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Abstract

In this paper we show that a class of sets known as the Rauzy fractals, which are
constructed via substitution dynamical systems, give rise to self-affine multi-tiles and
self-affine tilings. This provides an efficient and unconventional way for constructing
aperiodic self-affine tilings. Our result also leads to a proof that a Rauzy fractal R
associated with a primitive and unimodular Pisot substitution has nonempty interior.
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1 Introduction

Let A be an expanding matrix in Md(R), that is, one with all eigenvalues |λ| > 1. Let Dij
where 1 ≤ i, j ≤ J be finite (possibly empty) subsets of vectors in Rd. It is known (see [16])
that there exist unique nonempty compact sets X1, . . . , XJ such that

A(Xi) =
J

j=1

(Xj +Dij), i = 1, . . . , J, (1.1)

provided that the subdivision matrix S = [sij ] where sij := |Dij | is primitive. The J-tuple
(X1, . . . , XJ) is called the attractor of the graph-directed iterated function system (IFS)
(1.1).

An interesting class of graph-directed IFS consists of those whose attractors are tiles of
Rd. We say that (X1, . . . , XJ) is a self-affine multi-tile if each Xi has nonempty interior
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and the unions on the right side of (1.1) are all measure-wise disjoint. Self-affine multi-tiles
arise in many applications, include the construction of orthonormal multi-wavelet bases, self-
replicating tilings and quasicrystals. They form an important class of tiles in the theory of
tiling. For example, the Penrose aperiodic tiles can be viewed as a self-affine multi-tile. By
iterating the equation (1.1) repeatedly we may obtain a self-affine tiling, or self-replicating
tiling. Such inflation technique remains as the most effective way for generating aperiodic
and “exotic” tilings. For more on self-affine multi-tiles and tilings, see [6], [8], [12], and the
references therein.

Self-affine multi-tiles and self-affine tilings are the easiest to construct when the expand-
ing matrix A is an integer matrix, or is similar to an integer matrix. The studies in some
of the recent papers (e.g. [6], [8]) are mostly confined to such settings. These multi-tiles
typically — although not always — yield periodic self-affine tilings. However, the most in-
teresting multi-tiles such as some of the Penrose tiles that yield aperiodic self-affine tilings
do not use integer matrices as the expansion matrix. Constructions of self-affine multi-tiles
and self-affine tilings systematically using non-integer matrices remain difficult in general.

Our main objective in this paper is to introduce a method for constructing interesting
self-affine multi-tiles and self-affine tilings, in which the expansion matrix A is not an
integral matrix. The self-affine multi-tiles and tilings are obtained through substitution
dynamical systems, via a peculiar class of sets called the Rauzy fractals. We first give a
brief introduction on substitution dynamical systems and Rauzy fractals below.

A substitution on a finite alphabet A = {1, . . . , n} is a map Π from A to A∗ = i≥0A
i,

where Ai denotes the set of words of length i in A, with A0 containing only the empty
word ∅. This map extends to a map on A∗ into itself by juxtaposition Π(∅) = ∅ and
Π(UV ) = Π(U)Π(V ) for all U, V ∈ A∗. Let AN denote the set of one sided infinite sequences
in the alphabet A:

AN := a1a2a3 · · · aj ∈ A .

Then Π extends to a map on AN into itself in the obvious way. An important object
associated to a substitution is its incidence matrix. For any U ∈ A∗ let |U |j denote the
number of occurrences of the symbol j in the word U . The incidence matrix M = [mij ] is
then defined by mij = |Π(i)|j for 1 ≤ i, j ≤ n. Throughout this paper we shall assume that
the substitution Π is primitive, namely Mk > 0 for some k ≥ 1.

We call U ∈ AN a fixed point of Π if Π(U) = U. Associated to a fixed point U of the
substitution is a symbolic dynamical system (ΩU,σ) where σ is the shift map on A

N given
by σ(a1a2 · · ·) = a2a3 · · · and ΩU is the closure of {σm(U) : m ≥ 0} in AN. This symbolic
dynamical system has been studied extensively, see Queffélec [20]. It is straightforward to
show that if the substitution is primitive then the system (ΩU,σ) is minimal and uniquely
ergodic.

An important question is whether and how the symbolic dynamical system (ΩU,σ) is
realizable geometrically. We say that a dynamical system (X, f) is semiconjugate to another
dynamical system (Y, g) if there exists a continuous surjective map φ : X → Y such that
φ ◦ f = g ◦ φ. By geometrically realizable we mean there exists a dynamical system (X, f)
defined on a geometrical structure, e.g. a differentiable manifold, for some continuous map
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f on X, such that (ΩU,σ) is semiconjugate to (X, f). One of the main motivations of
this question is the study of the spectral properties of the symbolic system. One way to
do this is to show that symbolic system is mesurably conjugate or semiconjugate to the
geometrical system. In particular a way to show that a substitution dynamical systems has
discrete spectrum is to find a isomorphism to rotation on a compact group [cf. [20, 21, 32]].
It has been conjectured that every primitive and unimodular Pisot substitution dynamical
system is measurably isomprphic to a toral translation.

