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Abstract

We present an analysis of a Smith-Purcell system in which a thin current sheet
of electrons moves above a grating surface in the direction perpendicular to the
grating grooves. We develop a complete theory for evolution of the electromagnetic
field and electron distribution in the exponential growth regime starting from the
initial electron noise and the incoming amplitude. The dispersion relation for the
complex growth rate for this system is a quadratic equation.
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1 Introduction

Beginning with the
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work by Smith and Purcell [1], the radiation generated by
an electron beam passing over a grating surface has been studied for decades
[2-4]. Recently there has been a renewed interest in the Smith-Purcell sys-
tem with the observation of possible exponential gain in an experiment using
electron microscope beams [5,6].

In this paper, we study the Smith-Purcell system in the exponential gain
regime including self-amplified spontaneous emission (SASE). We study a sim-
plified system where the electrons are line charges oriented paraIlel to the di-
rection grooves and move perpendicular to the grating grooves. The electron
beam is furthermore assumed to be confined to a thin sheet. The configuration
is translationally invariant in the direction of the grooves, and is schematically
illustrated in Fig. 1.
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The radiation field is expanded in terms of the plane wave modes discussed
by van den Berg [2]. The fundamental evanescent mode is synchronous with
the electron beam and induces electron bunching through the longitudinal
electric field. To take into account the interaction, the mode amplitudes are
assumed to be slowly varying in the direction “perpendicular” to the wave
direction. Using the boundary conditions across the electron beam and on
the grating surface, the outgoing mode amplitudes are completely determined
from the incoming mode amplitudes and the electron current. The evolution
of the electromagnetic field and the electron distribution can be described by
the coupled Maxwell-Klimontovich equations, as in the analysis of the usual
free-electron laser (FEL) system [7]. The growth rate for this system satisfies
a dispersion relation that turns out to be quadratic, rather than cubic as in
the usual FEL process.

We obtain a formula for the growth rate that differs from that derived pre-
viously {3]. The discrepancy appears to be due to an unnecessary additional
assumption employed in reference [3]. Our formula gives rise to a gain length
comparable to the length of the grating for the experiment reported in refer-
ence [5].

2 Smith-Purcell FEL Equation

2.1 Current

Figure 1 shows the Smith-Purcell system studied in this paper. The surface of
the metallic grating consists of a perfect conductor whose grooves are parallel
and uniform in the y direction. Electrons move parallel to the z axis in a thin
sheet along the grating surface. The current density is therefore

where vi is the velocity of the ith electron, q is electron charge, LAyis the
length in the y direction, ti(z) = ti(0) + f(l/vi)dz is the time when the zth
electron passes through Z, and z is the unit vector in the z direction. The
Fourier transform of the current density is given by

The z-dependent part of the phase in Eq. (2) has the average value

(2)

(3)
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where a. = k/,3’o, Do= vo/c is the normalized average velocity, k = w/c is the
wave number, and c is the speed of light. We then write Eq. (2) as

Jz(~,~;~) = 6(x)K(.Z,w)e2a0’, (4)

where
K(,z, w) = L Xeiw(t’(z)-z/vo)Ay

(5)

Since the overall phase factor ezao’ is taken out, we expect that K(.z, w) is a
slowly varying function of .2.

R’EC!:: }! ~~:

2.2 Maxwell Equations O(H’062800

Q.s1- j
The electric and magnetic fields in the frequency domain are defined as

From the Maxwell equation it follows that the magnetic field H is in the g di-
rection for the present system [2] and that Hv satisfies the following Helmholtz
equation:

(32 82
(— —8X2 + ~z2

+ k2)Hv(x, .z;u) = :Jz(x, z?;W).

The electric field is then determined by the Faraday equation:

la
E.(z, Z;LJ) =- —Hv(fc, z; L4J),

2LSOW 6’.2

E,(X, .2; ~) =*

[ 1
JZ(Z, z; u) – &(z, Z;W) ,

(6)

(7)

(8)

where co is the vacuum dielectric constant.

2.3 Modes

Van den Berg has studied modes for the magnetic field Hy in the absence of
the interaction between the current and the field [2]. The plane wave solution
of the Helmholtz equation is of the form [2]

ei(chz+?w) > (9)

where
p. . J=

n“ (lo)
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For the problem we are considering here, we may take

an=ao–nG (G=27T/Ag), (11)

where Q. is given in Eq. (3), &- is the period of the grating grooves, and n is
an arbitrary integer.

