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Forming quasicrystals by monodisperse soft core
particles
Mengjie Zu1, Peng Tan 2 & Ning Xu1

In traditional approaches to form quasicrystals, multiple competing length scales involved in

particle size, shape, or interaction potential are believed to be necessary. It is unexpected that

quasicrystals can be formed by monodisperse, isotropic particles interacting via a simple

potential that does not contain explicit multiple length scales to stabilize quasicrystals. Here,

we report the surprising finding of the formation of such quasicrystals in high-density sys-

tems of soft-core particles. Although there are length scales naturally introduced in our model

systems, they do not establish the quasicrystalline order. In two dimensions, we find not only

dodecagonal but also octagonal quasicrystals, which have not been found yet in soft qua-

sicrystals. In such unexpected quasicrystals, particles tend to form pentagons, which are

essential elements to develop the quasicrystalline order. Our findings thus pave an unex-

pected and simple way to form quasicrystals and pose a challenge for theoretical under-

standing of quasicrystals.
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Q
uasicrystal (QC) is a fantastic discovery in materials sci-
ence and condensed matter physics1,2, which exhibits a
rotational symmetry forbidden in periodic crystals. Since

the first observation of a decagonal QC in Al–Mn alloys1, thou-
sands of metallic QCs have been obtained3. These QCs intrinsi-
cally involve multiple length scales arising from multi-type atoms.

Soft or mesoscopic (non-metallic) QCs have brought great
attention to the community of QCs recently4–9, since the first
finding of a 12-fold QC in supramolecular dendrimers10. Com-
pared with metallic QCs, soft materials have displayed advantages
in forming stable mono-component QCs. However, to purposely
introduce multiple QC-favored length scales still seems to be
inevitable to form soft QCs11. Until now, soft QCs were obtained
by either introducing multiple competing length scales in the
inter-particle potential chosen in specific ratios to favor QC
formation12–17 or using anisotropic particles naturally possessing
multiple length scales, such as tetrahedral and patchy parti-
cles18,19. As far as we know, there has been no report yet about
QCs formed by mono-component, isotropic particles interacting
via a smooth potential that does not explicitly involve char-
acteristic length scales to stabilize the QCs.

Here, we show that such unexpected formation of soft QCs
does exist in high-density systems consisting of monodisperse,
soft-core particles interacting via a simple spring-like pairwise
repulsion. We observe both octagonal and dodecagonal QCs
(OQCs and DDQCs) and find that the particles spontaneously
form pentagons, which are essential elements in the formation of
our QCs.

Results
Phase diagram of solid states. The inter-particle potential is
UðrÞ ¼ ϵ

α
1� r=σð ÞαΘ 1� r=σð Þ, where r is the separation

between two particles, σ is the particle diameter or range of
interaction, ϵ is the characteristic energy scale, α determines the
softness of the potential, and Θ(x) is the Heaviside step function.
To avoid the clustering of particles20,21, we vary α from 2.0 to 3.0.
In the main text here, we focus on two-dimensional systems. In
Supplementary Fig. 1 and Supplementary Note 1, we also show
and discuss some preliminary results of three-dimensional
systems.

With increasing number density ρ at fixed temperature T, solid
phases with different structures emerge in sequence, as shown in
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Fig. 1 Multiple solid phases formed by soft-core particles at high densities. a Phase diagram of solid states in terms of number density ρ and potential

exponent α at a fixed temperature T= 10−4. The black dots label the (ρ, α) pairs where we run simulations to identify states. The orange and red areas are

the territories of OQCs and DDQCs, respectively. The gray and light-blue areas are phase coexistence regimes of two and three types of solids,

respectively. In addition to the abbreviations defined in the text, LSHon and HSHon denote lower- and higher-density stretched honeycomb, respectively. b

Examples of particle interaction potentials with different α. c–g A part of static configurations of five distinct crystalline solids with the scale bar indicating

the actual size of particle diameter σ. The (ρ, α) values of the five states are (3.35, 2.0), (3.70, 2.0), (3.95, 2.0), (3.60, 2.3), and (6.90, 2.4), respectively.