Rauzy approached this conjecture via geometrical realization of the symbolic system. In
[23] he studied the tribonacci substitution, i.e. 1→ 12, 2→ 13, 3→ 1, and he showed that
the associated symbolic dynamical system can be realized geometrically as (T2, f) where f
is an irrational translation on the 2-torus T2. This result generalizes also to the family of
substitutions

1→ 12, 2→ 13, . . . , (n− 1)→ 1n, n→ 1. (1.2)

The symbolic dynamical system (ΩU,σ) associated to the unique fixed point for each n is
geometrically realizable as (Tn−1, fn) for some irrational translation fn on Tn−1.

Key to Rauzy’s results is the construction of a set known as a Rauzy fractal associated
to the fixed point U of a primitive substitution. In [23] the set ΩU is mapped to C via a
valuation, which is a map E : A∗ −→ C having the properties that E(UV ) = E(U)+E(V )
and E(Π(U)) = ωE(U) for all U, V ∈ A∗ and some fixed constant ω. It is shown in Holton
and Zamboni [9] that in a valuation the constant ω must be an eigenvalue of the incidence
matrix M , and there exists an ω-eigenvector v = [v1, . . . , vn]

T such that

E(U) =
n

i=1

|U |ivi, for all U ∈ A∗. (1.3)

We call the valuation defined above the valuation corresponding to v. Suppose that

ω1, ω1, . . . ,ωp,ωp,ωp+1, . . . ,ωr (1.4)

are all the eigenvalues ofM inside the unit disk, where ω1,ω1, . . . ,ωp,ωp are nonreal complex
and ωp+1, . . . ,ωr are real. Let vj be an ωj-eigenvector of M and Ej be the valuation
corresponding to vj . For U ∈ A∗ define ∆(U) = [E1(U), . . . , Er(U)]T . Note that ∆(U) is a
vector in Cp × Rr−p, which we identify with Rp+r. The valuation done by Rauzy in [23] in
the tribonacci substitution is shown in Example 2.1.

Definition 1.1 We call the closure of the set {∆([U]m) : m ≥ 0} in Cp×Rr−p (identified
with Rp+r) a Rauzy fractal, where [U]m is the word formed by the first m symbols of the
fixed point U.

It is known that a Rauzy fractal is bounded ([23, 9]). The geometric and dynamical
properties of Rauzy fractals have been studied in a number of papers, among others see
[1, 9, 23, 27, 28, 30]. For example, Holton and Zamboni [9] studied the Hausdorff dimensions
of various sets related to Rauzy fractals. They also observed that a Rauzy fractal can be
expressed as the attractor of some graph directed iterated function system (IFS). Solomyak
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[30, 32] showed that certain family of primitive and unimodular Pisot substitutions (defined
below) has pure discrete spectrum via geometrical realizations as irrational translations on
tori. Arnoux and Ito [1] showed that for certain primitive and unimodular Pisot substi-
tutions on a alphabet of k letters can be realized geometrically as an exchange of pieces
by translation on the plane Rk−1 and as irrational translations on Tk−1. The geometry of
boundary of the Rauzy fractal for the tribonacci substitution has been studied in[29, 17].

We shall study Rauzy fractals associated to fixed points of primitive and unimodular
Pisot substitutions. A substitution Π in n ≥ 2 symbols is unimodular Pisot if its incidence
matrix M satisfies (i) |det(M)| = 1 and (ii) the Perron-Frobenius eigenvalue λ of M is a
Pisot number, and the characteristic polynomial ofM is the minimal polynomial of λ, i.e. it
is irreducible over Q. A Pisot number is an algebraic integer grater than 1, such that all its
Galois conjugates have modulus less than 1. Most of the studies on Rauzy fractals assume
the substitutions are primitive and unimodular Pisot because only such substitutions allow
geometric realizations.

In this paper we prove several general properties concerning self-affine multi-tiles in §3.
These results are themselves rather fundamental for the study of self-affine multi-tiles and
tilings. We then use these results to prove in §4 a main theorem of ours, that the so-called
natural decomposition of a Rauzy fractal R (defined later) gives a self-affine multi-tile. The
expansion matrix for the self-affine multi-tile is not an integer matrix; in fact it is not
even similar to an integer matrix. As a corollary we prove that every set in the natural
decomposition of R has nonempty interior and is in fact the closure of its interior. Our
method yields a simple new proof of a result, due to Arnoux and Ito [1], concerning the
disjointness of the natural decomposition of R.

We should point out that self-similar tilings using non-integral expansions are not new.
In an unpublished work Thurston [34] outlined a construction of self-similar tilings for a
complex Pisot number β. This construction, which was studied further in Kenyon [11,
12], Praggastis [19] and Petronio [18], employs base-β expansions (called β-expansions)

j∈Z dj β
j with dj belonging to a suitably chosen set D ⊂ Q(β) called the “digit set.” The

expansions are not unique in general. However, it is possible to make the expansions unique
by disallowing some subsequences. Once this is done, the remaining β-expansions form a
partition of the plane that is a self-similar tiling using the expansion β. Although coming
from a completely different angle, the Rauzy fractal induced self-affine tilings turn out to
be related to Thurston’s framework. This is evident in Rauzy’s work on the tribonacci
substitution Rauzy fractal. The general Rauzy fractals studied here provide a concrete
and very general construction of Thurston-like self-affine tilings. Moreover, these Rauzy
fractals allow the expanding matrices to be nonsimilitudes. We also mention that unlike in
much previously mentioned work, we prove the tiling property of Rauzy fractals by proving
first they have positive Lebesgue measure and then extablishing structural results on the
expansions, rather than the other way around.