When p. is real, Eq. (9) represents propagating waves. In this case we will
assume pn to be positive. Therefore, the upper (lower) sign in Eq. (9) corre-
sponds to an outgoing (incoming) wave to (from) x = cm. However, pn may
be imaginary. In that case, we introduce the real quantity

Pn=ir.,

r. =I+Y:–W >0. (12)

The corresponding waves are
ei~nZzrn~ (13)

Here the upper (lower) sign corresponds to an evanescent wave “propagating”
to (from) x = m. In particular, the fundamental mode n = O is evanescent:

k
ro=—

/$0’70‘
(14)

where -yO= 1/ ~1 —vi/c*. Higher-order modes with n < 0 are also evanescent.
The mode n >0 may or may not be propagating. We assume that the n = 1
mode is propagating.

The evanescent n = O mode is strongly coupled to the current. Modes with
n # O are either present as the incoming mode or generated at the grating
surface. For simplicity, we consider the modes n = Oand n = 1 only. Including
other modes will be straightforward once the principle is understood.

In region (I) the magnetic field can be written as

~(z) = AJ1e~@3z-rO~ + A;e~(W_Pl~) + A~e~(cM~+Pld.
Y

(15)>

The first term is an evanescent mode generated either directly from the elec-
tron beam or at the grating surface, the second term is an incoming mode
from an external source, and the third term is a radiating mode generated at
the grating surface.

In region (II) the magnetic field is

The first term in Eq. (16) is an evanescent mode generated directly from the
electron beam, the second term is an evanescent mode generated at the grating
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surface, the third term is an incoming radiating field from an external source,
and the fourth term is a radiating mode generated at the grating surface.

2.4 Slowly Varying Amplitude Approximation

Taking into account the interaction with the current, the amplitudes At, ex-
cept A;, cannot be regarded as constants. The incoming wave A: is given by
an externaI source and may be regarded as a constant. For other waves, we
expect that the amplitudes are slowly varying functions of x and z. In order
for the quantity A: (x, .z)ei(a’+~’) to satisfy the Helmholtz equation to the first
order derivatives of Ax, we must require

( a ):xA.(z, z) = O.Q*— &pn —
0.2

(17)

Therefore, the mode amplitude A; is a function of a particular combination
of z and x:

A;(z, z) = A;(z + %z). (18)

2.5 Boundary Conditions

By using the boundary conditions at the grating surface and at the current
sheet, the amplitudes of the outgoing modes can be completely determined in
terms of incoming wave amplitude and surface current K. First, the discon-
tinuity in Hy between regions (I) and (11) at x = O is given by the surface
current K:

A~l(z) – {A;(z)+ A~ll(z)} = ~(Z). (19)

Note that only the n = O modes couple to the current since the phase velocity
of these modes are the same as the average electron velocity.

Second, 13zmust be continuous across the regions (I) and (11). Using

(20)

we then have



Inserting Eq. (19) into (21) yields

q) a
z——{K(z) + 2A~(.z)} = 170{K(z) + 2A~(z)},
r. 8Z

(22)

whose solution is

A;(.z) = –;~(z), (23)

because A; =Owhen A”=O.

The third and final boundary condition is at the grating surface x = –b, where
the incident fields are linearly related to the reflected fields:

where e~. (w) is a reflection matrix of the grating. The elements of the matrix
depend on the particular geometry of the grating. We have demonstrated
the calculation of elo on a simple shallow grating case in Appendix A. More
accurate calculation of these coefficients usually requires a significant amount
of numerical calculation [8], and is not treated here.

Equation (24) becomes, in our problem,

A~ll(z – i~ob/I’o)er06 =eooA; (z + i~ob/I’o)e-rO~ + eOIA; (25)

Af(z + alb/pl) =eloA; (z + i~ob/I’o)ef-rO+ ipllb + ellA; . (26)

Inserting Eq. (25) into Eq. (19) yields

A~’(z) – {A;(z) + eOOA; (z + 2i~ob/I’o)e-2r0b + eOIA;e-rOb} = K(z). (27)

Invoking the slowly varying approximation,

(28)

A; (z + 2iaOb/I’o) in Eq. (27) can be approximated to A;(z). In this case, A~l
can be written as

–2r”b
Ajj(z) = :~(Z) – ‘ooep K(z) + eolA~e-rOb.

