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Abstract
Vaccinology is shifting toward synthetic RNA platforms which allow for rapid, scalable, and cell-free manufacturing of
prophylactic and therapeutic vaccines. The simple development pipeline is based on in vitro transcription of antigen-
encoding sequences or immunotherapies as synthetic RNA transcripts, which are then formulated for delivery. This approach
may enable a quicker response to emerging disease outbreaks, as is evident from the swift pursuit of RNA vaccine
candidates for the global SARS-CoV-2 pandemic. Both conventional and self-amplifying RNAs have shown protective
immunization in preclinical studies against multiple infectious diseases including influenza, RSV, Rabies, Ebola, and HIV-1.
Self-amplifying RNAs have shown enhanced antigen expression at lower doses compared to conventional mRNA,
suggesting this technology may improve immunization. This review will explore how self-amplifying RNAs are emerging as
important vaccine candidates for infectious diseases, the advantages of synthetic manufacturing approaches, and their
potential for preventing and treating chronic infections.

Introduction

Since the 18th century vaccines have been developed to
prevent and eliminate the spread of infectious diseases [1].
They form the foundation of global public health programs
and have major socioeconomic benefits [2]. Prophylactic
immunization offers pre-exposure protection and supports
development of herd immunity. Therapeutic vaccination, a
form of immunomodulation, assists in the treatment of
infectious diseases and cancers. The longstanding clinical
value of currently licensed vaccines continues to encourage
further research on novel vaccination approaches. These are
aimed at improving prophylactic and therapeutic efficacy,
developing new technologies, streamlining manufacturing
processes, and enabling a rapid response to emerging
infectious diseases. Nucleic acid vaccines represent one
such approach where synthetic sequences are used to
express antigenic peptides or proteins in situ [3]. Genetic
immunization may promote superior adaptive immunity by
activating both humoral and cell-mediated responses, and

has manufacturing advantages over traditional vaccines.
Initial studies focused heavily on developing DNA rather
than RNA candidates [4], because there were concerns
about stability and large-scale production of RNA-based
therapeutics. However DNA vaccines have generally per-
formed poorly in human clinical trials [5], which has led to
a renewed interest in RNA vaccinology for infectious dis-
eases. To some extent this shift has been attributed to suc-
cesses of cancer immunotherapy research. The transient
nature and cytosolic location of RNA improves the safety
profile of these nucleic acid vaccines. This is in contrast to
their more stable DNA counterparts, which require nuclear
delivery, promoter-driven expression, and risk integration
within the host genome. These properties have led to major
investments in RNA-based therapeutics over the past few
years [6].

There are currently two different types of synthetic RNA
vaccines: conventional mRNA and self-amplifying RNA
(saRNA) (Fig. 1). Use of conventional mRNA strategies
(also referred to as nonreplicating or non-amplifying
mRNA) against infectious diseases and cancers has been
investigated in several preclinical and clinical trials [7]. In
vitro transcribed mRNAs encoding viral antigens have been
explored as vaccines, while those encoding therapeutic
proteins, such as antibodies or immune modulators, have
been considered for immunotherapy. The incorporation of
chemically modified nucleotides, sequence optimization,
and different purification strategies improve efficiency of
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mRNA translation and reduce intrinsic immunogenic
properties [7]. However, antigen expression is proportional
to the number of conventional mRNA transcripts success-
fully delivered during vaccination. Achieving adequate
expression for protection or immunomodulation may thus
require large doses or repeat administrations. saRNA vac-
cines, which are genetically engineered replicons derived
from self-replicating single-stranded RNA viruses [8, 9],
address this limitation. They can be delivered as viral
replicon particles (VRPs) with the saRNA packaged into the
viral particle, or as a completely synthetic saRNA produced
after in vitro transcription. To generate replication-defective
VRPs, envelope proteins are provided in trans as defective
helper constructs during production. Resulting VRPs
therefore lack the ability to form infectious viral particles
following a first infection, and only the RNA is capable of
further amplification. VRPs may be derived from both
positive-sense and negative-sense RNA viruses, however
the latter are more complex and require reverse genetics to
rescue the VRPs [10]. As with gene therapy, there are
several issues associated with the use of viral vectors for
vaccine development. These include immunogenicity of the

vector itself, which can elicit an undesirable immune
response and prevent subsequent booster administrations
using the same vector [11]. Preexisting immunity to the
viral vector can also render a vaccine ineffective. As with
live-attenuated vaccines, replication-competent alphavirus
vectors also pose the threat of viral reactivation [9]. To
circumvent this, saRNA vaccines can be produced and
delivered in a similar manner to conventional mRNA vac-
cines. Positive-sense alphavirus genomes that have been
commonly used for saRNA vaccine design include the
Venezuelan equine encephalitis virus (VEE), Sindbis virus
(SINV), and Semliki forest virus (SFV) (Table 1). The
alphavirus replicase genes encode an RNA-dependent RNA
polymerase (RdRP) complex which amplifies synthetic
transcripts in situ. The antigenic or therapeutic sequence is
expressed at high levels as a separate entity and further
proteolytic processing of the immunogen is not required. As
a result of their self-replicative activity, saRNAs can be
delivered at lower concentrations than conventional mRNA
vaccines to achieve comparable antigen expression [12].
This review will explore the recent preclinical progress of
prophylactic and therapeutic saRNA vaccine candidates,