The fact that R has positive Lebesgue measure had been conjectured and is a key part
for the geometric realization of substitution dynamical systems. This fact has recently also
been proved independently by Canterini and Siegel [3], following from a stronger result
of theirs concerning the geometric realization of substitutions. Their methods are rather
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different from ours, and they are motivated by geometric realization of substitutions rather
than self-affine tilings. In a later paper [4], Canterini and Siegel also gave an alternative
proof that every set in the natural decomposition of R has nonempty interior using a very
different method.

Acknowledgments: The first author would like to thank the School of Mathematics of
the Georgia Institute of Technology for its hospitality. This article was completed during a
visit by the first author to this institution.

2 Preliminary Results

The objective of this section is to prove that a Rauzy fractal associated to a fixed point of
a primitive and unimodular Pisot substitution has positive Lebesgue measure. This fact is
needed to prove our main results.

Throughout the rest of the paper, unless otherwise stated, A denotes the alphabet
A = {1, 2, . . . , n} and Π is a primitive and unimodular Pisot substitution on A, with
incidence matrix M = [mij ]. We use U to denote a fixed point of Π and [U]k to denote
the word formed by the first k symbols of U. The Perron-Frobenius eigenvalue of M is λ,
and all the other eigenvalues of M are ω1,ω1, . . . ,ωp,ωp,ωp+1, . . . ,ωr, where ω1, . . . ,ωp are
nonreal complex and ωp+1, . . . ,ωr are real. Of course, the unimodular Pisot assumption
implies that 0 < |ωj | < 1. The map Ej is a valuation corresponding to some ωj-eigenvector
vj , as defined in (1.3), and ∆ = [E1, . . . , Er]

T .

Observe that each vj is unique up to scaling. Therefore the Rauzy fractal associated
to the substitution Π on A is actually unique up to an affine transformation. Also, by
elementary linear algebra the fact that the characteristic polynomial is irreducible over Q
implies that there exist polynomials gi(x) ∈ Z[x] of degrees less than n for 1 ≤ i ≤ n such
that

vj = [g1(ωj), . . . , gn(ωj)]
T cj , (2.1)

where cj = 0 and cj ∈ C for j ≤ p and cj ∈ R for j > p.

Lemma 2.1 Let E be the valuation corresponding to some ω-eigenvector v. Then E(UV ) =
E(U) +E(V ) and E(Π(U)) = ωE(U) for all U, V ∈ A∗.

Proof. This is shown in [9], and we include a proof for self-containment. The fact E(UV ) =
E(U) +E(V ) follows from the definition. Also by definition,

E(Π(i)) =
n

j=1

mijE(j) =
n

j=1

mijvj = ωvi = ωE(i),

where v = [v1, . . . , vn]
T . By juxtaposition we see that E(Π(U)) = ωE(U) for all U ∈ A∗.

Lemma 2.2 ∆([U]m) = ∆([U]k) for m = k.
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Proof. We prove the stronger statement that Ei([U]m) = Ei([U]k) for all m = k. Suppose
that this is not true. Then Ei([U]m) = Ei([U]k) for some m = k. Without loss of generality
let k > m. Then by definition and (2.1), n

j=1 |V |jgj(ωi) = 0, where V is the word formed
using the (m + 1)-th through k-th symbols of U. But gj(x) ∈ Z[x] and λ is a Galois
conjugate of ωi, so we must have

n
j=1 |V |jgj(λ) = 0. However, since λ is the Perron-

Frobenius eigenvalue ofM andM is primitive, all gj(λ) are positive or negative at the same
time. This is impossible. So Ei([U]m) = Ei([U]k) for all m = k, proving the lemma.

For each polynomial f(x) we let ωf = [f(ω
−1
1 ), . . . , f(ω

−1
r )]

T .

Lemma 2.3 Let D be a finite subset of Z and let D[x] denote

D[x] = f(x) = a0 + · · ·+ amx
m aj ∈ D, m ≥ 0 .

Then there exists an ε0 > 0 depending only on D, such that for all f, g ∈ D[x] either
ωf = ωg or ωf − ωg ≥ ε0.

Proof. Note that the unimodular Pisot assumption implies that 1/λ is an algebraic integer
and its Galois conjugates are precisely

ω−11 ,ω
−1
1 , . . . ,ω

−1
p ,ω

−1
p ,ω

−1
p+1, . . . ,ω

−1
r .

So for each f(x) in Z[x] the Galois conjugates of f(λ) are f(λ−1), f(ω−11 ), f(ω
−1
1 ), · · · , f(ω

−1
r ).

Therefore
L(f) := f(λ−1) + f(ω−11 ) + f(ω

−1
1 ) + · · ·+ f(ω

−1
r ) ∈ Z. (2.2)

In particular since fk(x) = x
kf(x) ∈ Z[x] we have L(fk) := Lk ∈ Z for all k ≥ 0.