The red-shaded polygons and black lines outline the unit cell and basis, respectively. The insets are diffraction patterns with the values of the scale bar

being in the logarithmic scale
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Fig. 1a. Figure 1b shows that the inter-particle potential does not
exhibit multiple length scales. Surprisingly, in certain (ρ, α)
parameter regimes, both OQCs and DDQCs appear. To our
knowledge, OQCs have not yet been convincingly observed in
soft QCs.

In Fig. 1c–g, we show the static configuration and diffraction
pattern (characterized by the static structure factor as defined in
the Methods section) of five special crystals other than the
ordinary triangular (Tri) and square (Sq) solids, including
honeycomb (Hon), kite (Kite), sigma-phase (Sig), stripe (Str),
and rhombus (Rho) solid. Each solid has a definite unit cell and
basis as outlined in the configuration. Although some unit cells
are complicated, they repeat periodically in space, leading to a
periodic diffraction pattern.

Structure and dynamics of QCs. In the (ρ, α) parameter space
studied here, QCs exist in three isolated regimes. OQCs occupy a

regime with small α and high ρ. DDQCs emerge in two regimes:
one adjacent to OQCs (higher-density DDQC (HDDQC)) and
the other at relatively low ρ (lower-density DDQC (LDDQC)),
covering a wider range of α.

Figure 2a shows a part of static configuration of an OQC. By a
cursory look, we can identify many octagons and pentagons. The
diffraction pattern shown in the top panel of Fig. 2b contains
discrete sharp Bragg peaks with an eight-fold symmetry, similar
to that of the OQC of Cr–Ni–Si alloys22. The density profile
(characterized by the inhomogeneous radial distribution function
as defined in the Methods section) shown in the top panel of
Fig. 2c further confirms the symmetry and the loss of density
periodicity.

The rotational symmetry and quality of a QC can also be
detected from the structure of particle (cluster center) projections
in the perpendicular space orthogonal to the physical space where
the QC resides23,24 (see details of the calculation in the Methods
section). The perpendicular space shown in the inset of Fig. 2a
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Fig. 2 Characterization of the structure and dynamics of two types of quasicrystals. a–e and f–j are for an OQC and a DDQC at (ρ, α, T)= (6.6, 2.0, 1.36 ×

10−3) and (7.0, 2.0, 1.72 × 10−3), respectively. a, f A part of static configuration with the square–rhombus (square–triangle) tiling. The black scale bar

indicates the actual size of particle diameter σ. Note that the shaded pentagons prevail, whose centers are connected to construct the tessellation. The

inset shows the projection of the QC in the perpendicular space with the red polygon being the atomic surface. b, c, g, h Diffraction patterns and density

profiles calculated from single particles (top panel) and from pentagons (bottom panel). d, i Particle trajectories during a time interval of 105 with the

arrows pointing to the original direction of motion. e, j van Hove autocorrelation function Ga(r, t) at t= 6000. The values of the scale bars are in the

logarithmic scale
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exhibits the same symmetry as observed in the physical space. We
find that about 99.8% of the particles are projected within an
octagon named as the atomic surface23, indicating that the
configuration shown in Fig. 2a is indeed an almost perfect OQC.

A closer look at Fig. 2a reveals that each pentagon is
surrounded by eight particles, which form a nice octagon. This
implies that pentagons may be important structural elements in
forming OQCs in our systems. Here we employ a polygonal order
parameter δ ¼ max ei=e� 1j jf g (i = 1, 2, ..., 5) to numerically
identify pentagons, where ei is the distance between the center of
mass and vertex i of a 5-sided polygon, and e ¼ P5

i¼1 ei=5. Only
5-sided polygons with δ< 0.1 are identified as pentagons. By
connecting the centers of non-edge-adjacent pentagons, Fig. 2a
shows that the OQC can be tessellated by 45° rhombi and
squares. The number ratio of squares to rhombi is approximately
0.701, close to 1 :

ffiffiffi

2
p

for perfect OQCs25. As shown in the
bottom panel of Fig. 2b, when plotting the diffraction pattern
based on centers of pentagons, the Bragg peaks become much

sharper than those for single particles. Therefore, better
quasicrystalline order is achieved by pentagons.

