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Abstract: Proteins are functional building blocks of living organisms that exert a wide variety of
functions, but their synthesis and industrial production can be cumbersome and expensive. By
contrast, short peptides are very convenient to prepare at a low cost on a large scale, and their
self-assembly into nanostructures and gels is a popular avenue for protein biomimicry. In this Review,
we will analyze the last 5-year progress on the incorporation of bioactive motifs into self-assembling
peptides to mimic functional proteins of the extracellular matrix (ECM) and guide cell fate inside
hydrogel scaffolds.
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1. Introduction

Proteins exert a wide variety of functions in cells and living organisms and can be
considered one of the key building blocks of life. It is thus not surprising that they are very
popular components in the development of new solutions as biomaterials for applications
in medicine [1–4], cosmetics [5,6] and food science [7], including highly biotechnological
products, such as cultured meat [8]. Collagen [9,10], gelatin [11–14], keratin [15–17], and
silk fibroin [18,19] are amongst the most widely used proteins to develop biomaterials.

However, proteins present also limitations, such as low oral bioavailability, for which
new nanotechnological carriers are continuously being developed [20]. Furthermore, their
production on a large scale can be costly, inefficient, and present batch-to-batch high
variability, also in terms of purity, correct folding, and, thus, activity. For all these reasons,
new nanotechnological alternatives for protein biomimicry are highly sought after, to
reduce costs and increase efficiency both for the production process and for the final
product performance and lifetime [21]. Amongst the various substitutes for their mimicry,
short peptide sequences based on bioactive motifs certainly play an elected role. Peptide-
protein interactions are indeed crucial for the design of biomaterials [22]. In particular, the
use of minimalistic bioactive motifs to this end was exhaustively reviewed in 2017 [23], and
for this reason, here we will cover the recent progress in the field made since then.

2. Self-Assembling Short Peptides with Bioactive Motifs for Hydrogel Biomaterials

Over the last three decades, great efforts have been devoted to the design of self-
assembling peptides to attain nanostructured biomaterial gels. Readers interested in the
details of their various types of design are recommended to read a recent book chapter that
provides a comprehensive overview of the topic [24]. Several recent reviews also cover
this area [25,26], as well as the use of enzymes to control self-assembly [27], applications
for the delivery of drugs and therapeutics [28–33], proteins [34,35], and, more generally
biomedical uses [36], with a specific focus on antimicrobials [37], cancer [38], and wound
healing too [39].

Briefly, the vast majority of peptides for self-assembly into hydrogels are amphipathic
in nature. Self-assembly in water is hydrophobically driven, and aromatic components play
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an elected role in the stabilization of steric zippers and hydrophobic interactions that hold
together the peptide superstructures. Hydrophilic components are crucial to ensure good
water solubility and hydrogelation ability, and often are involved in weak interactions,
such as H-bonding, binding peptides together [24]. Popular approaches for their design use
complementary charges alternated with hydrophobic amino acids [40,41], polyaromatic
N-caps [42], peptide amphiphiles (PA) [43], or heterochirality [44], to attain an amphipathic
character for correct self-assembly and hydrogelation (Figure 1).
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Figure 1. Heterochiral peptide self-assembly. L-Phe-D-Leu-L-Phe forms stacks held together by
H-bonding between amides (a), and space-fill representations (b,c) show the amphipathic character
of the stacks, which display a hydrophobic face with the peptide sidechains (b) and a hydrophilic
face with amide bonds (c). Carbon atoms are shown in green, hydrogen in white, nitrogen in blue,
and oxygen in red. Reproduced from [45].

Considering that the shorter the motif, the lower and easier will be the cost of pro-
duction, it is thus not surprising that ultra-short peptides are amongst the most attractive
supramolecular peptide gelators [46]. In particular, cyclic [47–49] or linear dipeptides [50–55]
are amongst the simplest options as building blocks for hydrogels, however, tripeptides are
better positioned for bioactivity. Indeed, it was shown that 25 atoms other than hydrogen
constitute the ideal size for drugs and drug-like molecules for maximal ligand-binding
efficacy and bioactivity, and this number corresponds to the average number for a tripep-
tide [56]. Indeed, there are several tripeptides, or slightly longer sequences, that are used
as bioactive motifs for protein mimicry in nanostructured hydrogel biomaterials [23], and
the examples reported in the last 5 years are summarized in Table 1.