Using the Vandermonde matrix it is easy to prove that for any k, at least one of Lk,
Lk+1, . . . , Lk+n−1 is not zero, unless f(λ−1) = f(ω

−1
i ) = 0 for all i.

The finiteness of D implies |f(λ−1)| ≤ c0 for some c0 depending only on D. Now assume
that the the lemma is false. Then we can find f, g in D[x] with ωf = ωg such that ωf−ωg
can be made arbitrarily small. Since h(x) = f(x)−g(x) satisfies |h(λ−1)| ≤ 2c0, |λ−kh(λ−1)|
is sufficiently small for sufficiently large k. We derive a contradiction below.

Fix k > 0 such that 2λ−kc0 < 1
n
. Then choose f(x), g(x) ∈ D[x] such that h(x) =

f(x)− g(x) has the property that ωh = 0 and ωh is so small that for hj(x) := x
jh(x) we

have

ωhj+k ≤ max1 ≤ i ≤ r|ωi|−j−k ωh <
1

n

for 0 ≤ j ≤ n− 1. Since also

|hj+k(λ
−1)| = λ−j−k|h(λ−1)| ≤ 2λ−j−kc0 <

1

n

we have that |L(hj+k)| < 1 for 0 ≤ j ≤ n− 1. But all L(hj+k) are integers, so all of them
must be 0. This contradicts the result that one of them is nonzero, proving the lemma.
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Corollary 2.4 Let S be a finite subset of Z[x]. If in Lemma 2.3 D[x] is replaced by

S[x] = f(x) = a0(x) + a1(x)x+ · · ·+ am(x)x
m ai(x) ∈ S, m ≥ 0 ,

then the same conclusion still holds.

Proof. Because S is finite, there exists a finite D ⊂ Z such that S[x] ⊆ D[x]. So the
conclusion of Lemma 2.3 still holds.

We shall need the following theorem of Rauzy [24] to prove our results:

Theorem 2.5 (Rauzy) There exists a finite subset P of A∗ with ∅ ∈ P and a subset S of
P∗, the set of all finite sequences in P, with the following properties:

(a) All sequences (Wk,Wk−1, . . . ,W0) ∈ S satisfy Wk = ∅.

(b) For any m ≥ 1 there exists a unique sequence of words (Wk,Wk−1 . . . ,W0) ∈ S such
that

[U]m = Π
k(Wk)Π

k−1(Wk−1) · · ·Π(W1)W0. (2.3)

(c) For any sequence of words (Wk,Wk−1 . . . ,W0) ∈ S there exists an m ≥ 1 such that
[U]m is given by (2.3).

Proof. See the theorem in Rauzy [24], First part, Section 6.

The above theorem of Rauzy’s is proved by representing [U]m as a path in certain prefix
automaton. The set P is the set of prefixes for the automaton and S is the set of all
allowable paths generated by the prefix automaton. Using this representation many elegant
results can be derived, see [24] for more details.

Lemma 2.6 There exists a finite subset S of Z[x] such that

{∆([U]m) | m ≥ 1} ⊆
k

j=0

ωpjB
jv0 pj(x) ∈ S, k ≥ 0 (2.4)

where B is the matrix B := diag(ω1,ω2, . . . ,ωr) and v0 is a fixed vector in C
p × Rr−p.

Proof. By Theorem 2.5, the word [U]m can be expressed as Πk(Wk)Π
k−1(Wk−1) · · ·W0,

where Wj ∈ P for some finite P ∈ A∗ and Wk = ∅. Observe that for each W ∈ P, Ei(W ) =
q(ωi)ci for some q(x) ∈ Z[x] and constant ci. Since P is finite we may choose a sufficiently
large fixed N so that q(x) = xNp(x−1) for some p(x) ∈ Z[x]. So Ei(W ) = p(ω−1i )ωNi ci. It
follows that

Ei([U]m) =
k

j=0

ωjiEi(Wj) =
k

j=0

ωji p(ω
−1
i )ω

N
i ci.

The lemma is proved by setting v0 = [ω
N
1 c1, . . . ,ω

N
r cr]

T .
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Lemma 2.7 Let N be a positive integer and define

RN = ∆(U) U = Πk(Wk) · · ·Π(W1)W0, (Wk, . . . ,W0) ∈ S and k ≤ N

where S is defined in Theorem 2.5. Then RN is a subset of {∆([U]m) : m ≥ 0}, and there
exist C1, C2 > 0 independent of N such that the cardinality of RN satisfies

C1λ
N ≤ |RN | ≤ C2λN .

Proof. RN ⊆ {∆([U]m) : m ≥ 0} follows from Theorem 2.5.