Fig. 1 Conventional, self-amplifying, and trans-amplifying RNA
vaccine designs. A 5′ cap (m7G) and poly A tail are common to all
RNA transcripts. A Conventional mRNAs encode the vaccine
immunogen and flanking 5′ and 3′ UTRs. An antigen or immu-
notherapy is translated from the nonreplicating transcript. B Self-
amplifying RNA encodes 5′ and 3′ CSE sequences, the nsP1-4 genes,
a subgenomic promoter, and the vaccine immunogen. Following
in situ translation, the nsP1-4 proteins form an RdRP complex which
recognizes flanking CSE sequences and amplifies vaccine-encoding
transcripts. This results in an accumulation of the antigen or immu-
notherapy within the cell. C Trans-amplifying mRNAs use two

different transcripts to achieve a similar effect to self-amplifying
RNAs. A conventional mRNA encoding the nsP1-4 genes flanked by
5′ and 3′ UTRs is co-delivered with a separate transcript that encodes
the viral CSE sequences, the subgenomic promoter, and the vaccine
immunogen. In situ translation of the conventional mRNA results in
the formation of the RdRP complex, which subsequently amplifies the
vaccine-encoding transcript to result in the accumulation of the antigen
or immunotherapy. UTR untranslated region, CSE conserved sequence
elements, nsP1–4 nonstructural proteins 1–4, RdRP RNA-dependent
RNA polymerase.
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Table 1 Clinical and preclinical synthetic saRNA vaccine studies for infectious diseases.

Infectious disease Replicon Immunogen Delivery Animal Year (reference)

Clinical studies

Rabies – Glycoprotein G CNE Human 2019 (NCT04062669)

COVID-19 VEE Spike protein LNP Human 2020 (ISRCTN17072692)

Preclinical studies

RSV SFV F glycoprotein Naked Miceb 2001 [80]

VEE–SINV F glycoprotein LNP Mice, ratsb 2012 [81]

VEE–SINV F glycoprotein CNE Mice 2014 [68]

Influenza SFV NP Naked Mice 1994 [79]

SFV HA Naked Miceb 2001 [80]

VEE–SINV HA LNP Mice 2013 [14]

CSFV HA/NP Chitosan NGA Mice, rabbit 2014 [71]

VEE–SINV HA CNE Miceb, ferretb 2015 [125]

VEE–SINV NP LNP Mice 2015 [126]

VEE–SINV M1/NP LNP Miceb 2016 [85]

VEE HA MDNP Miceb 2016 [127]

CSFV HA/NP CPP PEI Pigs 2017 [128]

CSFV NP Cationic lipid Mice 2018 [129]

– HA PEI Miceb 2018 [12]

VEE HA Neutral LPP Mice 2019 [55]

– HA MLNP Mice 2019 [54]

Trans-amplifying HA Naked Miceb 2020 [62]

VEE HA pABOL Miceb 2020 [50]

Coronavirus VEE Spike protein LNP Mice 2020 [86]

LIV SFV prM-E Naked Miceb 2001 [80]

TBEV TBEV Δ TBEV capsid Gene gun Miceb 2004 [130]

TBEV Δ TBEV capsid Gene gun Miceb 2005 [131]

HIV VEE–SINV Env LNP Mice 2012 [81]

VEE–SINV Env Electroporation Mice 2013 [132]

VEE–SINV Env CNE Rabbit 2014 [68]

VEE–SINV Env CNE NHP 2015 [121]

SFV Gag/Pol mosaic PEI Mice 2019 [123]

VEE eOD-GT8 LNP Mice 2019 [120]

VEE Env Exterior LNP Mice 2019 [58]

CMV VEE–SINV gB/pp65-IE1 CNE NHP 2014 [68]

Ebola VEE Glycoprotein MDNP Miceb 2016 [127]

Toxoplasma gondii VEE Multimera MDNP Miceb 2016 [127]

SFV NTPase-II LNP Miceb 2017 [133]

GAS VEE–SINV SLOdm CNE Miceb 2017 [134]

GBS VEE–SINV BP-2a CNE Miceb 2017 [134]

Zika VEE prM-E MDNP Mice 2017 [91]

VEE prM-E NLC Miceb, guinea pigs 2018 [90]

VEE prM-E Naked Miceb 2019 [89]

VEE VEE Attenuated VEE CNE Miceb 2019 [88]

Rabies VEE–SINV Glycoprotein G CNE Rats 2020 [92]

