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Self-assembly peptide-based hydrogels are well known and popular in biomedical

applications due to the fact that they are readily controllable and have biocompatibility

properties. A dipeptide is the shortest self-assembling motif of peptides. Due to its small

size and simple synthesis method, dipeptide can provide a simple and easy-to-use

method to study the mechanism of peptides’ self-assembly. This review describes the

design and structures of self-assembly linear dipeptide hydrogels. The strategies for

preparing the new generation of linear dipeptide hydrogels can be divided into three

categories based on the modification site of dipeptide: 1) COOH-terminal and N-terminal

modified dipeptide, 2) C-terminal modified dipeptide, and 3) uncapped dipeptide. With a

deeper understanding of the relationship between the structures and properties of

dipeptides, we believe that dipeptide hydrogels have great potential application in

preparing minimal biocompatible materials.
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INTRODUCTION

Hydrogels are cross-linked by three-dimensional networks of modified molecules that hold a

large amount of water, which were first reported by Wichterle and Lím (1960). By definition,
water must account for at least 10% of the total weight (or volume) of hydrogels, which is very
similar to natural tissue. Due to the high water content, favorable structural features, and
biocompatibility, hydrogels have great potential in biomedical applications such as drug
delivery, tissue engineering, sensing, and cell culture scaffolds (Ahmed, 2015; Ghosal et al.,
2018; Zou et al., 2020). Based on the different gelation mechanisms, hydrogels can be classified
into chemical hydrogels and physical hydrogels (Mahinroosta et al., 2018). The chemical
hydrogels are cross-linked via covalent bonds, resulting in high mechanical strength,
structural stability, shape memory, and irreversible properties (Liyan et al., 2018). The
irreversible properties deprive them of self-healing and impair their injectability (Tu et al.,
2019). More importantly, those limit cell proliferation and migration and hence limited

application in three-dimensional cell culture (Wang et al., 2019, 2020). Physical hydrogels,
also known as supramolecular hydrogels, could be produced by a molecular self-assembly
process (Li et al., 2020; Xian and Webber, 2020; Li et al., 2021b). Molecular self-assembly relies
on noncovalent interactions, such as hydrogen bonding, hydrophobic interactions, aromatic π–π
stacking interactions, and electrostatic interactions, which are weak and reversible (Whitesides
and Boncheva, 2002; Webber and Pashuck, 2021). The dynamic reversible nature of these
interactions endows them with self-healing and shear thinning properties; hence, they are
particularly suitable for biomedical applications, as they are more flexible and can be easily
injected (Hu X. et al., 2020; Gupta et al., 2020; Vazquez-Gonzalez and Willner, 2020).
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The physical hydrogelators include natural polymers, such
as polysaccharides (Dai et al., 2019; Chen et al., 2020; Lei et al.,
2020), proteins (Wlodarczyk-Biegun et al., 2016; Fisher et al.,
2017; Singh et al., 2017; Zhao et al., 2018), and polynucleotides

(RNA and DNA) (Korah et al., 2018; Li et al., 2019b), and
synthetic materials, such as poly (lactic-co-glycolic acid
(PLGA) (Ko and Kwon, 2020), polyglycolic acid (PGA)
(Prabhu et al., 2020), and polylactic acid (PLA) (Basu et al.,
2016). These various polymers establish complex 3D networks
of intermolecular interactions between building blocks to form
macroscopic objects. Besides polymers, low-molecular-weight
gelators (LMWGs) (generally <2000 Da) are of great interest
because the associated gelators have intrinsic self-assembly
ability to form different morphologies of fibers, rods, ribbons,
and nanotubes, which could be used to build attractive tools

for various biomedical applications on account of their high
biocompatibility and low toxicity (Nolan et al., 2017; Ramin
et al., 2017; Piras et al., 2021). Among the LMWGs, self-
assembly peptide-based hydrogels are well known and have
been the subject of many studies because the peptides are the
most attractive building blocks, which can be readily
controlled by changing the amino acid sequence of the
peptides and by modifying the side chains of the peptides
(Frick et al., 2017; Fu et al., 2021; Zhang et al., 2021). In
particular, many small amino acid sequences responsible for
the biological assembly proteins such as the amyloid-beta