In addition to structures, the quasicrystalline order and
significance of pentagons can be further verified from dynamics.
Figure 2d shows the trajectories of two randomly chosen particles
in the OQC. The trajectories are composed of a chain of pentagon
loops. A particle moves along the edges of a pentagon for a long
time and suddenly escapes from the pentagon and forms a new
pentagon with other particles, corresponding to a phason flip,
whose presence causes liquid-like diffusion in QCs26–28 (see
Supplementary Movies 1 and 2, Supplementary Note 2, and
Supplementary Fig. 2 for more information about the dynamics).
The pentagon loops are special for our QCs, which further
emphasizes the importance of pentagons.

The rotational symmetry of the OQC can be seen as well from
the van Hove autocorrelation function Ga(r, t) (Fig. 2e; defined in
the Methods section), which quantifies the probability distribu-
tion that a particle has been displaced by r at time t. In an
intermediate time regime (t = 6000 here), particles exhibit clear
heterogeneous displacements (see Supplementary Fig. 2 for the
time evolution of Ga(r, t)). There are particles vibrating around
their equilibrium positions, forming the central peak at r = 0.
Surrounding the central peak are satellite peaks with an eight-fold
symmetry, consistent with the QC symmetry shown in the
structure.

Figure 2f–j shows the same structural and dynamical informa-
tion for a HDDQC (structural information of LDDQCs can be
seen in Supplementary Note 3 and Supplementary Fig. 3).
Interestingly, pentagons are still remarkable. As shown in Fig. 2f,
each pentagon is surrounded by 12 particles sitting on the
vertexes of a dodecagon. Again, by connecting the centers of non-
edge-adjacent pentagons, the whole DDQC can be tiled by
squares and triangles. The number ratio of triangles to squares is
about 2.283, close to the ideal value of 4=

ffiffiffi

3
p

for perfect
DDQCs29.

Note that we can tessellate our OQCs by squares and rhombi
on both the single-particle and pentagon levels. However, for
DDQCs, we can only realize the square–triangle tiling based on
pentagons. Therefore, pentagons are indispensable in character-
izing our DDQCs. This significantly highlights the importance of
pentagons in our QCs.

Length scales. A limitation of our QCs is the lack of explicit
characteristic length scales to establish the quasicrystalline order.
There are length scales naturally introduced in our model sys-
tems, e.g., average nearest particle separation and potential cutoff.
Note that these intrinsic length scales exist in most of the model
systems, but only a small number of purposely designed systems
can form QCs. In this section, we will discuss about the char-
acteristic length scales in our QCs and the roles of intrinsic length
scales in the formation of our QCs.

In Fig. 3a–c, we show the radial distribution functions g(r) of
LDDQC, OQC, and HDDQC. For each QC, we separately
calculate g(r) for particles and for centers of pentagons. There are
peaks in both sets of g(r), representing different length scales in
the QC. We identify the typical length scales in our QCs, as
sketched in Fig. 3d. These lengths are the shortest ones to form
the basic structural element (pentagon) and establish the
quasicrystalline order.

For all QCs, the first two peaks in g(r) calculated for particles
correspond to the side and diagonal lengths of pentagons, which
are also the two nearest particle separations. These two length
scales are essential in the formation of pentagons, but they are not
the lengths to establish the long-range quasicrystalline order.
Their emergence cannot be straightforwardly predicted from our
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Fig. 3 Comparison of radial distribution functions g(r) of QCs for α= 2.0. a–

c are for LDDQC, OQC, and HDDQC at (ρ, T)= (2.56, 1.53 × 10−3), (6.60,

1.36 × 10−3), and (7.00, 1.72 × 10−3), respectively. The black and red solid

curves are calculated based on particles and centers of pentagons,

respectively. Note that the major peaks of the red curves match well with

those of the black curves. The green dashed curve in c is g(r) of LDDQC

after r is divided by (7.00/2.56)1/2≈ 1.6536, which shows identical peaks

to g(r) of HDDQC. The vertical dot–dashed lines mark the location of the

potential cutoff at r= 1. d Schematic plots of the characteristic length scales

in QCs. The pentagon sketches the basic structural element formed by five

particles. The square and rhombus sketch the polygons in the

square–triangle and square–rhombus tilings by connecting centers of

pentagons. The numbers 1–5 denote the side length of pentagons, diagonal

length of pentagons, side length of squares, diagonal length of squares, and

shorter diagonal length of rhombi, respectively. Note that in the tilings the

equilateral triangles and rhombi have the same side length as the squares,

so length no. 3 actually represents the side length of all polygons in the

tilings. In a–c, we number the peaks corresponding to the length scales
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knowledge about normal uniform systems and thus remains
elusive.

