3. splay within the final tree.

Main result: O(log n) amortized time.
p"

expose(v)
—_—

\

Dynamic Trees

Hidden Details

Exposing the vertex is slightly different from changing the root.
Top tree nodes represent edges; must also associate with vertices.
Degree of vertices exposed matters (special cases).

Left-right relation must be relaxed in compress trees.

Must call user-defined functions in the appropriate order.

Dynamic Trees

Practical Considerations Further Work

« Compress node: « Worst-case variant?
= Actually represents up to 3 clusters. « Careful experimental study:

= Could be implemented as one cluster = one node. = Top trees tend to be slower than ET-trees and ST-trees, but:
« Splaying and splicing get slightly more complicated. « More generic:
« Special cases (application-dependent):
= No circular order:
« Compress nodes have at most 3 (not 4) children. « Much easier to adapt to different applications;
« Simpler splices. « Easier to reason about.
= Trivial rakes: essentially ST-Trees. = How does it compare to RC-trees?
« No rake trees.

« No pointers to “middle children” (dashed edges).

Dynamic Trees Dynamic Trees

