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Abstract

We describe a novel method by which a four-axis binocular head
platform can autonomously align its cameras so that their optic axes
are parallel to each other and to the forward direction of the robot.

The method uses controlled pans and elevations of the robot while
viewing an unstructured scene in order to determine lines on the plane
at infinity, whose intersection we prove to be the forward direction of
the robot. The alignment is completed by fixating the projections of
this point in both cameras.

We summarize the underlying theory, and present results from a
fully autonomous implementation of the algorithm.

1 Introduction

Recent trends in computer vision have moved towards the development of systems
with a greater degree of autonomy than ever before. Where in the past systems
relied on accurate calibration of cameras typically achieved by viewing a well
structured environment (e.g. a calibration grid), many researchers have begun to
investigate the possibility of using algorithms which do not require calibration, are
robust in the presence of calibration errors, or are self-calibrating [1, 2, 3, 4, 5, 6].
Indeed this research has met with considerable success already, demonstrating that
a tremendous amount may be achieved without the need for strict calibration.

Stereo reconstruction is one area in which the apparent need for accurate cali-
bration has plagued those attempting to build depth maps, perform object recog-
nition or navigate in unstructured environments. Depth from binocular views is
obtained by measuring angles to features in each view and then performing trian-
gulation (see figure la). The calculation of these angles relies on both the relative
positions of the cameras and their intrinsic parameters. Small errors in the cam-
era intrinsics (notably the focal lengths) may result in wildly inaccurate depth
estimates.

Much recent interest has centred upon the use of active head/eye systems in
which multiple axes may be controlled with great precision in order to redirect the
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(a)

Figure 1: The stereo geometry for (a) arbitrary cameras, in which the range is a
function of the relative camera positions and the camera instrinsics /j = ||O; — c;j|,
fr — \\Or — cr\\; (b) for symmentrically verged cameras in which the range depends
only on the vergence angle v and the interocular separation / — ||O; — Or||-

gaze of the cameras. In [7] we used such a binocular robot in order to simplify
the problem of computing stereo depth. The chosen feature (a vertical edge on an
obstacle in the scene) was actively fixated by symmetrically verging the cameras
of a four axis binocular head [8] during a navigation manoeuvre. In this instance
the formula for the range to the target is a function of the inter-ocular separation
and the vergence angle (see figure lb). Thus the dependence on camera intrinsics
is replaced by a need to measure the vergence angle accurately. This can be done
with much greater precision owing to the sub-degree accuracy of the vergence
axis encoders (on Yorick 8/11C, the platform used for this work, the figure is
approximately ±0.02 of a degree).

There remains a problem, however. The motor encoders can measure relative

angles very accurately, but the depth measurement relies on an absolute angle
relative to a fixed zero position straight ahead of the robot. The kinematics of most
head platforms admit a natural reference frame in which this forward direction can
be defined unambiguously, with the elevation and pan axes defining the directions
of the x- and y-axes respectively. The forward direction, or z-axis, is normal to
both of these. We illustrate this in figure 2 for the common elevation configuration
which is shared by robots such as Yorick [8], TRC [9] and NIST [10] and Rochester
[11]. While typically these robots have a repeatable position of each axis such as
an endstop providing an absolute reference, the position of such may still require
calibration relative to the forward direction of the robot.

In this paper we address the above problem, describing a novel method by
which a four-axis binocular head platform can autonomously align its cameras so
that their optic axes are parallel to each other and to the forward direction of the
robot.

We motivate the method by describing a simple iterative technique which might
be used to align the cameras' optic axes: consider fixating a feature in a scene
with both cameras. Since it is fixated it will have zero disparity, and the optic
axes will be convergent. The disparity of other features can be measured and a
feature further away fixated, and so on. The limit of such an iteration is that the
cameras are fixating a feature an infinite distance away and have parallel optic axes.
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Figure 2: The natural coordinate frame for Yorick 8/11 and other common ele-
vation platforms: the elevation axis defines the x direction, the pan axis the y
direction and the forward direction, z, is normal to these.

Projective geometry provides a natural framework in which to describe geometric
entities at infinity, and the algorithm we describe in this paper uses techniques
from projective geometry in order to bypass the above iteration, constructing the
projection of a point at inifinity in each view.

The three-dimensional projective space V
3 can be considered as the union of

Euclidean space 1Z
3 with a set of ideal points which are the intersections of parallel

lines and planes. The set of all such points forms a plane known as the plane at
infinity, IIoo- This plane may be thought of as the set of all directions, since all
lines with the same particular direction intersect IIoo in the same unique point.
In particular the forward direction of the robot is a unique point on the plane at
infinity.

Our algorithm proceeds by using controlled rotations of the robot in order to
determine this unique point. It is based on a result in [7, 12] which showed that a
single rotation of an uncalibrated binocular head is sufficient to determine a line on
the plane at infinity.1. We show that in the special case of two rotations, one about
the pan axis, and one about the elevation axis, the two lines generated intersect
at the point at which the forward direction of the robot pierces IIoo, that is, at
the unique point required. Camera alignment is then achieved by simply finding
the projection of this point in either image and fixating it with each camera.