VEE–SINV Glycoprotein G Liposome, nanoparticle, CNE Mice 2020 [59]

BP-2a GBS pilus 2a backbone protein, CMV cytomegalovirus, CSFV classical swine fever virus, CNE cationic nanoemulsion, Env envelope, GAS
group A streptococci, GBS group B streptococci, gB glycoprotein B, HA haemagglutinin, HIV human immunodeficiency virus, LIV louping ill
virus, LNP lipid nanoparticle, LPP lipopolyplexes, M1 matrix protein 1, MLNP manosylated LNP, MDNP modified dendrimer nanoparticle, NGA
nanogel alginate, NHP nonhuman primate, NLC nanostructured lipid carrier, NP nucleoprotein, pABOL poly(CBA-co-4-amino-1-butanol
(ABOL)), PEI polyethylenimine, Pol polymerase, prM-E premembrane and envelope glycoproteins, RSV respiratory syncytial virus, SFV Semliki
forest virus, SINV Sindbis virus, SLOdm double-mutated GAS Streptolysin-O, TBEV tick-borne encephalitis virus, VEE Venezuelan equine
encephalitis virus, VEE–SINV alphavirus chimera based on the VEE and SINV replicons.
aMultimer comprised of granule protein 6 (GRA6), rhoptry protein 2A (ROP2A), rhoptry protein 18 (ROP18), surface antigen 1 (SAG1), surface
antigen 2A (SAG2A), and apical membrane antigen 1 (AMA1).
bVaccination conferred protection.
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particularly for chronic infectious diseases such as the
human immunodeficiency virus 1 (HIV-1), and emphasize
their potential for innovative vaccine development.

Producing RNA vaccines

The need for rapid vaccine development in response to
emerging pathogens has become devastatingly clear during
the SARS-CoV-2 pandemic. A major caveat of live-atte-
nuated, inactivated, toxin, or subunit vaccine manufacturing
is the requirement for intricate cell culture technologies.
These need dedicated facilities to produce individual vac-
cines as well as lengthy safety assessments to exclude risks
posed by biological contaminants. In comparison RNA
vaccine production is simple, can be easily adapted to
accommodate new candidates within an established manu-
facturing pipeline, and is cost effective [13]. The in vitro
transcription reaction used to produce both conventional
mRNA and saRNA vaccines is cell-free and Good Manu-
facturing Practice-compliant reagents are available, facil-
itating quick turnaround times. This has been illustrated by
Hekele et al. who produced a lipid nanoparticle (LNP)
formulated saRNA vaccine for H7N9 influenza in 8 days
[14]. Prompt RNA therapeutic manufacturing capabilities
have more recently been revealed amidst the COVID-19
pandemic. The first SARS-CoV-2 vaccine to enter phase 1
clinical trials is the LNP-encapsulated mRNA-1273 devel-
oped by Moderna and the Vaccine Research Center at the
National Institute of Health (ClinicalTrials.gov—
NCT04283461) [15, 16]. Impressively it took only 25 days
to manufacture the first clinical batch which commenced
testing on the 16th of March 2020. With LNP mRNA-1273
receiving fast-track designation to phase 3 (NCT04470427),
the efficiency of the vaccine as well as the capacity of the
manufacturing pipeline will be tested.

Conventional and synthetic saRNA vaccines are essen-
tially produced in the same manner [13, 17, 18]. Briefly, an
mRNA expression plasmid (pDNA) encoding a DNA-
dependent RNA polymerase promoter (typically derived
from the T7, T3, or SP6 bacteriophages) and the RNA
vaccine candidate is designed as a template for in vitro
transcription. The flexibility of gene synthesis platforms is a
key advantage. For conventional mRNA vaccines the anti-
genic or immunomodulatory sequence is flanked by 5′ and
3′ untranslated regions (UTRs). A poly(A) tail can either be
incorporated from the 3′ end of the pDNA template, or
added enzymatically after in vitro transcription [19]. saRNA
vaccine pDNA templates contain additional alphavirus
replicon genes and conserved sequence elements (Fig. 1).
The nonstructural proteins 1, 2, 3, and 4 (nsP1-4) are
essential for replicon activity as they form the RdRP com-
plex [20]. In vitro transcription is performed on the linear
pDNA template, typically with a T7 DNA-dependent RNA

polymerase, resulting in multiple copies of the RNA tran-
script. After the RNA is capped at the 5′ end and purified, it
is ready for formulation and delivery.