polypeptide (Aβ42) (Qiu et al., 2015), tau proteins (Pîr
et al., 2017), and islet amyloid polypeptide (IAPP) (Fawver
et al., 2014) indicated in Alzheimer’s disease, have been
identified; hence, researchers can design self-assembly
peptides through a biomimetic approach. The shortest self-
assembling motif of peptides was dipeptide, for example,
L-Phe-L-Phe, a dipeptide from Aβ42, which is also the most
widely studied scaffold of supramolecular hydrogelators
(Diaferia et al., 2019b). However, despite the easy synthesis
and decoration of dipeptide, the prediction and design of
dipeptide-based hydrogels are still challenging due to the

complex nature of the molecular structure and hydrogel
behavior (Fichman and Gazit, 2014; Frederix et al., 2015;
Fuentes-Caparrós et al., 2019). Researchers have tried many
strategies in dipeptide design to resolve this problem, such as
the introduction of a combinational approach, which
generated a structurally diverse hydrogel library with more
than 2,000 peptides (Li et al., 2019a).

Recently, self-assembly hydrogels based on the longer
(Levin et al., 2020; Mondal et al., 2020) or short peptides
(Fleming and Ulijn, 2014; Tao et al., 2016; Guyon et al., 2018)
and their related gel-based biomedical applications

(Fukunaga et al., 2019; Ni and Zhuo, 2019) have been
reviewed but in a very limited manner. In this review, we
focus on the dipeptide derived from common amino acids
that form hydrogels and the possible relationship between
the structures and hydrogel behavior. We hope that with a
deep understanding of the relationship between structures
and properties of dipeptides, the dipeptide hydrogels would
have an effective application in preparing minimal
biocompatible materials.

THE STRUCTURES OF SELF-ASSEMBLY
DIPEPTIDE HYDROGELATORS

To form a hydrogel, the dipeptide hydrogelator first self-
assembled into some kind of one-dimensional (1D)
supramolecular structures, like nanofibers and twisted
nanoribbons, and then into three-dimensional (3D) networks
to ensnare a great number of water molecules inside (Du et al.,
2015). This demands that the structure of the dipeptide
hydrogelator should greatly facilitate the formation of one-

dimensional assemblies. The classic dipeptide hydrogelator is
divided into three parts, as shown in Figure 1. The two same
or different amino acids are linked via an amide bond to form the
main chain of dipeptide hydrogelator, which can provide
intermolecular hydrogen bonding in the self-assembling
process. The other two parts are also important and are
recognized as the side chain, which helps the gelator to self-
assemble into associated 3D networks. As we know, hydrogel is
one of the most typical amphiphilic materials in which solvent
molecules are entrapped within the 3D networks under suitable
conditions (Bahram et al., 2016). Unlike in covalently connected

polymers (polypeptide or proteins), the structure of dipeptide
hydrogelator is relatively simple and allows one to tune the
formation easily and subtle changes can be applied to the
structure that may lead to various hydrogel behaviors: gel or
not gel.

The amino acids have different side chains for various
hydrophilic and hydrophobic properties. There are the 20
different most common amino acids in nature and each of
them has specific chemical characteristics, which have a
unique role in protein structure and function. Based on the
characteristics of the side chain when it is in contact with

water, amino acids can be classified into three categories:
hydrophobic (low propensity to be in contact with water),
polar, and charged (energetically favorable contacts with
water). Due to the simple synthesis of dipeptides, they have
significant advantages in regulating physicochemical behavior
by peptide sequence design (Bak et al., 2015). Even if there is only
one amino acid difference, the self-assembled nanostructures and
the resulting hydrogels can be significantly changed (Habibi et al.,
2016; Zhou et al., 2019).