In particular, self-assembling peptides that form nanofibrillar hydrogels are ideally
suited to mimic the extracellular matrix (ECM), which comprises a structurally similar
nanofibrous network. The ECM is composed of a complex and dynamic mixture of proteins
(e.g., laminin, fibronectin, collagen), glycosaminoglycans (e.g., hyaluronic acid and heparin),
and growth factors, that altogether allow a continuous remodeling to respond to the
requirements of resident cells to sustain their growth. It is thus not surprising that peptide-
based nanofibrous hydrogels are often used in regenerative medicine as ECM mimics, as
described in the examples below, to foster cell differentiation and proliferation and facilitate
tissue-repair processes [57].
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Table 1. Latest reported supramolecular peptide-based hydrogels with bioactive motifs.

Bioactive Sequence Gelator Function Model Reference

RGD(S) and mimic

KFE-RGD
KFE-RDG

KFE-8
Cell adhesion hMSC [58]

RADA16 Cell adhesion 3T3 cells [59]
G-Y sequence Cell adhesion L929 cells [60]

RGDSGAITIGC Cell proliferation 3T3 cells [61]
E3-PA

E3G3Ada-PA Cell adhesion 3T3 cells [62]
Fmoc-FF

Fmoc-RGD
Cell adhesion and

Differentiation
3A6 cells

Mice [63]

Fmoc-FF
Fmoc-RGD Cell delivery

Osteoblast
Fibroblast

Mice
[64]

Fmoc-F5-Phe
Fmoc-K(Fmoc)-RGD

Antimicrobial
Cell adhesion 3T3 cells [65]

Silk fibroin
Nap-FFRGD

Cell adhesion
Angiogenesis

HUVEC
Mice [66]

Silk fibroin
Nap-FFRGD

Cell adhesion
Osteogenesis

mBMSC
Mice [67]

Collagen-like peptide Neuronal cell maturation Neuronal-glial cells [68]
Fmoc-FFβAR(K)βA-OH
Fmoc-FFβAR(K)βA-NH2

Cell adhesion MSC-P5, N2a, A549 cells [69]

Fmoc-FFGGRGD Inhibition of β1-integrin, FAK and
Akt expression Tenon’s capsule fibroblasts [70]

Fmoc-FRGDF
Agarose Laminin and fibronectin mimic - [71]

C16-V3A3E3E3RGDS
C16-V3A3K3SVVYGLR

C16-V3E3DGEA
Osteogenesis and angiogenesis hAMSC, HUVEC [72]

Fmoc-FRGDF
Fmoc-PHSRN Cell adhesion HMFC [73]

E1Y9-ALK
E1Y9-RGDS
E1Y9-DGR
E1Y9-PRG

Osteogenesis MC3T3-E1 cells [74]

LDV fFL and fFLDV Cell adhesion L929 cells [75]

PHSRN Fmoc-FRGDF
Fmoc-PHSRN Cell adhesion HMFC [73]

IKVAV

RADA4GGSIKVAV Neuronal stem-cell delivery
Anti-inflammatory

hMgSC
Mice [76]

Fmoc-DIKVAV Neuronal cell differentiation Mice [77]
Fmoc-DDIKVAV Neuronal cell differentiation hPSC

Mice [78]

IKVAV-PA Neuronal cell differentiation
hESC
Mice

Human temporal bone
[79]

IKVAV-PA Neuronal cell differentiation BMSC [80]
IKVAV-PA

YRSRKYSSWYVALKR
Spinal cord injury repair

(laminin and FGF2 mimicry) Mice [81]

Fmoc-DIKVAV
Agarose Laminin and fibronectin mimic - [71]

Fmoc-IKVAV
Fmoc-YIGSR Neuronal cell growth C6 cells

SHSY5Y cells [82]

YIGSR

KLD-IKVAV
KLD-YIGSR Vasculogenesis HUVEC, hMS cells [83]

Nap-GFF(p)YIGSR Anticancer
Self-assembly directly on cells HeLa cells [84]

Fmoc-IKVAV
Fmoc-YIGSR Neuronal cell growth C6 cells

SHSY5Y cells [82]

YSV

FKFEYYSV Anticancer A549 cancer cells [85]
Taxol-EYSV Anticancer HeLa, A2780 cells

Mice [86]

Nap-GffyGYSV Anticancer BEL-7402, HeLa, MCF-7 cells
Mice [87]

Nap-Gff(p)YSV Anticancer
Self-assembly directly on cells HeLa, A549 cells [88]

Nap-GFF(p)YSV Anticancer
Self-assembly directly on cells HeLa cells [84]

HAV

Fmoc/Nap-HAVDI Cell adhesion C6, L929 cells [89]
HAV-PA

E-PA Chondrogenesis rMSC [90]
KLD-12 Chondrogenesis hMSC [91]
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Table 1. Cont.