For each U ∈ A∗ the length of Πl(U) is n
i,j=1m

(l)
ij |U |j , where m

(l)
ij are the entries of the

matrix M l. So the length is bounded by C0λ
lmax(|U |j) for some constant C0 independent

of U and l. The inequality |RN | ≤ C2λ
N is now obvious, because P is finite. To prove

|RN | ≥ C1λN , consider
n

i=1

|Πk(Wk) · · ·Π(W1)W0|i ≥
n

i=1

|Πk(Wk)|i ≥ C3λk

for some C3 > 0. Therefore, for all m such that [U]m is not representable as Π
k(Wk) · · ·W0

with k ≤ N we must have n
i=1 |Um|i = m ≥ C3λ

N+1. Hence RN ⊇ {∆(Um) |m <
C3λ

N+1}. Since all ∆([U]m) are distinct by Lemma 2.2, we have

|RN | ≥ C3λN+1 = (C3λ)λN = C1λN .

Proposition 2.8 The Rauzy fractal R has positive Lebesgue measure.

Proof. By Lemma 2.6 and Corollary 2.4 the set B−N (RN ) has the ε0-separation property
for some ε0 > 0. Let δ = ε0/2 and Bδ(y) be the ball of radius δ centered at y in C

p ×Rr−p

(which we identify with Rn−1). Then

SN =

y∈B−N (RN )
Bδ(y)

is a disjoint union of balls. So ν(SN ) = |RN |vol(Bδ(0)), where ν denotes the Lebesgue
measure. Note that for any set K,

ν(B(K)) = |ω1|
2 · · · |ωp|

2|ωp+1| · · · |ωr|ν(K) = λ−1ν(K). (2.5)

(Note that the first p coordinates are complex.) Hence ν(BN (SN )) = λ−N |RN |vol(Bδ(0)).
It follows from Lemma 2.7 that ν(BN (SN ) ≥ C1vol(Bδ(0)) > 0. On the other hand the
limit of BN (SN ), when N goes to infinity, is R in the Hausdorff metric. This implies
ν(R) ≥ lim infN→∞ ν(BN (SN )) > 0.
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Figure 1: The Rauzy fractal of the substitution 1→ 12, 2→ 13, 3→ 1.

Example 2.1 We consider the substitution 1 → 12, 2 → 13, 3 → 1. A simple induction
argument shows that it satisfies the relation

Πl+3(1) = Πl+2(1)Πl+1(1)Πl(1) (2.6)

for all l ≥ 0. It is shown (see [24]), using this fact, that [U]m = Πk(Wk) · · ·Π(W1)W0, where
Wi are either ∅ or 1 and k depends onm but having no three consecutiveWi’s equal to 1. So
the set S in Theorem 2.5 is the set of infinite one-sided sequences in the symbols P = {∅, 1},
such that there are no three consecutive 1’s. Therefore ∆([U]m) =

k
i=0 ω

i∆(Wi) where ω
is one of the two conjugate eigenvalues inside the unit circle, with

∆(Wi) =
0 if Wi = ∅,
1 if Wi = 1.

Hence
R =

i≥0
aiω

i ai ∈ {0, 1} and aiai+1ai+2 = 0 for all i. .

This set is shown in Figure 1 (the different shades correspond to the decomposition of R,
discussed in the next section).
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Figure 2: The Rauzy fractal of the substitution 1→ 12, 2→ 3, 3→ 1.

Example 2.2 Let the substitution be 1 → 12, 2 → 3, 3 → 1. Let ω be one of the two
complex conjugate eigenvalues of the incidence matrix of this substitution. It can be proved,
using the techniques described in [24], that

R =
i≥0

aiω
i ai ∈ {0, 1} and if ai = 1 for i ≥ 2 then ai−1 = ai−2 = 0. .

This set is shown in Figure 2.

3 Graph-Directed IFS and Self-Affine Multi-Tiles

In this section we establish results concerning self-affine multi-tiles. In particular we prove
a theorem regarding nonempty interior of the attractor of a graph directed IFS in a more
general setting. Let A be an expanding d× d matrix, i.e. all its eigenvalues are outside the
unit disk. Consider the nonempty compact subsets X1, . . . , XJ of R

d such that (X1, . . . , XJ)
is the attractor of the graph directed IFS

Xi =
J

j=1

A−1(Xj +Dij), i = 1, . . . , J, (3.1)
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where each Dij is a finite (possibly empty) subset of R
d. For our study it is more convenient

to write (3.1) in the form of

A(Xi) =
J

j=1

(Xj +Dij), i = 1, . . . , J. (3.2)

Iterating (3.2) yields

Am(Xi) =
J

j=1

(Xj +D
m
ij ), i = 1, . . . , J, (3.3)

where one easily check that

Dmij =
J

k1,...,km=1

(Am−1Dikm +A
m−2Dkmkm−1 + · · ·+Dk1j). (3.4)

We say that the graph directed IFS (3.1) is strongly connected if its subdivision matrix
S = [sij ] for sij = |Dij | is primitive.

Theorem 3.1 Let (X1, . . . , XJ) be the attractor of a strongly connected graph directed IFS

A(Xi) =
J

j=1

(Xj +Dij), i = 1, . . . , J.

Suppose that there exists an ε0 > 0 such that the sets D
m
ij have ε0-separation for all i, j,m,

and X1 has positive Lebesgue measure. Then every Xi has nonempty interior, and it is the
closure of its interior.