Refining saRNA pharmacokinetics

Substantial effort has gone into understanding and
improving RNA production, stability, translation, and
pharmacokinetics. Revising the 5′ cap structure, controlling
the length of the poly(A) tail, including modified nucleo-
tides, codon or sequence optimization, as well as altering
the 5′ and 3′ UTRs are just some of the factors under
consideration (recently reviewed in [21]). Balancing the
intrinsic and extrinsic immunogenic properties of the syn-
thetic RNA, the vaccine antigen, and delivery formulation
are equally important for longer saRNA transcripts. As the
field of synthetic RNA vaccinology is still relatively new it
is difficult to decipher which technologies are indis-
pensable. Some studies show that incorporating various
pseudouridine-modified nucleotides during transcription
enhanced translation and reduced RNA-associated immu-
nogenicity [22, 23], whilst others show no discernible
advantage of such modifications [24, 25]. As saRNAs use
host-cell factors for mRNA replication, the addition of
modified nucleotides may prove less valuable as they would
be lost during amplification [26]. One practical approach to
improving translation of saRNA vaccines is through opti-
mization of 5′ and 3′ UTRs which is based on the evolution
of naturally occurring alphaviruses [27]. The single-
stranded RNA genome forms a variety of secondary struc-
tures to allow alphaviruses to bypass requirements of nor-
mal host-cell translation processes [28, 29] and evade
immune responses [30–32]. Revising the sequence encod-
ing the nsP1-4 replicon genes may also prove beneficial. An
in vitro evolution strategy using interferon- (IFN-) compe-
tent cells was adopted by Li et al. to identify mutations
within the VEE nonstructural proteins that improve in situ
expression of the subgenomic RNA [33].

Five-prime Caps

A well-researched approach to protecting in vitro tran-
scribed RNAs from nuclease digestion and augmenting
translation is modification of the synthetic 5′ cap structure.
The anti-reverse cap analog [34] and recent phosphor-
othioate derivatives [35] have been shown to improve
in situ translation of RNAs by only capping transcripts in
the forward orientation. Post-transcription capping enzymes
derived from the vaccinia virus [36, 37] have high capping
efficiencies, and when combined with 2′-O-methyl-
transferases, generate Cap 1 structures that mimic natural
eukaryotic mRNAs [38]. To further improve co-
transcriptional capping, TriLink BioTechnologies has
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recently developed the CleanCapTM system [39]. This
technology can achieve Cap 1, Cap 2, and Cap 1 epitran-
scriptomic derivatives such as m6Am, which may further
enhance RNA stability by evading de-capping metalloen-
zymes encoded by DCP2 [40, 41]. Interestingly the
CleanCap Reagent AU has specifically been designed to
generate Cap 1 structures on saRNA transcripts derived
from positive-sense alphaviruses. Cap analogs play an
important role in evading cellsʼ innate immune response as
uncapped and Cap 0 RNAs may stimulate IFN responses.
However, certain alphaviruses bypass the necessity for 2′-
O-methylated caps [30], suggesting that careful design of
the 5′ UTRs of may negate Cap 0 immunity.

Synthetic RNA immunogenicity

Stimulation of the innate immune system by in vitro tran-
scribed saRNA vaccines is a complex topic which still
requires empirical study. Immunization should ideally elicit
an antigen-specific immune response, however it is cur-
rently unclear whether peripheral innate immune activation
from in vitro transcribed RNAs enhances or compromises
this response. Improving the in vitro transcription reaction
[42, 43] and liquid chromatography purification [44] may
reduce unintended immune stimulation by spurious by-
products, including double-stranded RNAs (dsRNAs). For
saRNA vaccines, the immunogenic benefits of purification
may be less significant than for conventional mRNAs.
Although purification may remove nonspecific dsRNAs, the
formation of new dsRNA intermediates is inevitable during
self-amplification. The co-delivery of immune modulating
transcripts, particularly pattern recognition receptors (PRRs)
antagonists, may help mitigate these effects. Conventional
mRNAs encoding the E3, K3, and B18/B18R vaccinia virus
immune evasion proteins, or the influenza A virus non-
structural protein 1 (NS1) have shown potential in this
regard [45–47]. Beissert et al. augmented saRNA reporter
gene expression in vitro and in vivo by combining con-
ventional mRNAs encoding E3, K3, and B18, to reduce
protein kinase R and IFN signaling in a synergistic manner
[45].

Delivering large saRNA transcripts

Choice of delivery formulations, the inoculation site, and
adjuvants are additional immunological considerations [7].
Nonviral formulations including cationic lipids, LNPs,
polymers, and protamine sulfate, as well as physical
methods such as electroporation may be used to deliver
RNA therapeutics and vaccines [48, 49]. The inclusion of
the nsP1-4 replicon sequence in saRNAs makes them much
longer than their conventional counterparts which is
important for formulation. Over the past year several new