Bioactive Sequence Gelator Function Model Reference

SVVYGLR

RADA16 Angiogenesis HCN-A94-2 cells
Zebrafish [92]

C16-V3A3E3E3RGDS
C16-V3A3K3SVVYGLR

C16-V3E3DGEA
Osteogenesis and angiogenesis hAMSC, HUVEC [72]

DGEA
C16-V3A3E3E3RGDS

C16-V3A3K3SVVYGLR
C16-V3E3DGEA

Osteogenesis and angiogenesis hAMSC, HUVEC [72]

KTT C16KTTβAH Collagen production MCF-7, MDA-MB-231,
HDFa cells [93]

βAH C16KTTβAH Anticancer MCF-7, MDA-MB-231,
HDFa cells [93]

ALKRQGRTLYGF
E1Y9-ALK

E1Y9-RGDS
E1Y9-DGR
E1Y9-PRG

Osteogenesis MC3T3-E1 cells [74]

DGRDSVAYG
E1Y9-ALK

E1Y9-RGDS
E1Y9-DGR
E1Y9-PRG

Osteogenesis MC3T3-E1 cells [74]

PRGDSGYRGDS
E1Y9-ALK

E1Y9-RGDS
E1Y9-DGR
E1Y9-PRG

Osteogenesis MC3T3-E1 cells [74]

2.1. RGD

The RGD motif is by far the most widely applied bioactive motif in biomaterials science.
It originates from fibronectin and it is well known to promote cell adhesion because of
its affinity for integrins expressed on cells’ membranes, and hydrogels containing the
RGD motifs can mimic the extracellular matrix (ECM) [94]. For this reason, the RGD
motif is studied as a scaffold for cell cultures, or for biomedical devices and drug delivery.
As the αIIbβ3 integrin is expressed on platelets’ surfaces, RGD was also considered an
antithrombotic drug. However, due to its peptidic nature, RGD is easily degraded in
biological environments, thus prompting research to move towards the design of RGD
mimetics [95].

Mechanical and adhesion properties of hydrogels based on the self-assembly of RGD-
modified peptides can be tuned by varying the hydrogel composition. Recently, a hydrogel
was obtained using the gelator peptide KFE-8 (i.e., Ac-FKFEFKFE-NH2) modified with
either the bioactive RGD sequence (i.e., Ac-GRGDSPGGFKFEFKFE-NH2) or the inactive,
scrambled RDG sequence (i.e., Ac-GRDGSPGGFKFEFKFE-NH2) [58]. The adhesion prop-
erties of this hydrogel could be modified by varying the composition in terms of active
KFE-RGD and inactive KFE-RDG whilst keeping constant the total concentration of both
peptides, thus constant mechanical properties. Conversely, increasing the concentration of
the gelator KFE-8 resulted in an increase of gel stiffness. In this manner, it was possible to tai-
lor the differentiation of human mesenchymal stem cells, with adipogenesis being favored
by softer gels with lower concentrations of RGD. In another recent work, RGD-modified
hydrogels were obtained by simply changing an alanine with glycine in different positions
of the well-known gelator peptide RADA16 [59]. This study showed that the substitution
position has a great impact on the gelation ability and properties of the system, as well as
on the cell adhesiveness. In particular, the substitution A6G inhibited β-sheet formation,
whilst A10G and A14G resulted in twisted molecular alignment along with the sheets,
and overall higher viscoelasticity and bioadhesiveness of the resulting gels. A similar
approach was reported using the R-Y peptide sequence (i.e., RRKSYSGILGDLIQAVIRYY)
from cp-52k to form a hydrogel and inserting the RGDS sequence in different positions of
the chain [60]. In this case, too, it was demonstrated that the position of the RGDS sequence
influenced the ability of R-Y to form β-sheets and, thus, the mechanical properties of the
hydrogel. Specifically, the introduction of the RGD motif at the N-terminus resulted in
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higher β-sheet content, while the secondary conformation was not significantly changed
upon inclusion of RGD in the middle of the sequence, and was reduced when positioned at
the C-terminus, with consequently reduced gelation ability.