The side chains of the N-terminus and C-terminus generally
provide an auxiliary function for a better equilibrium of
solvability and self-assembly capacity, such as enhancing the

hydrophobicity and the intermolecular forces. It has been
proven that an efficient way to construct a supramolecular

FIGURE 1 | The general structure of dipeptide hydrogelator.
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hydrogelator is to attach a π-conjugated group to a short peptide
(Adams and Topham, 2010). For example, the Fmoc-Phe-Phe
(Fmoc-FF) dipeptide, derived from the β-amyloid peptide, is
mediated by a potent combination of hydrophobic, π–π, and

hydrogen bonding interactions that result in the formation of
hydrogel (Ryan and Nilsson, 2012; Rajbhandary and Nilsson,
2017).

The strategies for preparing the new generation of dipeptide
hydrogels can be divided into four categories based on the
modification site of dipeptide: 1) N-terminal modified
dipeptide; 2) C-terminal modified dipeptide; 3) uncapped
dipeptide; 4) cyclic dipeptide. This review will focus on the
linear dipeptide (1–3) and other recent reviews about cyclic
dipeptide can be found in articles by Yu et al. (2020) and
Balachandra et al. (2021).

COOH-TERMINAL AND N-TERMINAL
MODIFIED DIPEPTIDE

To form an efficient dipeptide hydrogel, it is possible to modify a
large aromatic group on the N-terminal of the dipeptide
hydrogelator (Fichman and Gazit, 2014). Aromatic moieties

can facilitate the self-assembly of peptides and stability of
conformations and functions due to the favorite contribution
of the aromatic group, such as π–π stacking and hydrophobic
interactions. The aromatic group includes
fluorenylmethoxycarbonyl (Fmoc), naphthalene (Nap)
derivatives, phenothiazine (PTZ), carboxybenzyl (Cbz),
azobenzene (Azo), and pyrene (Pyr). The literature has
reported that unmodified dipeptides without aromatic capping
do not form hydrogels, whereas several N-terminal modified
peptides have been used as efficient hydrogelators; the detailed
contents are discussed as follows.

Aromatic-Modified Dipeptide
The Fmoc group is widely used as a protecting group in peptide
synthesis; thus, the Fmoc-modified dipeptide hydrogelator is
readily studied. In 1995, the first Fmoc-modified dipeptide
hydrogelator Fmoc-Leu-Asp was reported by the Vegners
group, which forms hydrogel at 2 mg/ml in PBS and was used
as a carrier for antigen presentation (Vegners et al., 1995).
Following this study, several Fmoc-dipeptides as efficient
hydrogelators have been reported, and mostly the Fmoc-
dipeptides self-assembled into a fibrous structure in gel state
(Tang et al., 2011; Sasselli et al., 2016).

Fmoc-Phe-Phe, an efficient hydrogelator under physiological
conditions, has attracted particular interest in contrast to the
other dipeptides. Since 2006, this hydrogelator has been well
characterized and widely examined for various applications.
Jayawarna and coworkers have discovered the gelation
properties of seven Fmoc-dipeptides made up of the
combinations of the four amino acids: glycine, alanine, leucine,
and phenylalanine (Jayawarna et al., 2006). Fmoc-Phe-Phe
formed a hydrogel under a pH less than 8, the other five
dipeptides Fmoc–Gly–Gly, Fmoc–Ala–Gly, Fmoc–Ala–Ala,
Fmoc–Leu–Gly, and Fmoc–Phe–Gly could form hydrogels

under the condition of pH < 4, whereas Fmoc–Gly–Phe gave
crystals and did not form a gel under any of the conditions tested.
Thus, the nature and architecture of the amino acid building
blocks could dictate the properties of the hydrogels.

Smith and coworkers have confirmed that the Fmoc-Phe-Phe
self-assembled into nanocylindrical fibrils based on π-π
interlocked antiparallel β-sheets (Smith et al., 2008). Moreover,
they reported that the self-assembly process could result in two
apparent pKa values: the first located at pH 9.5–10.2
corresponding to the self-assembly of the dipeptide into paired
fibrils consisting of antiparallel β-sheets and the second located at
pH 6.2–9.5 related to forming large rigid ribbons by lateral
aggregation of fibrils (Tang et al., 2009).