The paper is organised as follows. We begin in §2 with a summary of the key
result of [7, 12] which determines a line on the plane at infinity. We then show
that the intersection of lines on IIoo generated by panning and elevating is the
intersection of the head's z-axis with the plane at infinity, and that fixating this
point will result in camera alignment. An algorithm summary is given. In §3 we
present results and draw conclusions in §4.

1
A more complete characterization of invariant spaces under general motions, and linear

methods for computing these can be found in [13]
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Figure 3: The rotation axis a is unchanged by the action. The axis of the pencil
of planes perpendicular to the axis (a line at infinity) is also unchanged.

2 Theory and Implementation

We begin with some background, then summarize the key result of [7, 12] in §2.2.
Based on this construction, §2.3 provides an intuitive proof that we can determine
the forward direction in both cameras. We summarise all processing steps required
in §2.4.

2.1 Preliminaries

We follow the notation set out in [7, 12, 13]. Bold symbols denote vectors, and
typewriter font symbols denote matrices. Uppercase vectors represent 3D (world)
quantities and lowercase vectors represent image quantities. Points are described
by homogeneous coordinates and "=" is taken to mean equality up to a scale
factor.

Structure X is known up to a projectivity if X = HXg where X# is the
Euclidean structure of the scene, H is a non-singular 4 x 4 matrix which is the
same for all points but undetermined. It has been shown in [4, 14, 15, 6] that
projective structure is computable purely from image correspondences between a
pair of views and does not require knowledge of camera intrinsic parameters or
relative camera position.

Consider the effect of taking a stereo pair of a scene, computing its projective
structure X, then moving the head (without changing the relative positions or
intrinsic parameters of the cameras) and computing projective structure X' from
the new stereo pair. Corresponding 3D points X and X' are related by a projective
transformation X' = TX where T is a non-singular 4 x 4 matrix. Given sufficient
corresponding points between the pairs of views it is straightforward to compute
T. In the special case where the motion between the views is a pure rotation about
a fixed axis, the positions of points on this axis are invariant to the action. Fur-
thermore the pencil of planes perpendicular to the axis is also fixed (although not
the individual points which comprise the planes). Since these planes are parallel,
their common line of intersection (the axis of the pencil) is a line on the plane at
infinity which is invariant under the action. Figure 3 illustrates the idea.

The key result of [7, 12] is that these invariant spaces - the rotation axis and the
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line at infinity - may be computed directly from T using only linear computations.
We give a brief resume of the relevant theory below.

2.2 Computing a line on il^

For a rotation of the stereo head, the matrix T which relates the original and rotated
structure X' = TX, is not a general projective transformation but a conjugate of
a rotation of the form

T = G - ^ G = G-
1
 [ JV ° ] G (1)

where R is a 3 x 3 rotation matrix, 0 is a zero 3-vector, and G is an unknown non-
singular 4 x 4 matrix. Thus T and TE are related by a similarity transformation.

An eigendecomposition of any matrix of the form T^ yields two real eigenvec-
tors (which we denote E ^ 2}) which span the axis of rotation, and two complex
eigenvectors (E{34}) which are the circular points (at infinity) for any plane per-
pendicular to the rotation axis [16]. These points lie on, and hence define, the
invariant line at infinity.

Now since T and T^ are related by a similarity transformation they have the
same eigenvalues, and the eigenvectors of T (which we denote by V ^ 4j) are the
eigenvectors of TE transformed by G"1. Thus we can determine V{3 4} = G - 1E{3 4j
from T and hence recover a line on the plane at infinity which is the axis of the
pencil of fixed planes relative to the projective frame.2

2.3 Determining the forward direction

For the head kinematics as illustrated in the introduction, the elevation axis defines
a pencil of "vertical" planes parallel to the y-z plane. The axis of the pencil, a
line at infinity, can be computed as above and then fixating any point on the
axis of the pencil will result in the cameras' optic axes becoming perpendicular
to the elevation axis. Since the head kinematics already constrain the axes to be
coplanar, the axes will be parallel.

Similarly, the pan axis defines a pencil of "horizontal" planes parallel to the
x-z plane. Fixating any point on the axis of the pencil will result in the cameras'
optic axes becoming perpendicular to the pan axis.

Thus the intersection of the two lines at infinity is the point at which the pr-
axis pierces the plane at infinity. Although practical difficulties such as noise and
errors may determine that the intersection of the lines in space does not exist, the
intersection of the image projections of the lines will always exist, and fixating this
point in both views results in a head whose cameras' optic axes are aligned with
the head's z-axis as required.

2.4 Algorithm summary

1. Find point matches between a stereo pair, compute the fundamental matrix
F which defines the epipolar geometry between the views, the projection ma-

2 Similarly the transformed axis of rotation can be recovered — see [12, 13].



448

trices ?L and ?R (functions of F), and consequently the projective structure
of the scene, X (see [4] for details).