Recently, the self-assembling RGDSGAITIGC sequence containing the RGD motif was
discovered via computational methods and tested for fibroblast proliferation [61]. This
sequence preserved the ability to form a hydrogel with β-sheet amyloid structure and
carried the RGD adhesion motif at one end, while at the other end there was a cysteine for
further functionalization with other bioactive molecules or binding to metal surfaces.

A non-covalent approach via host-guest interactions was reported too [62]. Briefly,
a hydrogel based on PA and PA functionalized with adamantane (ada) was formed, and
host-guest interactions occurred between ada and a β-cyclodextrin (βCD) functionalized
with the RGDS peptide. This hydrogel was studied for fibroblasts adhesion and growth,
and it was observed that the host-guest interaction was critical in the epitope presentation,
as control hydrogels without ada or without βCD showed a cell morphology and spreading
comparable to the PA hydrogel alone.

The Fmoc protecting group is an established promoter of short peptide self-assembly
via π-π stacking interactions, as is the FF sequence for amyloid proteins. Furthermore, the
Fmoc-F sequence is also known to display antibacterial properties [96]. A hydrogel based
on Fmoc-FF and Fmoc-RGD was developed to induce mesenchymal stem cells’ prolifera-
tion and to enhance their induced differentiation compared to the Fmoc-RGE non-bioactive
hydrogel [63]. A similar injectable hydrogel based on Fmoc-FF and Fmoc-RGD was en-
riched with magnetic nanoparticles in order to increase the mechanical properties of the gel
and also to allow for a magnetically targeted cell delivery for tissue regeneration [64]. The
Fmoc-based self-assembly strategy allowed to obtain a hydrogel based on Fmoc-F5-Phe
and a Fmoc-RGD derivative suitable for cell cultures, due to the adhesion properties of
RGD combined with antimicrobial properties of Fmoc-F5-Phe [65]. Interestingly, fluores-
cence measurements allowed to establish the cooperative co-assembly of the different
peptide sequences.

Another gelation strategy is the functionalization of peptides with the naphthyl group
(Nap) that can perform π-π stacking interactions and lead to self-assembly [42]. In two
recent works, this strategy was used to obtain hydrogels based on silk fibroin (SF) and
Nap-FFRGD that were studied as scaffolds for regenerative medicine to promote angio-
genesis [66] and osteogenesis [67] (Figure 2). The presence of the Nap-FFRGD gelator
was key to obtaining gels at lower concentrations of SF. In another work, a PEGylated
collagen-like peptide functionalized with the RGD motif (PEG-CLP-RGD) allowed for
better maturation and structural organization of neuronal cells, relative to controls with
PEG-CLP hydrogel or poly-L-lysine [68]. Finally, a hybrid polysaccharide-peptide hydrogel
based on the co-assembly of agarose and Fmoc-FRGDF was found to better mimic the
physical and chemical properties of ECM compared to hydrogels based on the peptide
alone [71]. Indeed, the ECM matrix is rich in proteoglycans, besides fibrous proteins, thus
the inclusion of polysaccharides offers better biomimicry of the natural scaffold.

A problem in the use of peptide-based systems for biological applications is their rapid
enzymatic degradation. This problem can be solved using β- or D-amino acids or designing
peptidomimetics. A recent work reported the preparation of thixotropic hydrogels based on
Fmoc-FFβAR(K)βA-OH peptide and the amidated Fmoc-FFβAR(K)βA-NH2 containing the
RGD-mimetic R(K) motif. Both hydrogels were tested on various types of cells (including
neuronal cells) with good results in terms of cell adhesion and growth, and the amidated
peptide also showed antimicrobial activity suitable for cell cultures [69].

Finally, a Fmoc-FFGGRGD-based hydrogel proved that the RGD sequence also in-
terferes with gene expression in Tenon’s capsule fibroblasts, in particular reducing the
β1-integrin, FAK, and Akt expression in order to inhibit fibrogenesis and scar formation
that limits the success of glaucoma filtration surgery [70].
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and silk fibroin (SF) for the formation of nanofiber and nanofibril bundle structures individually;
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functions to enhance osteogenesis of encapsulated mBMSCs for bone regeneration in calvarial defect
areas of mice. Reprinted with permission from [67], © 2022 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim, Germany.