Adams and coworkers designed a series of orthogonal
experiments to study the mechanical properties of Fmoc-Phe-

Phe hydrogel prepared using different conditions (Raeburn et al.,
2012). They have demonstrated that the final pH of the gels, no
matter the gel formation method, is the principal determinant for
mechanical properties. Moreover, they revealed that the other
experimental factors, such as the ratio of organic solvent to water
and the nature of the buffers, affect the rheological properties to a
lesser extent. Tirelli et al. have also shown that the different
homogenization techniques, such as vortex vs. manual or orbital
agitation, could dramatically influence the mechanical properties
and the self-assembling structures (Helen et al., 2011). All these
interesting studies have suggested that the self-assembly process

and its inherent mechanism of Fmoc-modified peptides are
significantly complicated, and the influencing factors, such as
the molecular structures, solvent compositions (including solvent
type, polarity, the ratio of organic solvent to water, and the buffer
components), solution conditions (pH, ionic strength, ionic type,
and valence state, etc.), and external conditions (temperature,
homogenization method, photo stimulus, etc.) should be
thoroughly clarified.

Another extensively studied Fmoc-based dipeptide is Fmoc-
Tyr-Leu (Bai et al., 2014; Fleming et al., 2014). Due to the
phenolic hydroxyl of tyrosine, anions can affect the

hydrogelation of Fmoc-Tyr-Leu, leading to the transformation
from fibrous structures to spherical aggregation. Ultrasonication
can also control the self-assembly process of Fmoc-Tyr-Leu by
transforming the coiled nanofibers to form spherical aggregates,
which means the stacking interactions of the fluorenyl rings are
enhanced. Bai group has recently reported two oppositely
charged dipeptide Fmoc-Tyr-Asp and Fmoc-Tyr-Lys, which
could self-assemble into β-sheet amyloid structures and form
tunable hydrogel (Jian et al., 2019). The mechanical and
biodegradation properties of the hydrogels could be adjusted
by changing the concentration and composition of the dipeptide.

They have also demonstrated that the formed hydrogels could
form, grow, and naturally release HepaRG spheroids with sizes up
to 1 mm, which might be suitable to use as bioinks.

Over the years, as more and more Fmoc-modified dipeptide
hydrogelators were reported, such as Fmoc-Phe-Tyr (Wang et al.,
2008; Sadownik et al., 2011; Hughes et al., 2013), Fmoc-Phe-Leu
(Ren et al., 2020), Fmoc-Phe-Cys (Wang and Chau, 2012), Fmoc-
Phe-Val (Najafi et al., 2021), Fmoc-Tyr-Ala (Bai et al., 2014; Ren
et al., 2020), Fmoc-Tyr-Ser (Hughes et al., 2012, 2013; Bai et al.,
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2014), Fmoc-Tyr-Thr (Hughes et al., 2012, 2013), Fmoc-Tyr-Asn
(Hughes et al., 2013), and Fmoc-Gly-Ser, which also self-
assembled into fibrillar structures like Fmoc-Phe-Phe, the
results indicated that the π–π and hydrophobic interactions of
intermolecular Fmoc groups are the main driving forces in the
self-assembly process of these systems. Moreover, double Fmoc
group-containing dipeptide, Fmoc-Lys (Fmoc)-Asp, as an
hydrogelator with the lowest CGC ever reported, 0.002 wt%
(28.3 × 10–6M), was reported by Gazit and Wei et al.
(Chakraborty et al., 2020). The conductive composite gels
formed from Fmoc-Lys (Fmoc)-Asp and polyaniline (PAni)

were cytocompatible and exhibited excellent DNA binding
properties, suggesting its potential application in DNA biochip
fabrication (Figure 2). However, the other analogies of the double
Fmoc group-containing dipeptides, Fmoc-Lys (Fmoc)-Ala,
Fmoc-Lys (Fmoc)-Cys, Fmoc-Lys (Fmoc)-Asn, and Fmoc-Lys
(Fmoc)-His formed hydrogels, but with lower mechanical
strength and considerably higher CGC value (>0.05 wt%)
compared to Fmoc-Lys (Fmoc)-Asp.