.
(29)

In Eq. (29), the first term corresponds to the direct field of electrons, the
second term to the n = O reflected mode of the grating, and the last term to
the external field reflected by the grating.

The n = 1 mode can be determined from Eqs. (23) and (26):

Af(z) = –~K(z)eI-rO~ipm)b + ellA; e2ip’b. (30)
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Equations (29) and (30) determine the outgoing fields A~l and AT in terms
of the input field A; and the surface current K.

2.6 Electron Motion

The electron motion is affected by the longitudinal electric field at the bound-
ary between two regions (Z = O) that can be obtained from Eq. (20):

{
E.(LJ)= & roA;l(z) –

ho 8 +

}
——AoI (.Z) (?a”’
r. aZ

(31)

The second term in Eq. [31) can be ignored invoking the slowly varying ap-
proximation. From Eqs. (29) and (31), the longitudinal electric field of the
n = () mode at x = () is obtained, in the time domain, as follows:

~o.(o, ~; ~) (32)
11=—

/[ 1
dw *K(2) – ~e-2r0bK(z) + eolA;e-rOb e-iw(t-zlv”).

27ficoc”~o~o

The term (1/2)K(z) in the square brackets of Eq. (32) gives rise to a term
in the longitudinal electric field that is proportional to xi d(t– -tZ(.z)).This is
the contribution from the self-field and should be removed in computing the
force acting on the electrons.

As in conventional FEL equations of motion, we can define the electron phase
and construct a set of electron equations of motion. The electron phase in this
system is defined as

t – .z/vo = ~, (33)

whose derivative is

: = (l/v- l/vo) = -&, (34)

where q = (-y– yo)/A/o , and ~. = vo/co.

.kfter removing the self-field contribution from Eq. (32), the equation describ-
ing electron’s energy change is

2dv qi
J!

d-d eooe
–2rob~i-(z)– 2e01.~~e“(em’c -& = 1

–rob e–iw(

47r60c5071)
(35)

Ecluations (.5).(34), and (35) form a complete set of Smith-Purcell FEL equa-
tions. The energy is conserved between the field and the electron bunch in this
system. as shown explicitly in Appendix B.
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3 FEL Evolution

3.1 Distribution Function

We write the Klimontovich distribution function of electrons in phase space

where dIVe/ClZis the line density. This distribution satisfies the continuity
equation in phase space:

(37)

where dot represents the total derivative with respect to z. The distribution
function can be separated into the smooth background ~ and the perturbation

f:
f(7’) ’$;~) = f(n) + f(7/’, (; 2). (38)

We have assumed that the smooth background depends only on the electron
energy q. Note that Eq. (36) implies a normalization such that j ~(q)dq = 1.

Using Eq. (34) and Eq. (35), Eq. (37) becomes, after linearization,

(39)

where ~W= f feiU~d&,dl = qeOOe–2r0b/2cOPOy~mc3, and dz = qeole –rob/eo/30&nc3,

Here the energy change of electrons is regarded as a first-order quantity. Equa-
tion (39) can be solved using the Laplace transformation:

Equation (39) is then changed into the algebraic equation
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Integrating over q yields,

KP

Hence, the solution is the inverse Laplace transform of the above equation:

quo dN.

!

dp efiz
K(z, u) = Ag dz—— ——

2ni D(p)

where we have defined the dispersion function D(p) as

iqdlvo dNe
D(p) = 1+ —— J 8f/aq~yd.z

dq .
P+*

(46)

The first term on the right-hand side of Eq. (45) contains a sum of stochastic
phase factors and describes the process of self-amplified spontaneous emission,
while the second term describes the amplification of the coherent input signal
A;.

3.2 Dispersion Relation and Exponential Gain

The contour integral in Eq. (45) contains all singularities in the complex p
plane. In addition to poles of kinematic origin, the singularities as the solution
of the dispersion relation

D(p) = o (47)
determine the dynamics of the system [7]. For rectangular distribution,

{

m = $ if Iql < Aq/2
>

otherwise
(48)

the dispersion relation is reduced to a second-order equation

For vanishing energy spread (Aq = O), there is a mode growing exponentially
with the growth rate

(50)
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where 1A = 47rcomc3/e = 17 kA is the iAlfv6n current. For a large energy
spread

Aq > Aqmaz =
m ’51)

the two solutions of the dispersion relation are both purely imaginary corre-
sponding to an oscillatory amplitude.