The basic length scales to establish the quasicrystalline order
can be identified from the polygon tessellation of the QCs, e.g.,
Fig. 2a, f. For DDQCs, they are the side length of squares and
equilateral triangles and the diagonal length of squares, which
correspond to the first two peaks in g(r) calculated for centers of
pentagons. These two peaks coincide with the third and forth
peaks in g(r) calculated for particles, as shown in Fig. 3a, c.
Therefore, from the perspective of particles, the third and fourth
peaks in g(r) represent length scales to establish the quasicrystal-
line order. For OQC, the basic lengths to establish the
quasicrystalline order are the shorter diagonal length of rhombi,
side length of squares and rhombi, and diagonal length of
squares. They correspond to the first three peaks in g(r) calculated
for centers of pentagons and coincide with the third, fourth, and
fifth peaks in g(r) calculated for particles, as shown in Fig. 3b.

Figure 3 also indicates that the potential cutoff should not act
as a necessary length for our QCs. The potential cutoff represents
rather different length scales for LDDQC and HDDQC. As can be
seen from the configurations (Fig. 2f and Supplementary Fig. 3a),
HDDQC and LDDQC have similar structures with the same
square–triangle tessellation. When particle separation r is scaled
by density, g(r) values of LDDQC and HDDQC exhibit identical
peaks, as shown in Fig. 3c. Therefore, if the potential cutoff was
an essential length scale, it would play the same role in both
DDQCs. However, this is not the case. The ratio of the potential
cutoff to the side length of pentagons [corresponding to the first
peak of g(r) calculated for particles] is obviously quite different
for the two DDQCs. Moreover, there are two peaks in g(r)
calculated for particles before the potential cutoff for LDDQC,
while there are three for HDDQC. Since the two DDQCs have the
same set of length scales in g(r) but the relative locations of the

potential cutoff are quite different, the potential cutoff should
have nothing to do with our QCs, although it does exist as an
intrinsic length scale in model systems.

Signs of QC formation in liquids. All solid states shown in
Fig. 1a are obtained by slowly quenching liquids below the
melting temperature Tm. It has been proposed that prior to
freezing some local order may have already developed in
liquids30. Since pentagons are essential in our QCs, one may
wonder whether they can be tracked in liquids. Moreover, as
discussed above, it remains mysterious how the characteristic
length scales spontaneously emerge to stabilize the QC order.
Searching for competing length scales in liquid states prior to the
phase transition to QCs may provide us with some clues.

We thus compare the structures of liquids at T = 1.1Tm over the
whole range of densities of Fig. 1. The temperature envelop
slightly above Tm chosen here assures that the liquids stay at
approximately the same distance away from the establishment of
(quasi)crystalline order. In Fig. 4, we show the density
dependence of the fraction of particles forming pentagons,
5Npentagon/N, and static structure factor, S(k), for the liquids with
harmonic (α = 2.0) and Hertzian (α = 2.5) repulsions, where
Npentagon and N denote the number of pentagons and total
number of particles (see Supplementary Fig. 4 and Supplementary
Note 4 for the evolution of 5Npentagon/N across the liquid–solid
transition). Figure 4a, b indicates that pentagons have already
accumulated in QC-forming liquids, leading to the maxima in
5Npentagon/N. The contour plots of S(k) in Fig. 4c, d demonstrate
two pronounced low-k peaks in the density regimes where QCs
reside.

Note that our systems are at high densities. With increasing
density, each particle can interact with more and more neighbors,
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leading to repeated emergence of the same types of solids, e.g.,
triangular solid31,32. Referring to Fig. 1a, the two low-k peaks in S
(k) are apparently associated with the first peak (representing the
average nearest particle separation) of the liquids forming the two

triangular solids on the lower- and higher-density sides of QCs.
However, these two competing length scales are not unique for
QC-forming liquids. They may provide a necessary (but not
sufficient) condition for our QCs to occur.
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= (6.50, 1.27 × 10−3) (OQC) and (6.80, 1.49 × 10−3) (DDQC) respectively, along two different routes. The initial states of the top and bottom panels are T
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Since pentagons already accumulate in liquids, the emergence
of the two competing length scales indicates that two nearest
particle separations characterizing pentagons are developed. The
ratio of the two k values for the peaks in S(k) is indeed close to the
ratio of the diagonal length to the side length of a pentagon.
Therefore, these emerging length scales are important to
construct the basic element of our QCs, but they do not establish
the quasicrystalline order, as discussed above. More in-depth
studies are required to find out the origin of these lengths and
their roles in the spontaneous formation of the quasicrystalline
order, while the key is to sort out the complicated interplay
between high density and soft-core potentials.