Observe that all Xi have positive Lebesgue measures because of the strong connectivity
of the graph directed IFS. Before proving Theorem 3.1 we first establish the following lemma:

Lemma 3.2 Under the assumption of Theorem 3.1, let δm be a sequence of positive numbers
whose limit is 0. Then there exist positive constants r0 and c0 such that for each m ≥ 1
there exist finite subsets Em1 , . . . , E

m
J of Rd contained in the ball Br0(0), of cardinality at

most c0 with e− e ≥ ε0 for all j,m and any distinct elements e, e ∈ Emj , such that

ν(B1(0) ∩ Ym) ≥ (1− 5d+1δm)ν(B1(0)) (3.5)

where Ym :=
J
j=1(Xj + E

m
j ) and B1(0) is the Euclidean unit ball centered at the origin.

Proof. Since X1 has positive Lebesgue measure, it has a Lebesgue point x
∗, i.e. there is

a sequence rm → 0 such that

ν(Brm(x
∗) ∩X1) ≥ (1− δm)ν(Brm(x

∗)).

11



This implies that

ν(Al(Brm(x
∗)) ∩X1) ≥ (1− δm)ν(A

l(Brm(x
∗))), for all l ≥ 0. (3.6)

We first show that for sufficiently large l, there exists a unit ball B1(y) ⊂ Al(Brm(x∗)) with

ν(B1(y) ∩Al(X1)) ≥ (1− 5d+1δm)ν(B1(0)). (3.7)

Indeed, since A is expanding Al(Brm(x
∗)) is an ellipsoid Ol,m whose shortest axis goes to

infinity as l goes to infinity. Let Ol,m be the homothetically shrunk ellipsoid with shortest
axis decreased in length by 2, so that all points in it are at distant at least 1 from the
boundary of Ol,m. By a standard covering lemma (cf. Stein [26, p. 9]) applied to Ol,m
there is a set {B1(y )} of disjoint unit balls with centers in Ol,m that cover volume at least

5−dν(Ol,m). Notice that once the shortest axis of the ellipsoid Ol,m has length greater that

2d + 1 we will have 5−dν(Ol,m) ≥ 5−d−1ν(Ol,m), since ( d
d+1)

d > 1/5. All these balls lie

inside Ol,m. By (3.6) at most δmν(A
l(Brm(x

∗))) of the volume of Al(Brm(x
∗)) is uncovered

by Al(Brm(x
∗) ∩X1), so at least one of the disjoint balls {B1(y )} must satisfy (3.7).

By (3.3) we can rewrite the inequality (3.7) as

ν B1(y) ∩
J

j=1

(Xj +D
l
1j) ≥ (1− 5d+1δm)ν(B1(y)),

therefore

ν


B1(y) ∩

j=1

(Xj +D
l
1j − y)


 ≥ (1− 5d+1δm)ν(B1(0)),

This shows that if we choose

Emj = d− y |d ∈ Dl1j with (Xj + d− y) ∩B1(0) = ∅

then (3.5) holds. Since all Dmij have ε0-separation, we have e− e ≥ ε0 for all e, e in E
m
j .

Since all Xj are compact, all E
m
j are inside the ball Br0(0) for some fixed r0 > 0. The ball

Br0(0) can be packed with disjoint balls of radius ε0/2 centered at the points of E
m
j for each

j. This implies that the cardinality of Emj must be bounded by some constant c0.

Proof of Theorem 3.1. We apply the previous lemma and choose a subsequence mk so
that {Emk

j } converges for all j, and we denote the limit by E∞j . Clearly E
∞
j has cardinality

at most c0. So

ν B1(0) ∩
J

j=1

(Xj + E
∞
j ) ≥ lim inf

k→∞
ν B1(0) ∩

J

j=1

(Xj + E
mk

j )

≥ lim inf
k→∞

(1− 5d+1δmk
)ν(B1(0))

= ν(B1(0)).

12



Since each Xj + E
∞
j is a closed set, we must have

B1(0) ∩
J

j=1

(Xj + E
∞
j ) = B1(0).

This means at least one of Xj ’s must have interior. But if so then the strong connectivity
implies that all Xj must have nonempty interior. Let Xj = X

o
j . Then (X1, . . . , XJ) must

also satisfy the same graph directed IFS. By the uniqueness (see Mauldin and Williams
[16]) Xj = Xj for all j.

Theorem 3.3 Let (X1, . . . , XJ) be the attractor of a strongly connected graph directed IFS

A(Xi) =
J

j=1

(Xj +Dij), i = 1, . . . , J (3.8)

with a primitive subdivision matrix S. Suppose that some Xi has nonempty interior, and
|detA| = ρ(S) where ρ(·) is the spectral radius. Then (X1, . . . , XJ) is a self-affine tile with
respect to A and Dij.

Proof. By the primitivity of S we know that all Xi have nonempty interior. Hence
ν(Xi) > 0. Let w = [ν(X1), . . . , ν(XJ)]

T . Taking Lebesgue measure on both sides of (3.8)
yields

|detA|w ≤ Sw (3.9)

with equality holding if and only if the unions on the right-hand side of (3.8) are all disjoint
(measure-wise). But |detA| is the Perron-Frobenius eigenvector of S and w > 0, so (3.9)
must be an equality. Hence all unions on the right-hand side of (3.8) are measure-wise
disjoint. Therefore (X1, . . . , XJ) is a self-affine multi-tile with respect to A and Dij .