It is worth mentioning that not all the Fmoc-modified
dipeptides form hydrogels in specific conditions, and most
of those dipeptides generally form hydrogels at low pH, which

limited the applications in biomedical eras (Fichman and
Gazit, 2014; Hendi et al., 2020; Zhang and Huang, 2021).
Inspired by the success of Fmoc-modified dipeptide
hydrogelators, various aromatic moieties, such as phenyl,
naphthalene (Nap), azobenzene, and pyrene derivatives,
have been utilized to augment the hydrogelation or to
introduce functionality at the N-terminus of dipeptide
(Fleming and Ulijn, 2014). Among the N-terminal
aromatic-modified dipeptide hydrogelators, Nap-based

dipeptides have been the most widely studied. Nap-modified
dipeptides can usually form hydrogels, just like Fmoc-
modified dipeptides, by adjusting the solution pH. Adams
and coworkers have demonstrated that the gradual removal
of the charge allows lateral assembly of the molecules to form
fibrous structures by π–π stacking and β-sheet formation
(Chen et al., 2010a). They have also found out that the
nitrile or bromo groups substituted Nap-modified dipeptide
have shown better hydrogelation properties than non-
substituted ones, suggesting that the electron-withdrawing
nature of the bromo and nitro groups, which reduced the

electron density of the π-system, has an impact on the self-
assembly properties of the dipeptides via aromatic stacking
interactions. Moreover, Nap-Gly-Ala and Nap-Ala-Gly self-
assemble to different results as the pH of solution dropped:
Nap-Gly-Ala is induced to hydrogel, but Nap-Ala-Gly is
induced to crystallization (Chen et al., 2010a; Adams et al.,
2010).

A Nap-based dipeptide 2Nap-Phe-Phe can pack into hollow
tubes in the micellar state at high pH (McAulay et al., 2019), and
when the pH decrease, gels are formed because the hollow core is
lost, and lateral association leads to elliptical structures that

entangle to form the gels (Draper et al., 2020). Furthermore,
the micellar aggregates formed at high pH for dipeptide-based
gelators can be varied by simply using different salts to raise the
pH (McAulay et al., 2020). The change in cations leads to
different packing in the micellar phase and the formation of
different structures, thus affecting the properties of the
resulting gels.

Besides Fmoc and Nap groups, several other aromatic groups
have also been researched in N-terminal dipeptide modifications.

FIGURE 2 | (A) The structure of Fmoc-Lys (Fmoc)-Asp; (B, C) TEM and HRSEM images of Fmoc-Lys (Fmoc)-Asp hydrogels; (D) illustration of the probable

structure of the peptide–polyaniline (PAni) formed fibers; (E) DNA binding by the composite peptide–PAni hydrogel (Chakraborty et al., 2020).
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Gazit and coworkers have shown that N-terminal carboxybenzyl

(Cbz)-modified dipeptide Phe-Phe could form hydrogels with
different structures (such as nanowires, fibers, nanospheres, and
nanotoroids) by changing the starting solvent (Brown et al.,
2018). A library of Cbz-modified dehydrodipeptides Cbz-L-
Xaa-Z-ΔPhe-OH (Xaa � Met, Phe, Tyr, Ala, Gly) were
synthesized for hydrogel screening by Ferreira et al. (Veloso
et al., 2021). The Cbz-L-Met-Z-ΔPhe-OH and Cbz-L-Phe-Z-
ΔPhe-OH could form self-assembly hydrogels and could be
used as drug carriers for the delivery of curcumin and
doxorubicin.

In recent years, naphthalimide (NI) derivatives have received

increasing attention because of their unique photophysical
property and photostability (Schab-Balcerzak et al., 2015). Lin
group have reported four 1,8-naphthalimide (NI)-modified
dipeptide hydrogelators and found out that NI-Phe-Tyr, NI-
Tyr-Phe, and NI-Tyr-Tyr could form hydrogels under
physiological pH conditions (Hsu et al., 2018). Furthermore,
the NI-Tyr-Phe showed low cytotoxicity and could be applied
as a suitable carrier for drug delivery. They have also developed
NI-modified phosphate-based dipeptide NI-FYp (Chakravarthy
et al., 2020) (Figure 3), which formed spherical nanoparticles in
the aqueous condition firstly, and then in the condition of

enzymatic catalysis, they slowly transformed into partially
unzipped nanotubular structures and subsequently resulted in
hydrogelation.