approaches aimed at improving the delivery of saRNAs
have been described. Novel bioreducible polymer for-
mulations using high molecular weight poly(CBA-co-4-
amino-1-butanol) (pABOL) [50], ornithine dendrimers [51],
mannosylated polyethyleneimine [52], or multiple linear
peptides [53], may help facilitate intracellular trafficking
and endosomal release. Blakney et al. demonstrated the
preclinical efficacy of their 8 kDa pABOL polymer for-
mulation to deliver haemagglutinin- (HA-) encoding saR-
NAs in mice [50]. Modifications to LNP formulations have
also been described, where incorporating a mannose-
cholesterol amine conjugate into LNPs improved intra-
dermal (ID) immunization [54]. Manosylation of poly-
ethyleneimine improved delivery of saRNA reporter
constructs to human skin explants [52]. Intramuscular (IM)
delivery of saRNAs as neutral lipopolyplexes (LPPs)
resulted in an increase in antigen-specific T cells with a
concurrent loss of antigen-expressing cells [55]. These
LPPs were generated by creating core RNA/poly-
ethylenimine polyplexes before encapsulation in PEG-
anionic liposome formulations with mannosylated lipids.
Inclusion of mannose is aimed at improving vaccine
delivery to antigen presenting cells [56, 57]. Interestingly,
saRNAs may not require conventional encapsulation to
protect them from RNAse degradation. Complexing saR-
NAs on the exterior of positively charged LNPs formulated
with dimethyldioctadecylammonium (DAA) cationic lipids
conferred complete protection from direct RNaseA treat-
ment [58]. Mice that were immunized with an HIV-1
Envelope (Env) saRNA complexed to the surface of DDA
LNPs developed peak antibody titers following a single
injection. When delivered as an encapsulated LNP, a boost
injection was required to achieve equivalent antibody titres
[58].

With so many different nonviral formulations available,
Anderluzzi et al. sought to compare liposomes, solid LNPs,
polymeric nanoparticles, and emulsions for the delivery of
an saRNA vaccine-encoding the rabies virus glycoprotein
[59]. In their hands, low-dose saRNA nanoparticles com-
plexed with the non-ionizable cationic lipid 1,2-dioleoyl-3-
trimethylammonium-propane (DOTAP) initially resulted in
similar antibody titres to Rabipur (RabAvert), a commer-
cially licensed rabies vaccine. However, the proprietary
cationic nanoemulsion (CNE) 56 from GlaxoSmithKline
(GSK, Rockville, MD, USA) outperformed all DDA and
DOTAP formulations [59]. Comparing delivery approaches
in side-by-side studies such as this would assist in deter-
mining the usefulness of each formulation. Reducing the
size of the saRNA vaccine transcript by employing a trans-
amplifying approach may also address concerns about
inefficient delivery. Here the saRNA is split into two tran-
scripts, the first encoding the nsP1-4 replicon complex and
the second encoding the gene of interest as a “transreplicon”
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(Fig. 1) [60–62]. This approach was recently adopted by
Beissert et al. [62] who generated an influenza vaccine
transreplicon based on a SFV saRNA design. The trans-
amplifying strategy worked best when the replicon was
delivered as a sequence-modified mRNA transcript and not
as an saRNA. Mice that received ID injections were suc-
cessfully immunized, produced functional virus-
neutralizing antibodies, and were protected following
influenza challenge [62].

Augmenting vaccine immunity

Vaccines traditionally incorporate adjuvants to boost
adaptive immunity and shape T-cell responses [63]. Alu-
minum salts, emulsions, lipid analogs, and virosomes are a
few examples of adjuvants that are currently included in
licensed vaccines. The importance of such adjuvants in
RNA vaccinology remains unclear and may be contingent
on the types of modifications included during design and
manufacturing. To date, clinical trials with conventional
mRNA vaccines have shown limited humoral immunity. As
saRNAs contain native alphavirus motifs and mimic viral
translation in situ they have the propensity to enhance
immunization through stimulation of PRRs [64]. Further
efforts to augment or direct RNA vaccine-associated
immunity have also been described. RNActive®, a prota-
mine complexed mRNA [65, 66] and RNAdjuvant®, a
proprietary immunostimulatory cationic peptide formulation
[67] have been developed by CureVac AG to improve the
efficacy of vaccines. saRNA CNEs incorporating the adju-
vant MF59 (Novartis) have shown comparable immunolo-
gical responses to a subunit vaccine comprising the same
adjuvant [68]. Lipid-based delivery formulations are well
established adjuvants [69] and have been adapted to pro-
mote RNA vaccine immuno-potentiation [70]. The inclu-
sion of mannosylated conjugates [52, 54, 55] and chitosan-
based nanogel alginate [71] may help shape the immune
response by enhancing receptor-mediated endocytosis of
saRNA vaccines by dendritic cells. Manara et al. recently
established a chemokine-adjuvant strategy using a murine
granulocyte-macrophage colony-stimulating factor saRNA
in conjunction with their influenza saRNA vaccine [72].
Including cytokine or chemokine adjuvants that augment
cytolytic T-cell responses would improve the therapeutic
potential of RNA vaccines, particularly for chronic infec-
tious diseases. Another study by Blakney et al. described
cationic adjuvant formulations with PPR agonists for
saRNA delivery [73]. Surprisingly, the incorporation of toll-
like receptor (TLR) 7/8 agonists R848 and 3M-052 had
little effect on innate immunity as the saRNA dominated the
IFN response. Perche et al. [55] included the stimulator of
interferon genes (STING) agonist, cyclic diadenylate
monophosphate (c-di-AMP), to modulate their LPP

formulated saRNA influenza vaccine. This approach has
also been used to improve the immunogenicity of cancer
mRNA vaccines, where STING-activatable cyclic lipids
were incorporated into LNPs [74].