2.2. LDV

LDV is another fibronectin-derived tripeptide discovered in 1991 as an activator
of β1 integrins and a cell adhesion promoter [97,98]. It was also discovered to have
anti-inflammatory [99] and anti-metastatic activities [100]. The first incorporation of this
bioactive tripeptide in a supramolecular peptide hydrogel was reported by our group using
the self-assembling D-Phe-L-Phe-L-Leu (i.e., fFL) together with the bioactive fFLDV [75].
The so-obtained hydrogel successfully acted as a scaffold for cell adhesion and spreading,
and the active engagement of integrins was demonstrated (Figure 3). In this case, the choice
for LDV over RGD was determined also by the increased hydrophobicity of the former
sequence, in order to avoid possible hindrance of the hydrophobically-driven peptide
self-assembly in water that enables hydrogelation.

2.3. PHSRN

PHSRN is another fibronectin-derived bioactive motif, which acts in synergy with
RGD for the binding of β1 integrins and was found to accelerate cell invasion and wound
healing [101–103]. However, most researches focus only on RGD because the synergistic
effect requires a precise spatial disposition of the two bioactive fragments, and so in most
cases, the combination of RGD and PHSRN does not show significant improvements in
cell adhesion [104,105]. Recently, a hydrogel based on Fmoc-FRGDF and Fmoc-PHSRN
was successfully obtained, with increased cell adhesion compared to the Fmoc-FRGDF
peptide alone [73]. It was also noted that, while Fmoc-FRGDF alone could self-assemble,
Fmoc-PHSRN alone could not, and Fmoc-FRGDFPHSRN combined peptide gave a weak
gel. This was due to the disruptive presence of the rigid proline, so mixing the two Fmoc-
peptides was necessary to get a hydrogel with synergistic bioadhesiveness. Indeed, proline
is well-known for its β-breaker role, which can be exploited to modulate the self-assembling
behavior of short-peptide gelators based on the β-sheet prone FF motif [106].
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hydrogels with fibroblasts. (e) Quantification of cell spreading. (f) Adherent cells’ count in the
presence of Mn++ and a β1 integrin-blocking antibody (Ab) demonstrates integrin engagement for
cell adhesion on the biomaterial and successful ECM mimicry. Adapted from [75].

2.4. IKVAV

IKVAV is another integrin-binding peptide that originates from laminin, so that it
mimics the ECM, it promotes cell adhesion and growth, and differentiation of stem cells
too [107,108]. For these reasons, IKVAV-containing peptides are widely studied to yield
cell cultures and medical scaffolds for regenerative medicine. One of the hardest chal-
lenges in this field is to repair nerve tissues after damage to the peripheral [109] or central
systems [110]. The IKVAV motif plays an elected role to this end, thanks to its favorable
interactions with neurons and stem cells [111].

In a recent work, a hydrogel-based on the self-assembling and bioactive RADA4
GGSIKVAV peptide was tested on mice [76]. It led to good results in improving brain
injuries via neuronal stem cell delivery and it was also found to inhibit the molecular
inflammatory pathway. Similar results were obtained with Fmoc-DIKVAV-based hydrogels
used to treat Parkinson’s in a mouse model [77]. In this case, the hydrogel was loaded with
a glial cell line-derived neurotrophic factor to induce the differentiation of both delivered
and endogenous stem cells. This scaffold showed a good ability in enhancing neural-cell
survival and differentiation, as well as in inhibiting the formation of glial scars. In another
recent work, a hydrogel based on the very similar Fmoc-DDIKVAV was used to treat
stroke-affected mice, resulting in the recovery of motor function, thanks to the enhanced
cell differentiation, growth, and incorporation [78]. The reason for choosing the sequence
with the additional two aspartic acid residues was to modulate the self-assembly behavior
and obtain hydrogels at the physiological pH of 7.4 [78].