Stability of QCs. Now there comes a question whether our QCs
are stable. In order to verify the stability of our QCs, in addition
to slow quenching, we examine the formation of QCs along
another two different routes at a fixed density. In the first route,
we quickly quench an ideal gas state to a local potential energy
minimum to get the T = 0 state. Then we suddenly increase the
temperature to Tf where QCs exist. In the second route, we
equilibrate a liquid at T> Tm and then suddenly decrease the
temperature to Tf. For both cases, we observe the time evolution
of the structures at fixed ρ and T = Tf, as shown in Fig. 5.

Figure 5a, b shows the quickly quenched T = 0 configurations
at ρ = 6.50 and 6.80 for harmonic repulsion, where OQCs and
DDQCs should exist. We can still identify some pentagons. By
connecting the centers of non-edge-adjacent pentagons, we can
partially tessellate the configurations using the QC tessellation.
Therefore, the T = 0 configurations are random tilings of QC
polygons. The diffraction patterns based on centers of pentagons
contain nearly isotropic rings and do not exhibit QC symmetries.
In Fig. 5c, d, we compare the time evolution of the diffraction
patterns along two routes at (ρ, Tf) = (6.50, 1.27 × 10−3) and (6.80,
1.49 × 10−3). We can clearly see the formation of the same QC
symmetry along both routes. To further illustrate the symmetry
and quality of the QCs, we also show in Fig. 5c, d the projection
of the long-time relaxed state in the perpendicular space. Most of
the particles (cluster centers) are projected within the atomic
surface, exhibiting a nice eight- or 12-fold rotational symmetry.
The projections of the states along two different routes show
similar patterns. Therefore, the QCs reported here are stable and
independent of history. Probably because the systems have not
been relaxed for enough long time, there are still a few spots
outside the atomic surface, leading to an elongated distribution as
shown in Fig. 5d. The patterns in the perpendicular space may
evolve to that shown in the inset of Fig. 2f (obtained by slow
quenching) if the systems are relaxed for sufficiently long time.

Figure 6 provides another evidence of the QC stability. There
we further compare the T = 0 potential energies of QCs with those
of crystalline solids next to them for harmonic and Hertzian
repulsions. For each type of the solids, we fix the locations of
particles and calculate the potential energy (sum of particle
interaction potential) as a function of density by varying the
diameter of particles. In the density regimes where we find QCs,
the corresponding QCs have the lowest potential energy. Because
the structures of QCs are more random than those of crystals, it is
plausible to assume that the entropy of thermal QCs is higher as
well. Thus, at T> 0, QCs should have a lower free energy than
other crystals and are stable enough to survive.

Discussion
The most surprising aspect of this work is the finding of a new
class of soft QCs with complex structural units in such simple
systems without any explicit multiple characteristic length scales
required to stabilize the QCs. Although there are intrinsic length
scales in our systems, they do not stabilize our QCs. According to
existing theories, QCs found here are unexpected. Thus, their
existence poses a challenge to theories.

The soft-core potentials employed here have considerable
theoretical merit33, which can also mimic particle interactions in
low-density experimental systems such as poly N-iso-
propylacrylamide colloids, granular materials, and foams34–36.
How to extend the repulsions to long range and hence reach the
high-density regime is challenging to the experimental verifica-
tion of our findings. Possible solutions are to use ultrasoft par-
ticles such as star polymers37 or to modulate long-range repulsive
interactions of colloidal or granular systems composed of mag-
netic or charged particles38.