2-Thiophene-modified diphenylalanine was reported by
Draper et al. that it could form transparent hydrogel from the
initially turbid gel after 3 days due to the effect of carbon dioxide,
which implied that the molecular rearrangement of the gelator
molecules and the self-assembly structures were becoming
smaller or thinner (Draper et al., 2015).

An anthracene ring is an interesting group in the dipeptide

hydrogelators researches. When the anthracene was directly
linked to the N-terminal of dipeptide by amide and no other
group between amide and anthracene, no formed hydrogels were
discovered, while a similar structure, but with an additional
OCH2 spacer between the anthracene ring and first amide
bond, was an effective hydrogelator (Chen et al., 2010b;
Awhida et al., 2015) (Figure 4). However, pyrene and Nap-
modified dipeptide, whether those conjugated directly or with
a longer spacer, were all reported to be effective hydrogelators.

Due to the redox activity of ferrocene (Fc), the Fc-modified
peptides have attracted great interest in biomedicine and sensing.

Qi et al. have reported that the Fc-Phe-Phe could form a self-
supporting hydrogel under kinetic control by introducing a
mechanical force, which showed a morphological transition
from metastable nanospheres to nanofibers. The strong
hydrophobic interaction of the Fc moiety was suggested to
have a key role in this kinetically controlled self-assembly
process. Moreover, Wang and coworkers have reported that
the same Fc-modified dipeptide Fc-Phe-Phe could self-
assemble into an ultra-pH-sensitive chiral hydrogel, which
formed at a very narrow pH range of 5.7–5.9 (Zhang et al.,
2020). The pure Fc-L-Phe-L-Phe or Fc-D-Phe-D-Phe peptide

could form self-assemble into right- or left-handed nanohelices in
a mixture of water and organic solvent, which indicated that
molecular chirality had a great influence on the gelation of the
peptides and water molecules are essential in directing the chiral
self-assembly of Fc-Phe-Phe into entangled chiral nanostructures,
leading to the formation of stimuli-responsive chiral hydrogels
(Figure 5).

Tetraphenylethylene (TPE), a supramolecular fluorescent
material (SFM) with aggregation-induced emission

FIGURE 3 | (A) The illustration of self-assembly NI-FYp dipeptide nanostructures which transformed from spherical nanoparticles into a hydrogel during the

enzymatic catalytic process; (B) TEM image of NI-FYp nanoparticles in Tris-buffer (10 mM); (C) particle size distribution histogram of NI-FYp (10 mM) nanoparticles by

TEM and DLS measurements; (D) TEM images of NI-FYp treated with 10 U of ALP (Chakravarthy et al., 2020).
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characteristics, has also been reported with dipeptides as
hydrogelators. Lin and his coworkers have found out that
the TPE-modified dipeptide TPE-Gly-Gly could be a
hydrogelator under basic media (pH � 10.5) and failed to
form hydrogels at neutral pH conditions, which are considered
as the main drawback for biomaterials (Yeh et al., 2016). Their

subsequent studies about TPE-modified dipeptides have
indicated that TPE-Phe-Phe was too hydrophobic, insoluble
in any aqueous conditions, and thus difficult to form a
hydrogel, while TPE-Tyr-Tyr (Figure 6A) was able to form
hydrogel under a broad pH range from 3.7 to 10.2 (Talloj et al.,
2020). The hydrogel formed by TPE-Tyr-Tyr showed tunable
morphology via pH: as the pH of the hydrogel decreases, the
nanostructure transformed from nanofiber to flat nanobelts
and then to twisted nanobelts. Furthermore, the TPE-Tyr-Tyr
displayed selective cell adhesion response for 3A6 cells

(Human MSCs), which have potential applications in tissue
engineering such as stem cell-based therapies.