2. Rotate the elevation axis, find new matches and then compute T, which
relates the structure before and after the motion, as the matrix which min-
imizes the image distances between the projections of the 3D points X and
the matched points in the new views.

3. Find the eigen-decomposition of T and thus determine two points V{3 4} =
G~1E{3]4} on the plane at infinity. Project these points into left and right
views and find the lines 1/, and In which are the projections of the line at
infinity in the left and right views respectively:

h = P'LV3xP'LV4

4. Repeat the process for a panning motion to produce two more lines m^ and

5. Compute the intersection of the lines in the left and right views respectively
to give the projections of the point at infinity containing the z-axis:

XL = h x m i

x/j = lfl x mR

6. Drive these points to the centre of each view. One way of doing this is to
use approximate focal length to obtain an angular estimate of the vergence
and elevation demands required. If necessary (for example if the focal length
estimate is poor resulting in over or under estimates of the demands), fur-
ther refinement is possible using cross-correlation to servo on a small patch
surrounding the X{L,R}- If the points at infinity are initially outside the
cameras' fields of view then cross-correlation is not possible. However the
use of any reasonable focal length estimate (such as directly from the lens
specification) would enable approximate positioning of the cameras so that
a repetition of the procedure would yield points at infinity within the field
of view, enabling the use of correlation for the servo.

2.5 Implementation

The implementation is based on a mid-sized version of the Yorick [8] series of
binocular robotic heads. This has a baseline of approximately 30cm. Control is
performed using a Delta Tau PMAC multi-axis PID controller. The lenses are
wide-angle F1.4 6mm type mounted on 1/2" CCD array cameras, resulting in
a horizontal field of view of approximately 55 degrees. The wide angle results in
significant radial distortion which is automatically compensated during processing.

Computation takes place on a Sparc 2 workstation. Corners are detected us-
ing the algorithm of Harris [17]. These are matched using a layered algorithm
which uses strong unambiguous matches in a robust algorithm to determine the
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fundamental matrix and subsequently uses the epipolar geometry to find further
matches and refine previous matches and the epipolar geometry [4, 18]. Consid-
erable care has been taken to ensure that the processing is reliable, robust and
automatic. Each cycle - finding and matching corners, and determining a line on
fJoo - requires a few seconds.

3 Results

Figure 4 shows left and right views of the lab scene used in the experiments. The
top pair shows the scene as viewed at the end of processing to determine the
lines at infinity. Superimposed on the images are the positions of corners detected
(white for matched, black for unmatched). A single pan of four degrees was used
for the horizontal line at infinity and a single elevation of four degrees used for the
vertical line at infinity. The middle pair of images shows the projected lines at
infinity. The intersections of these lines are the location in the left and right views
of the forward direction. Note that a skew of the optic axes - they are not coplanar
- is apparent from the vertical disparity of approximately 10 pixels between the
two points. The bottom pair shows the images after the robot has performed the
aligning motion. The centre of each image is shown marked with a cross-hair.

The repeatability of the results was measured by performing the same experi-
ment multiple times. The cameras' initial positions were recorded and the image
of the point at infinity computed using rotations of the axes. The axes were then
reset to their original positions and the experiment repeated. Table 1 gives the
mean positions of the points and the variances over six trials. The maximum vari-
ance in this table of 5 pixels represents an angular uncertainty of approximately
half of a degree. Such an angular error in the vergence axes would result in an
uncertainty of between ten and fifteen percent of the range (i.e 2 to 3 cm at a
range of 20cm, and 20 to 30 cm at a range of 2m). Importantly, targets closer to
the robot have less absolute error associated with their ranges.

Before and after shots of the robot are given in figure 5.

4 Discussion

We have described a novel method by which a four-axis binocular head platform
can autonomously align its cameras so that their optic axes are parallel to each
other and to the forward direction of the robot.

The method uses controlled pans and elevations of the robot while viewing
an unstructured scene in order to determine lines on the plane at infinity, whose

X

cr

left x

176.9
3.3

lefty
72.3
4.4

right x
387.1

5.0

right y
81.4
4.4

Table 1: Image repeatability of the point at infinity over six trials
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Figure 4: Left and right stereo pairs of the lab scene showing, from top to bottom:
the final pair of images with corners superimposed (matched in white, unmatched
in black); the computed lines at infinity in left and right views; the images after
camera alignment with the image centres indicated by a cross-hair.
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Figure 5: Before (above) and after (below) images of Yorick from above, showing
the correct alignment of the vergence axes, and from the side, showing the correct
alignment of the elvation axis.

intersection is the forward direction of the robot. The alignment is completed by
fixating the projections of this point in both cameras.

Results from a fully automatic implementation of the algorithm demonstrate
that as it stands the method provides sufficient accuracy to be able to achieve
useful navigation tasks; that is an accuracy of ±1 degree on each axis. The current
implementation does not include correlation based servoing to improve the camera
alignment but this will be implemented in the near future. The lines at infinity were
computed on the basis of a single motion each. Further views may be incorporated
in a principled way [7] and we expect this to result in an improvement of the
accuracy of the computed lines.
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