4 Rauzy Fractals

In this section we introduce a natural decomposition of a Rauzy fractal R. We show that
this natural decomposition leads to a self-affine multi-tile using the results from §3. We
derive several corollaries of this result.

For a Rauzy fractal R = {∆([U]m) : m ≥ 0} let

Ri = ∆([U]m) U(m+ 1) = i, m ≥ 0 , 1 ≤ i ≤ n. (4.1)

Clearly n
i=1Ri = R. A better way to view R and Ri is to consider the “tail” of U. For

any valuation E corresponding to an eigenvalue |ω| < 1 it is known that E can be extended
naturally to a valuation onAN (see [9]). Since Π(U) = U we have E(U) = ωE(U), implying
E(U) = 0. Thus we may view R as

R = −{∆(σmU) : m ≥ 0}
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and Ri as

Ri = − ∆(σmU) U(m+ 1) = i, m ≥ 0 .

In other words, Ri is given by the shifts of U whose beginning elements is the letter i. We
shall call (R1, . . . ,Rn) the natural decomposition of the Rauzy fractal R.

A key ingredient for proving our main theorem is to express the natural decomposition
(R1, . . . ,Rn) of a Rauzy fractal R in terms of the attractor of a graph directed IFS. This
fact is proved in [9]. Let F = {(j, k) : j ∈ A, 1 ≤ k ≤ |Π(j)|} where |U | denote the length
of U for U ∈ A∗, and let Fi = {(j, k) ∈ F : Π(j)(k) = i}, where Π(j)(k) denotes the k-th
symbol of Π(j). Then (R1, . . . ,Rn) satisfies

Ri =

(j,k)∈Fi
BRj +∆([Π(j)]k−1) , i = 1, . . . , n, (4.2)

where B = diag (ω1,ω2, . . . ,ωr) with ωj being defined in (1.4). Recall also that for any
word U in A∗ the notation [U ]m denotes the word formed by the first m letters of U ,
with [U ]0 := ∅. It is shown in addition in [9] that the graph directed IFS (4.2) is strongly
connected in the sense that its subdivision matrix (defined below) is primitive, see [9] for
details.

Our main theorem shows that the natural decomposition (R1, . . . ,Rn) forms a self-affine
multi-tile.

Theorem 4.1 Let R be a Rauzy fractal associated to a fixed point of a primitive and uni-
modular Pisot substitution in n ≥ 2 symbols. Then the natural decomposition (R1,R2, . . . ,Rn)
of R is a self-affine multi-tile. Furthermore Ri = Roi for all 1 ≤ i ≤ n.

Proof. We already know that (R1, . . . ,Rn) is the attractor of the strongly connected graph
directed IFS (4.2), which is rewritten as

B−1(Ri) =
(j,k)∈Fi

Rj +B
−1(∆([Π(j)]k−1)) , i = 1, . . . , n. (4.3)

Note that by (2.1) for each j ∈ A there exists a gj(x) ∈ Z[x] and fixed constants c1, . . . , cr
such that

B−1∆(j) = [ω−11 gj(ω1)c1, . . . ,ω
−1
r gj(ωr)cr]

T .

As in the proof of Lemma 2.6, we may choose a sufficiently large but fixed N such that

B−1∆(j) = [ωN1 fj(ω1)c1, . . . ,ω
N
r fj(ωr)cr]

T = D0ωfj ,

for some fj ∈ Z[x], where D0 = diag (ωN1 c1, . . . ,ωNr cr). This means that if we write (4.3) as

B−1(Ri) =
n

j=1

Rj +Dij , i = 1, . . . , n,

then eachDij is either empty, or all its elements have the formD0ωf for some finite collection
of polynomials f(x) ∈ Z[x]. Hence by Corollary 2.4 and (3.4) there exists an ε0 > 0 such
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Figure 3: Tiling for the substitution 1→ 12, 2→ 13, 3→ 1.

15



that all Dmij are ε0-separated. Since the graph directed IFS (4.2) is strongly connected and

ν(Ri) > 0 for some i, it now follows from Theorem 3.1 that Roi = ∅ and Roi = Ri for all i.
Now observe that the subdivision matrix of the graph directed IFS (4.3) is precisely MT ,
where M is the incidence matrix of the substitution. Taking the Lebesgue measure on both
side of (4.3), using (2.5), we obtain

λw ≤MTw, (4.4)

where w = [ν(R1), . . . , ν(Rn)]
T , with equality holding if and only if the unions on the right-

hand side of (4.3) are all disjoint (measure-wise). But λ is the Perron-Frobenius eigenvector
of MT and w > 0, so (4.4) must be an equality. Hence all unions on the right-hand side
of (4.3) are measure-wise disjoint. Therefore (R1, . . . ,Rn) is a self-affine multi-tile with
respect to B and

Dij := B−1(∆([Π(j)]k−1)) : (j, k) ∈ Fi .

Corollary 4.2 Let R be a Rauzy fractal associated to a fixed point of a primitive and
unimodular Pisot substitution in n ≥ 2 symbols. Then R has nonempty interior and R =
Ro.