Whether these adjuvant formulations improve the clinical
potential of saRNA vaccines remains to be assessed. Pre-
clinical studies indicate that both conventional and saRNAs
elicit strong IFN responses that may be detrimental to
vaccine efficacy [75, 76]. In this regard modifications to the
RNA sequence, cap structure, or the inclusion of PRR
antagonists may prove beneficial [77]. When using the VEE
replicon architecture, Huysmans et al. showed that expres-
sion kinetics of saRNAs delivered by ID electroporation
were superior to those of LNP-formulated saRNAs [78]. A
rapid and strong innate immune response to the LNP
saRNA had a negative effect on the translation and ampli-
fication of the bioluminescence reporter sequence. Strong
IFN stimulation from both the saRNA and delivery for-
mulation may impede in situ translation of the vaccine,
ultimately preventing successful immunization. Extensive
comparative and clinical studies will no doubt influence
optimization of saRNA vaccine pharmacokinetics and shed
light on which technologies are crucial for translating pre-
clinical approaches into clinically relevant vaccines.

Expanding the scope of vaccines for infectious
diseases

Licensed vaccines continue to have a major impact on
global health as they reduce mortality associated with
illnesses such as measles, mumps, pertussis, smallpox,
and polio [2]. But for many longstanding and emerging
infectious diseases, there is currently no prophylactic or
therapeutic immunization available. The notion of using
synthetic saRNAs as a vaccine was first described by
Zhou et al. when they modified an SFV replicon to
express the influenza nucleoprotein (NP) [79]. A few
years later the same group described a similar approach to
immunize mice against influenza, respiratory syncytial
virus (RSV), or louping ill virus (LIV) [80]. These
seminal studies demonstrated the potential of in vitro
transcribed saRNA vaccines to elicit protective immune
responses in mice following IM injection of unformu-
lated RNA. More than a decade later Geall et al. [81]
described the first LNP-formulated saRNA vaccine for
RSV and HIV-1, using an alphavirus chimera based on the
VEE and SINV replicons [82]. An ionizable cationic lipid
was used to encapsulate the saRNA, which conferred
protection from RNase degradation, and following IM
injection increased immunogenicity when compared to an
unformulated counterpart. Prophylactic protective immu-
nity was achieved, which was equivalent to that of a VRP,
and comparable to neutralizing titres required to protect
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infants from infection [81]. Notably, this study preceded
the vast array of NVV formulations now used to deliver
saRNA vaccines in preclinical models (Table 1) (reviewed
by [7, 26, 83]).

Contagious respiratory viruses

Influenza is a popular candidate for saRNA vaccine devel-
opment and a diverse range of delivery approaches have
been established to improve immunization (Table 1). As
discussed earlier, recent formulations under preclinical eva-
luation include the cationic polymer-based pABOLs [50],
Mannosylated LNPs (MLNPs) [54], and neutral LPPs [55].
Strong antibody responses were attained with low-dose (1 µg
per primer injection) saRNAs complexed with pABOLs, and
the addition of mannose improved IgG response times in
LNP formulations [50, 54]. Interestingly the pABOLs con-
ferred protection following IM but not ID injections. MLNPs
achieved enhanced ID immunization resulting in superior T-
cell responses when compared to a monovalent inactivated
influenza vaccine. This may facilitate the delivery of saRNA
vaccines using needle-free devices. An important con-
sideration for seasonal influenza is how antigenic drift could
render a vaccine ineffective [84]. saRNAs can accommodate
multiple antigens in a flexible pDNA template [85] which
could be modified to include new epitopes. With conven-
tional mRNA vaccines entering phase 3 clinical trials for the
highly contagious SARS-CoV-2, an saRNA vaccine candi-
date developed by researchers at Imperial College London
and Acuitas Therapeutics has recently entered a UK-based
phase 1/2 clinical trial (isrctn.com—ISRCTN17072692).
Preclinical studies in mice showed that the LNP-
nCoVsaRNA vaccine, which encodes the SARS-CoV-2
spike protein, achieved a dose-dependent immune response
following IM injection [86]. Vaccination elicited antigen-
specific IgG antibodies and T-helper type I cells, with the
lowest dose (0.01 µg) achieving higher SARS-2 antibody
titres than in recovered COVID-19 patients. Dose-dependent
neutralization of pseudo- and wild-type SARS-CoV-2 was
shown, again with the lowest dose attaining a higher neu-
tralization efficiency than COVID-19 patient samples.
According to a report from Imperial College London the
vaccine took only 14 days to develop and will embark on
larger clinical trials later this year [87].