One of the most special features of our QCs is the spontaneous
formation of pentagons, to some extent similar to ABC star
polymer QCs5 and cluster QCs39. This leads to a complex
structural unit: a pentagon surrounded by an n-side polygon. The
spontaneous formation of this structural unit should not be an
accident, because it occurs in all our QCs with different rotational
symmetries. Therefore, our findings suggest a promising motif to
design n-fold QCs. A recent experimental work has shown that in
two-dimensional solid states of magnetic polygons, the vertexes of
the polygons can display weak 12-fold rotational symmetry
(manuscript in preparation). This may imply the possibility to
form two-dimensional QCs in granular systems consisting of
magnetic pentagons and small disks, which deserves further
investigations.
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demarcated by the vertical dashed lines and brown bands are where QCs have the lowest potential energy and where QCs exist, respectively. The absence

of perfect match between the two may be due to phase coexistence
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Methods
Systems and simulation details. Our systems are two- or three-dimensional
boxes with side length L. Periodic boundary conditions are applied in all directions.
The system contains N monodisperse particles with a mass m. The units of energy,
length, and mass are ϵ, σ, and m. The time and temperature are in units of m1/2σϵ
−1/2 and ϵk�1

B with kB being the Boltzmann constant. In this work, we mainly study
N = 10,000 and 4096 systems.

We perform molecular dynamics (MD) simulations in both the NVT (constant
number of particles, volume, and temperature) and NPT (constant number of
particles, pressure, and temperature) ensembles. To outline the phase diagram, we
slowly quench high-temperature liquids until solids are formed. We have verified
that the quench rates are slow enough so that the phase boundaries are not
sensitive to the change of the quench rate. To make sure that systems are in
equilibrium, we first relax the system for a long time (5 × 109 MD steps with a time
step Δt = 0.01 for solid states and 108 MD steps for liquid states) and then collect
data in the following 108 MD steps. To get static configurations at T = 0, we directly
quench the equilibrium solid states to local potential energy minima using the fast
inertial relaxation engine algorithm40.

Structural and dynamical quantities. For two-dimensional systems, the diffrac-
tion patterns and density profiles are calculated from the static structure factor and
radial distribution function, respectively: SðkÞ ¼ 1

N
ρðkÞρð�kÞh i and

gðrÞ ¼ L2

2N2

PN
i¼1

PN
j≠i δ r� rij

� �

D E

, where ρðkÞ ¼
PN

j¼1 e
ik�rj is the Fourier trans-

form of the density with rj being the location of particle j, k is the wave vector
satisfying the periodic boundary conditions, rij = ri −rj is the separation between
particles i and j, the sums are over all particles, and :h i denotes the time average.
The van Hove autocorrelation function is calculated from

Gaðr; tÞ ¼ 1
N

P

i δ r� riðtÞ þ rið0Þ½ �
� �

, where :h i denotes the ensemble average and

the sum is over all particles. S(k) and g(r) are quantities averaged over all directions
of k and r with k ¼ kj j and r ¼ rj j.

Calculation of the perpendicular space. In the physical space where QCs reside,
every particle is actually the center of a cluster formed by this particle and its
nearest neighbors. To obtain particle (cluster center) projections in the perpendi-
cular space, we lift particles from the two-dimensional physical space to the four-
dimensional hyperspace using appropriate basis vectors and then perform the

projection. The basis vectors in the physical (parallel) space are e
jj
OQC ¼

1
ffiffi

2
p ðcosð2πi=8Þ; sinð2πi=8ÞÞ and e

jj
DDQC ¼ 1

ffiffi

3
p ðcosð2πi=12Þ; sinð2πi=12ÞÞ (i = 0, …,

3) for OQCs and DDQCs, respectively. In the perpendicular space, there are

corresponding basis vectors e?OQC and e?DDQC orthogonal to e
jj
OQC and e

jj
DDQC .

Having selected an arbitrary particle in the QC as the origin, the location of this

particle in the physical space is transformed to rjj ¼
P3

i¼0 nie
jj
i , where ni is an

integer index determined by nearest neighbors: ni is increased or decreased by 1 if a

vector connecting the particle and a neighbor is parallel or antiparallel to e
jj
i , and 0

otherwise17. The particle’s coordinates in the four-dimensional hyperspace is thus

(n0, n1, n2, n3). Its projection in the perpendicular or parallel space is r? ¼
P3

i¼0 nie
?
i or r||. If a particle exhibits the quasicrystalline order, its projection in the

perpendicular space will fall within the atomic surface, which is the projection of
the unit cell of the hyperspace in the perpendicular space23.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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