For a growing mode, the behavior of the outgoing
x,z-+cc are

A$ (Z, @ ~ e@+~Qo~/ro)

AT(x, z) w e~(Z-alZ/pll.

amplitudes AJ and A: for

(52)

(53)

4 Discussion

The dispersion relation in Eq. (49) is notable since it is a quadratic equation
in p in contrast to the cubic equation in the usual FELs employing magnetic
undulatory [7]. This is probably due to the assumed translational invariance
in the y direction. .+ different dispersion relation, which is cubic in p, was
derived in reference [3]. However they used an additional requirement that
the reflection coefficient eoo be singular “to support the synchronous wave.”

We find that the requirement is neither meaningful nor necessary. The correct
dispersion relation is that given by Eq. (49).

An experiment on the Smith-Purcell system was recently carried out at Dart-
mouth college [5]. The parameters of this experiment are: 1 ~ IT-I-LA,f?. x 0.35,
A N 300pm. The electron beam was cylindrical with diameter a % 20pnz. Tak-
ing Ay x a and setting eooe‘2rObx 1, we obtain the gain length p–l ~ 8.6mm.
Thus the gain in the experiment is marginal since the grating length is 13mm.

We have analyzed an idealized Smith-Purcell system in the exponential gain
regime. The theory is based on the plane wave analysis of the system in two-
dimensional geometry. Dispersion relation for the growth rate was derived from
the coupled hlaxwell-Klimontovich equation. The dispersion relation in this
case is shown to be a quadratic equation, in contrast to the cubic dispersion
relation of undulator FELs.
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Appendix A: Reflection

The boundary condition at
ducting material is

Coefficients for Shallow Grating

the surface of the grating made of perfectly con-

?L-vH’g=o, (Al)

where ii is the unit vector normal to the grating surface. When the grating is
shallow, the grating surface can be treated to first approximation as a plane
mirror. Therefore e~~ N 1 for all m. Let us illustrate the calculation of elo.
In the absence of the external radiating source, the primary mode is a simple
reflection of the incident field from the electron beam (eoo = 1)

~g = A; [eiaoz+r”z + ei~oz-ro(2~+’) + HT]E w
n#O

(A.2)

.4pplying the boundary condition at the surface x = –b + X9 sin(G,z), one
obtains

–2 (l’~Xg(ezG’– e “G”) + aoGX,(eiGz + e-iGz))Boe-rObeiaOz (A.3)

+?L. V~H;y=O,
n#O

where X~ is the amplitude of the grating. Hence, to the first order, there are
two modes excited besides primary modes, i.e., n = 1 and n = –1. In the case
when Q1 = ~. – G is smaller than k, the n = 1 mode is the only radiating
mode to the first order. From Eq. (B.4), together with Eqs. (16) and (26), we
can derive that elo = ~ (1’~ – aoG)X9.

Appendix B: Energy Conservation

The energy conservation law can be expressed as Poynting’s theorem

/[ 1
~+V3+J.E dt=o. (B.4)

Because our system is localized in time, the field energy term vanishes as the
integration limit is extended to infinity. Changing to the frequency domain,

where S(w) = E(w) x H*(u),
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The energy equation for an electron is

(B.6)

Summing up all the electrons yields from Eq. (5),

Here K is the surface current that gives rise to a discontinuity in IfV between
regions (I) and (11). Therefore, Eq. (B.7) becomes

Ay
–/ (dw H$lJ* – H/])* )E&J).
2T

(B.8)

From the definition of the Poynting vector, we can see that the integrand in
the above equation is nothing more than the difference of the x components
of two Poynting vectors:

(B.9)

Consider a volume of infinitely thin slabs at the boundary between regions
(I) and (II), which is extended Ay in the y direction. Only the z component
of the Poynting vector will contribute to the surface integration of the given
volume, because there is no finite area whose normal vector is in the direction
of z. Thus, using the divergence theorem, the above integral becomes

Therefore, conservation of energy between the field and the electron bunch is
shown as

{ 2TldvJdwvs]=o.& X %mc2 + .-L (B.11)
i
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Fig. 1 Wave interaction in a Smith-Purcell system.

The system is translationally invariant in the y direction (perpendicular to
the page). The wave lines, the dotted lines, and the solid line at x = O are
respectively the n = 1 mode, the synchronous evanescent mode, and the elec-
tron beam. The electron beam is infinitely thin in the z direction. The grating
surface is at z = –b.
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