Insect-transmitted viruses

Encouraging preclinical results for protection against
mosquito-borne diseases have also recently been described.
By creating live- and irreversibly attenuated (LAV and
IAV) versions of the VEE replicon, Samsa et al. developed
a CNE formulated saRNA vaccine for VEE [88]. The safer

(reversion-deficient) IAV was less immunogenic than the
LAV, but still protected 70% of mice following VEE
aerosol challenge. Using the same replicon, Zhong et al.
[89] endeavored to immunize mice against Zika virus using
an unformulated saRNA, however not all immunocompe-
tent mice developed neutralizing antibodies following ID
injection. Protective cellular and humoral immune respon-
ses were only detected in type I IFN receptor double
knockout mice (Ifnar−/−), suggesting the self-adjuvant
activity of naked saRNA compromised antigen-specific
immunity. Previous Zika virus saRNA vaccine studies
achieved protective immunity following IM injection of
immunocompetent mice, but only when the RNA was for-
mulated in a nanostructured lipid carrier [90]. Similarly,
modified dendrimer nanoparticles [91] elicited antigen-
specific IgG response in mice, highlighting the importance
of formulation and injection site for vaccine efficacy.

Animal-transmitted virus

Rabies, another infectious disease with a licensed vaccine,
has recently been the focus of GSK’s vaccinology program
(RG-SAM GSK3903133A) which boasts the only clinical
trial for a synthetic saRNA to date (NCT04062669). Pre-
clinical evaluations of CNE formulated saRNA encoding
the glycoprotein G antigen, showed that the vaccine was
well tolerated following multiple IM injections in rats [92].
The saRNA-derived rabies RNA was detected up to
2 months after a single injection, emphasizing the durability
of the approach. A second study evaluated immunogenicity
in mice using the licensed inactivated rabies virus vaccine
Rabipur (RabAvert) as a benchmark for immunization [59].
Positive protective antibody responses similar to Rabipur
were observed following a single IM injection of DOTAP
nanoparticle-encapsulated or CNE56-absorbed saRNAs
(0.5 and 1.5 µg). A second injection boosted antigen-
specific IgG titres in all encapsulation formulations
(DOTAP nanoparticles, DOTAP liposomes, and DDA
liposomes) but only high-dose CNEs elicited responses
comparable to the licensed vaccine [59]. The first clinical
trial of GSKs CNE formulated RG-SAM vaccine
(NCT04062669) will establish the safety of a 3-dose IM
regimen and determine the immunogenicity of saRNAs in
humans. It will be interesting to compare the results of this
trial with those of the CureVac conventional mRNA Rabies
vaccine currently under investigation. An initial phase 1
trial of the protamine-formulated conventional mRNA
(CV7201) proved disappointing, but following modification
and LNP formulation has re-entered clinical testing
(CV7202; NCT03713086) [93]. These parallel investiga-
tions will help ascertain the clinical relevance of conven-
tional and saRNA vaccines.
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The promise of an HIV-1 vaccine

HIV-1 remains an incurable global health challenge and
despite intensive studies an effective vaccine is not yet
available. Since 1984 scientists have attempted to develop a
prophylactic vaccine, however numerous clinical trials have
been met with few successes [94]. Sequence diversity of the
HIV-1 viral Env glycoprotein required for entry into cells
has presented a challenge to vaccine design [95, 96]. It has
proven difficult to elicit broadly neutralizing antibodies
(bNAbs) that are able to neutralize several HIV-1 strains
with conventional vaccines. Protein-based vaccines have
been widely investigated, but with some disappointing
results in clinical trials [97]. New strategies currently under
investigation include novel antibody approaches [98–100],
antibody-like inhibitors [101], polyvalent immunogens
[102], and adeno-associated viral vectors [103]. VRPs are
also popular HIV-1 vaccine candidates which have shown
promise in nonhuman primates [104–106] and mice [107].
While these traditional platforms continue to strive toward
clinical efficacy, renewed interest in RNA vaccinology has
led to development of unique HIV-1 candidates which have
the potential to provide both prophylactic and therapeutic
efficacy. Conventional mRNAs have been investigated in
preclinical and clinical studies [108–110] with saRNA
approaches gaining interest over the past few years. Phase I
and II clinical trials have demonstrated the safety and fea-
sibility of mRNA vaccines [111–116], but inadequate
immune responses have resulted in disappointing clinical
efficacy. An RNA (AGS-004) encoding multiple HIV-1
proteins and the CD40 ligand (CD40L) was tested in phase
I and IIB clinical trials [113–115], but the vaccine did not
reduce viral load or prevent viral rebound. When combined
with the latency-reversing agent vorinostat, no substantial
impact on the frequency of resting T-cell infection was
observed [117]. A naked mRNA (iHIVRNA) encoding
HIV-1 immunogens and the dendritic cell activator TriMix
(CD40L, CD70, and caTLR4) was safe in a phase I trial, but
did not show sufficient immunogenicity in a phase II trial
which was recently terminated (NCT02888756) [118, 119].