PA-based hydrogels with incorporated IKVAV sequences were successfully used to
create a niche in mice inner ear to increase the survival and support the differentiation of
neuron progenitors to regenerate the spiral ganglion [79]. While in all other previous cases
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the differentiation of stem cells was externally induced, and only supported and enhanced
by IKVAV, a recent work reported the successful differentiation of BMSCs induced only by
this peptide sequence contained in a PA-based hydrogel [80]. Remarkably, the combination
of IKVAV-PA with another PA functionalized with an FGF-2 mimetic sequence, allowed
for locomotor recovery after spinal cord injury in a mouse model [81]. Indeed, the use of
more than one biomolecule is a promising strategy for regeneration, as demonstrated for
the co-assembly of Fmoc-DIKVAV and agarose [71], as well as for the concomitant use of
two laminin-derived motifs in Fmoc-IKVAV and Fmoc-YIGSR [82].

2.5. YIGSR

YIGSR is another cell adhesion domain found in the ECM protein laminin [112,113],
and it is often used in combination with other peptides. A recent work reported the forma-
tion of a supramolecular hydrogel based on the self-assembling KLD peptide
(i.e., KLDLKLDLKLDL) elongated with the bioactive YIGSR sequence (i.e., KLDLKLDLKLD-
LYIGSR) [83]. This hydrogel showed better vascularization ability on hMSC/HUVEC cell
cultures, than the analogue KLD-IKVAV (i.e., KLDLKLDLKLDL-IKVAV) hydrogel.

The enzyme-instructed self-assembly (EISA) strategy was also applied to YIGSR-
containing peptides, to form a self-assembled hydrogel directly on HeLa cells overexpress-
ing alkaline phosphatase (ALP), so that a phosphorylated gelator precursor (that was too
hydrophilic to self-assemble) could be dephosphorylated in situ and gel [84]. Importantly,
direct use of the non-phosphorylated Nap-GFFYIGSR was not effective due to its poor
solubility in water, thus confirming the effectiveness of the EISA approach. The co-assembly
of Fmoc-YIGSR and Fmoc-IKVAV, both cell adhesion segments from laminin, produced
a supramolecular hydrogel that displayed a synergistic effect in controlling neuronal cell
adhesion and growth [82].

2.6. YSV

YSV is a bioactive tripeptide that attracted considerable attention in the field of drug
discovery due to its anticancer properties against various types of cancer. The action
mechanism involves the inhibition of both P-glycoprotein and histone deacetylase [114].
However, a millimolar concentration of peptide is needed to see any effect, and its peptidic
nature limits its bioavailability. For this reason, different approaches are needed in order
to enhance its anticancer effect and use this peptide as a drug, including the use of D-
amino acids and the formation of hydrogels that also allow for the simultaneous delivery
of other anticancer drugs, for a synergic treatment to overcome drug resistance. It was
previously demonstrated that the formation of hydrogels on cancer cells via self-assembly
of D-peptides interrupts intercellular exchanges leading to apoptosis, and that the EISA
approach is applicable as phosphatases can dephosphorylate D-peptides too (e.g., Nap-ffy
phosphorylated on y) [115].

For example, a peptide-sequence screening for hydrogelation yielded the octapeptide
FKFEYYSV, composed of the bioactive tripeptide YSV and the gelation moiety FKFEY
which also increased the anticancer activity of YSV. In addition, hydroxycamptothecin was
loaded on the hydrogel for simultaneous drug delivery, and the whole system showed
good anticancer activity, without toxicity for non-cancerous cells [85]. A similar combined
approach was developed using an EYSV peptide linked to taxol (taxol-EYSV) [86]. In this
case, the hydrogel formation was driven by the auto-hydrolysis of taxol-EYSV in biological
environments that led to the co-assembly of the resulting two components, showing good
anticancer properties also in vivo in mice.

Another approach consisted of the use of Nap-GffyGYSV peptide, containing the Nap
gelation moiety and D-amino acids to increase the gelation ability and resistance of the
gel in biological environments [87]. A smarter strategy using the similar peptides Nap-
Gff(p)YSV [88] and Nap-GFF(p)YSV [84] with a phosphorylated tyrosine was developed
to selectively form a hydrogel via dephosphorylation of tyrosine with EISA, directly on
cancer cells overexpressing alkaline phosphatase.
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2.7. HAV

HAV is a tripeptide that originates from cadherins, which are calcium-dependent
glycoproteins expressed on cell membranes and involved in cell-to-cell adhesion, cell
differentiation, morphogenesis, and many other processes [116–118]. This motif has cell
recognition and adhesion functions in cadherins [119], but also acts as a cadherin an-
tagonist, as it binds tyrosine-kinase receptors but it is too small to cause the receptor
dimerization [120].