The tilings associated to the examples 2.1 and 2.2 are shown in figures 3 and 4.

Corollary 4.3 Let R be a Rauzy fractal associated to a fixed pint of a primitive and
unimodular Pisot substitution in n ≥ 2 symbols. Then there exist infinite discrete sets
J1, . . . ,Jn ⊂ Cp × Rr−p such that

n

i=1 j∈Ji
(Ri + j) = C

p × Rr−p (4.5)

is a tiling of Cp × Rr−p.

Proof. The corollary follows from the standard technique of repeated iteration of (4.3).
The existence of the infinite discrete sets J1, . . . ,Jn of C

p ×Rr−p such that

n

i=1 j∈Ji
(Ri + Ji) = C

p × Rr−p

is a tiling of Cp × Rr−p is proved in Flaherty and Wang [6].

An interesting unsolved problem concerns the measure disjointness of the natural de-
composition of a Rauzy fractal R. Here we state it explicitly as a conjecture:

Conjecture Let R be a Rauzy fractal associated to a fixed pint of a primitive and unimod-
ular Pisot substitution in n ≥ 2 symbols. Let (R1, . . . ,Rn) be the natural decomposition of
R. Then all Ri are measure-wise disjoint.
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Figure 4: Tiling for the substitution 1→ 12, 2→ 3, 3→ 1.

The above conjecture has been studied in Arnoux and Ito [1]. It is shown there that the
disjointness of the natural decomposition is equivalent to a combinatorial condition called
the positive strong coincidence condition. A substitution Π is said to satisfy the positive
strong coincidence condition if for any two letters j1 and j2 in A there exist a letter i and
integers m, k1, k2 ≥ 1 such that

Πm(j1)(k1) = Π
m(j2)(k2) = i and ∆([Πm(j1)]k1−1) = ∆([Π

m(j2)]k2−1).

We state their theorem below, and show that the connection with self-affine multi-tiles also
yield a simple proof of the result.

Theorem 4.4 (Arnoux and Ito) Let R be a Rauzy fractal associated to a fixed point U
of a primitive and unimodular Pisot substitution Π in n ≥ 2 symbols. Let (R1, . . . ,Rn)
be the natural decomposition of R. Suppose that Π satisfies the positive strong coincidence
condition. Then all Ri are measure-wise disjoint.

Proof. We prove the measure-wise disjointness of {Ri} using the special property that a
Rauzy fractal for the substitution Π is also a Rauzy fractal for the substitution Πm, m ≥ 1.
This follows easily from the fact that if Π(U) = U then Πm(U) = U, and the fact that a
valuation on ΩU for Π with respect to an ω-eigenvector v is also a valuation on ΩU for Π

m

with respect to the ωm-eigenvector v.

Notice that the natural decomposition (R1, . . . ,Rn) of R as a Rauzy fractal for Π is
also the natural decomposition of R as a Rauzy fractal for Πm, since it depends only on the
valuation vector ∆, which is the same for both cases. Now, Πm has incidence matrix Mm

where M is the incidence matrix of Π. Clearly, Πm is also primitive and unimodular Pisot,
with the Pisot eigenvalue λm and its conjugates

ωm1 , ω
m
1 , . . . ,ω

m
p ,ω

m
p ,ω

m
p+1, . . . ,ω

m
r

where ωj are as in (1.4). So (R1, . . . ,Rn) satisfies

Ri =

(j,k)∈Fmi

BmRj +∆([Π
m(j)]k−1) , i = 1, . . . , n, (4.6)

where B = diag (ω1,ω2, . . . ,ωr) and F
m
i = {(j, k) : Πm(j)(k) = i}, with the unions on the

right side of (4.6) measure-wise disjoint. Since Π satisfies the positive strong coincidence
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condition, for any two letters j1 and j2 in A there exist a letter i and integers m, k1, k2 ≥ 1
such that

Πm(j1)(k1) = Π
m(j2)(k2) = i and ∆([Πm(j1)]k1−1) = ∆([Π

m(j2)]k2−1).

Therefore the unions on the right side of (4.6) contain the terms BmRj1+d and B
m
Rj2+d,

where d = ∆([Πm(j1)]k1−1) = ∆([Πm(j2)]k2−1). Hence B
m
Rj1 and B

m
Rj2 are measure-

wise disjoint, and so Rj1 and Rj2 are measure-wise disjoint. This proves the theorem.

The positive strong coincidence condition is very difficult to verify in general. We verify
it for a special case, in which the substitution Π has a unique periodic point U.

Corollary 4.5 Let R be a Rauzy fractal associated to a fixed pint U of a primitive and
unimodular Pisot substitution Π in n ≥ 2 symbols. Suppose that U is the unique fixed point
of Πm for all m ≥ 1. Then the natural decomposition (R1, . . . ,Rn) of R is measure-wise
disjoint.

Proof. Without loss of generality we assume that U(1) = 1. This means that there exists
an m ≥ 1 such that all Πm(j) begins with the letter 1. Therefore Π satisfies the positive
strong coincidence condition by taking i = 1 and k1 = k2 = 1.
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