The disproportion between preclinical and clinical suc-
cess reinforces the need for strategies that improve RNA
vaccine immunogenicity or immunotherapy in humans. The
self-adjuvant effect of saRNAs may augment immunity and
novel HIV-1 candidates have shown potential in preclinical
models of infection (Table 1). In 2012, to highlight the
flexibility of their LNP-formulated replicon, Geall et al. [81]
described the first HIV-1 Env gp140 saRNA vaccine in
mice. Env-specific immune responses were detected fol-
lowing multiple delivery routes (IM, ID, and subcutaneous),
with IM injections achieving superior CD8+ T-cell
responses. More recently, an saRNA encoding the HIV-1
Env gp140 protein was formulated on the interior or

exterior of LNPs and administered to mice by IM injection,
resulting in an antigen-specific IgG response [58]. Peak
antibody titres were achieved after a single injection of the
exterior formulated LNPs or a prime-boost of the encap-
sulated saRNA. LNPs have also been used to deliver an
saRNA encoding a germline-targeting gp120 immunogen
(eOD-GT8) designed to self-assemble into a 60-mer protein
nanoparticle and prime B-cells capable of producing
VRC01-like bNAbs [120]. Administration of this saRNA to
transgenic mice expressing human inferred-germline B-cell
receptors led to primed B-cell responses and somatic
hypermutation characteristic of bNAb development. The
efficacy and safety of MF59 CNE formulations was
demonstrated in nonhuman primates where an saRNA
vaccine encoding the HIV-1 gp140 Env protein was
administered intramuscularly to rhesus macaques [121].
Higher levels of T-cell response, neutralizing antibodies and
anti-envelope antibodies including V1V2 antibodies, which
correlated with reduced risk of infection in the RV144
vaccine trial [122], were observed when compared to
delivery using a corresponding VRP. An effective immune
response was also achieved using a relatively low-dose (50
µg per primer injection) of the saRNA in the CNE for-
mulation, thus demonstrating clinical utility. A PEI-based
polymer formulation was recently used to deliver a mosaic
vaccine-encoding six conserved regions of the gag and pol
proteins in mice [123]. This vaccine induced plurifunctional
CD4+ and CD8+ T cells at relatively high levels that
persisted for up to 22 weeks post administration. These
results are very promising, but also highlight the need for
additional strategies to promote neutralization breadth and
antibody durability for long-term prophylaxis or treatment
of chronic HIV-1 infection. saRNAs should theoretically
reduce the frequency or necessity for booster administra-
tions, however, extensive clinical evaluations are still
required.

Conclusions

Successful immunization programs have transformed our
heath care systems by providing prophylactic protection
against deadly infectious diseases. Pandemics such as those
caused by SARS-CoV-2 emphasize not only the health, but
also the social and economic impacts that a highly con-
tagious virus can have on our everyday lives. Vaccine
development and manufacturing strategies that allow rapid
responses to such threats are currently limited. With many
advantages, saRNA vaccines have the potential to fill this
gap (Table 2). Simple cell-free manufacturing pipelines can
easily be adapted to develop new vaccine candidates, ulti-
mately streamlining production. The transient in situ
translation of antigenic or immunotherapeutic sequences

124 K. Bloom et al.



elicits humoral and cell-mediated immune responses as
proteins can be presented by both major histocompatibility
complexes (MHC I and MHC II). Immunopotent saRNAs
amplify antigenic sequences as subgenomic transcripts and
the accumulation of these immunomodulatory proteins in
the cytoplasm may improve genetic immunization strate-
gies, particularly for chronic infectious diseases. Pre-
clinical studies confirm that saRNA vaccines establish
antigen-specific immune responses against various infec-
tious diseases and confer protection.

The RNA vaccinology field is constantly evolving as
new studies aim to improve in vitro transcription, optimize
adjuvant and delivery formulations, and ultimately refine
in vivo pharmacokinetics. Yet with such a large variation
in vaccination approaches and very few parallel compar-
isons, it is difficult to decipher which strategies are best.
Establishing clinical efficacy is the next important step for
synthetic saRNA vaccines as this will guide future design
and production endeavors. It will also determine whether
the preclinical trends are accurate, and if saRNAs are able
to confer immunity at lower doses. Eliciting a strong
adaptive immune response could lead to single-dose
regimens and reduce the number of nonresponders.
Comprehensive studies from a diverse population will help
improve vaccine designs as environmental and genetic
influences may affect immunization [124]. Balancing the
innate immune response to enhance and not avert antigen-
specific immunity will be central to clinical development.
Establishing exactly how saRNA vaccines should be
administered will assist in defining storage, distribution,
and handling procedures. With the imminent launch of the
first-in-human trials, the future of saRNA vaccinology is
certainly exciting.
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