In a recent work, the bioactive peptide HAVDI was linked to Fmoc and Nap gelling
moieties [89]. In both cases, an ECM-mimic hydrogel was obtained with good cell adhesion,
viability, and proliferation, and promoted normal cellular functions in both neuronal and
non-neuronal cells. The use of the aromatic N-caps was key to enabling gelation, as it
allowed to significantly increase the hydrophobicity (C logP ≥ 1.4) of the peptide sequence
relative to the uncapped analog (C logP −3.9) that was too hydrophilic to gel. The chondro-
genic properties of HAV were also proven using a hydrogel based on oppositely charged
HAV-PA and E-PA [90]. Differentiation of mesenchymal stem cells into chondrocytes was
artificially induced, but the hydrogel bioactive support enhanced the differentiation and
organization of cells stimulating the expression of cartilage-specific markers. In another
similar work, in which an HAV-modified KLD-12 self-assembling peptide was used to
obtain a hydrogel, it was demonstrated that the chondrogenic abilities of this kind of
support involved the inhibition of canonical Wnt/β-catenin signaling. This gel was used
for the successful encapsulation of stem cells (Figure 4) [91].
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Figure 4. (a) Scheme of self-assembly of hMSC-encapsulated KLD-Cad/KLD-Scr hydrogels. (b) Pho-
tograph of KLD-Cad self-assembled hydrogel (d = 5 mm, h = 2.2 mm) (c) SEM images of KLD
(left) and KLD-Cad (right) hydrogels after critical point drying show that the average diameter of
self-assembled fiber in the KLD and KLD-Cad hydrogels are approximately 17.6 nm and 20.4 nm,
respectively. Reprinted from [91], copyright © 2022, with permission from Elsevier.

2.8. SVVYGLR

SVVYGLR is a bioactive peptide motif derived from osteopontin that shows high
avidity for α9β1 and α4β1 integrins, promoting endothelial cells adhesion and migration,
and angiogenesis, with subsequently enhanced neurogenesis too. A recent work reported
the formation of a hydrogel based on the RADA16 gelator peptide linked to SVVYGLR
bioactive motif (i.e., Ac-RADARADARADARADASVVYGLR-NH2) [92]. This novel hy-
drogel scaffold showed excellent angiogenesis and neurogenesis in vitro and in vivo when
tested on zebrafish, and could potentially act as a bioactive scaffold for the regeneration
of damaged brain tissues. Furthermore, the viscoelastic properties could be tuned with
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peptide concentration, as the elastic modulus G’ could be increased 15–20 times as the
amount of gelator increased from 1% w/v to 2% w/v.

2.9. DGEA

DGEA is a collagen-I mimetic motif that showed to promote adhesion and osteogenic
differentiation of stem cells [121]. A combined approach involving PAs containing
SVVYGLR, RGDSm, and DGEA sequences was recently reported to create a hydrogel
scaffold for the formation of vascularized bone-like constructs in vitro [72]. Co-assembly
was favored by electrostatic interactions between oppositely charged sequences, for which
the zeta potential was indeed confirmed to be positive for the former, and negative for
the latter two. The gels, which also contained tyramine-functionalized hyaluronic acid for
better ECM biomimicry, could be attained with elastic moduli in the range of 0.6–3.2 kPa
upon inclusion of Ca++ salts to favor crosslinking and gelation.

2.10. βAH and KTT

Carnosine is a dipeptide (βAH) with various biological functions [122,123], especially
as an antioxidant due to the presence of β-alanine. It has also been proposed as a treatment
for Alzheimer’s disease [124], and it was shown to have anticancer properties [125]. A
recent work reported a dual-component hydrogel based on the lipopeptide C16KTTβAH,
that displayed anticancer activity against breast cancer, and lower toxicity on non-cancerous
cells, thanks to the presence of the KTT motif [93]. The KTT motif is derived from pro-
collagen I and it is widely used in cosmetic products due to its ability to induce collagen
production [126]. Interestingly, the cytotoxicity of C16KTTβAH was manifest also at concen-
trations below the critical aggregation concentration, thus suggesting that it was not related
to the nanofibrillation [93]. Furthermore, this gelator displayed promising potential also in
terms of biomaterial viscoelastic properties, which could be fine-tuned over a wide range
(e.g., G’ from 1 kPa to 1 MPa), depending on the gelation protocol and ionic strength used.

2.11. Other Bioactive Motifs Combined for Osteogenesis

Finally, a hydrogel based on various bioactive peptides was reported and acted as a
potential scaffold for bone regeneration due to its adhesion properties and differentiation
support toward MC3T3-E1 cells [74]. In particular, the hydrogel was based on the E1Y9
peptide (Ac-EYEYKYEYKY-NH2), which self-assembled in the presence of Ca2+ ions. This
was functionalized with RGDS as a cell adhesion motif, ALK (ALKRQGRTLYGF) as an
osteogenic growth peptide [127], DGR (DGRDSVAYG) as a cell adhesion motif of osteopon-
tin that is involved in many bioactivities of osteoblasts and osteoclasts [128,129], and PRG
(PRGDSGYRGDS) as a cell adhesion motif from type IV collagen that promotes adhesion of
osteoblast cells [130]. The gelation ability of Y1E9 relies on a β-sheet conformation, which
is partially disrupted by the introduction of positive charges, as in the bioactive motifs.
Despite the peptides’ ability to respond to the introduction of CaCl2 as a self-assembly
trigger, nanofibrillation could not always be rescued, as in the case of the cationic pep-
tide sequence with the ALK motif. This study provided further evidence that the mere
introduction of bioactive sequences to self-assembling peptides requires careful design,
as it can hinder peptide conformation and gelation ability, depending on the sequence
physicochemical properties.

3. Conclusions

The ECM offers a complex environment to sustain cell growth and differentiation
that over the last few decades scientists began to unravel, for applications in regenerative
medicine. In particular, we have witnessed a plethora of studies that confirmed short, self-
assembling peptides as ideal building blocks to mimic the structural features of the ECM
nanofibrous hydrogel. In parallel, several scientists have been decoding the minimalistic
peptide sequences of the ECM components that bear bioactivity, often through integrin-
engagement to promote cell adhesion and migration. As the two fields keep advancing, in



Nanomaterials 2022, 12, 2147 11 of 17

the last 5 years we have been witnessing the combination of self-assembling and bioactive
motifs into functional hydrogel scaffolds, through covalent and non-covalent approaches,
also in some cases exploiting enzymes as triggers for assembly and/or disassembly.

The multi-component approach is promising not only to better recapitulate the com-
plexity of the ECM, e.g., through the inclusion of both peptides and polysaccharides, but
also to offer the means to fine-tune the bioactive, gelling, and viscoelastic properties of the
systems. Indeed, a key challenge that is often encountered as mentioned in this Review,
is the fact that bioactive sequences are often hydrophilic and present ionizable groups
that can interfere with the hydrophobically-driven self-assembly of short peptides. To this
end, a successful approach has been the combination of positively and negatively charged
sequences through co-assembly promoted by electrostatic interactions, or the careful design
of peptide sequences with additional amino acids to better control the overall charge and
self-assembly at physiological pH.

Despite the many successes, clearly, the ECM mimetics available today are still rudi-
mental, when compared to the natural ECM fine complexity and dynamism. In particular,
recent studies have revealed how not only the surface availability, but also the mobility,
of bioactive motifs is key to attaining the desired effects [81]. Other studies are pointing
to out-of-equilibrium self-assembled hydrogels to better mimic the dynamic nature of
natural tissues, together with elements of hierarchical assembly, order/disorder, and so
on (Figure 5) [131]. Furthermore, the inclusion of different types of biomolecules offers
net advantages in terms of biomaterial performance relative to peptide-only systems, as
we have mentioned in this review. Lastly, the next-generation scaffolds need to feature
structural elements to increase their lifetime and slow down the biodegradation rate by
enzymes. Different avenues are possible to this end, spanning from the inclusion of D-
amino acids [132] or non-natural amino acids [133], to chemical crosslinking ideally with
biocompatible agents [134]. Now is the time to raise the bar for the biomaterials scientists
and take on the challenge to combine together all these elements, as well as structural
features to slow down biodegradation rates by endogenous enzymes, to realize the awaited
promise of full repair of human tissues through fine-level regenerative medicine.
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