Adams et al. have described other TPE-base dipeptides, while
the TPE was linked to dipeptide via 2-[4-(1,2,2-triphenylethenyl)
phenoxy]acetic acid (Figure 6B) (Castilla et al., 2018). Their
hydrogel formed by TPE-Phe-Phe showed syneresis properties,

and further studies have indicated that the molecular packing in
the calcium chloride and sodium chloride-triggered gels is
different (Figure 6C). Under high pH conditions, the TPE-
Phe-Phe solution initially could form a gel after adding
calcium chloride solution but dehydrated again over time,
which suggested that the samples were not self-supporting. On
the contrary, the addition of sodium chloride could lead to the
formation of a hydrogel. This suggested that the linker between
the TPE and peptide component is also important to the
properties of the hydrogels. The linker of TPE in Adams’

FIGURE 4 | The linker between the anthracene ring and dipeptide can affect gel formation.

FIGURE 5 | The molecular structure of the Fc-L-Phe-L-Phe-OH and Fc-L-Phe-L-Phe-OH; the illustration of the pH responsiveness of the hydrogel (Zhang et al.,

2020).
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research has more flexibility than that in Lin’s researches (Yeh
et al., 2016), which means that Adams’s TPE is not highly
restricted in molecular packing and the corresponding
hydrogels may have different properties.

Non-Aromatic-Modified Dipeptide
Although N-terminal aromatic-modified dipeptides have shown
interesting gelation properties in relation to stabilities and
mechanicals, it should be noted that the literature has reported
the toxicity of those groups, which may limit the biomedical
applications of those gels. For example, degradation products of
Fmoc-Phe-Phe showed some cytotoxicity because the highly
reactive dibenzofulvalene was formed upon cleavage of the
Fmoc group (Truong et al., 2015; D.; Martin and Thordarson,
2020). Naproxen-capped dipeptide Nap-Phe-Phe only showed

biocompatibility at low concentrations and the IC50 value is lower
than the minimum gel concentration, which suggested that the
molecule was not suitable for biomedical applications (Li et al.,
2013).

Haldar et al. have reported a N-(tert-butoxycarbonyl)

(N-Boc)-modified dipeptide Boc-Phe-Aib (Nandi et al., 2018),
which transformed into a robust hydrogel upon addition with
three equivalents of sodium hydroxide and water (Figure 7). The
other similar analogs of dipeptides, such as Boc-Tyr-Aib, Boc-
Trp-Aib, Boc-Phe-Ala (Sangeetha and Maitra, 2005), Boc-Phe-
Gly (O’Leary et al., 2011), and Boc-Aib-Phe, have all failed to
form such a hydrogel under the same condition. Haldar and the
coworkers have found out that the N-Boc-protected dipeptide
Boc-Phe-Val could form a hydrogel in the mixtures of NH4OH
and NaCl; Na2CO3 and LiOH; and NaCl and KOH (Podder et al.,

FIGURE 6 | The structure of (A) TPE-Tyr-Tyr reported by Lin group (Yeh et al., 2016); (B) TPE-Phe-Phe (TPE-FF) reported by Adams (Castilla et al., 2018); (C) from

left to right, a solution of TPE-FF at 5 mg/ml at high pH, at 10 mg/ml after a heat-cool cycle (formed hydrogel), at 5 mg/ml after the addition of glucono-dlactone (GdL), at

5 mg/ml after the addition of CaCl2, and at 5 mg/ml after the addition of NaCl (18 mg/ml) (formed hydrogel) (Castilla et al., 2018).

FIGURE 7 | The structures of dipeptide Boc-Phe-Aib analogs and their gelation studies (Nandi et al., 2018).
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FIGURE 8 | (A) APs scoring distribution of all 400 C13-dipeptides after 50ns CG-MD simulations. (B) Average distribution to APs of specific amino acids in the

N-terminus (blue) and C-terminal position (red) (Hu T. et al., 2020).

FIGURE 9 | The structures of C-terminal modified dipeptides by Ikeda et al.
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2019). This result suggested that sodium and hydroxide ions both
played a key role in hydrogel formation.

Recently, self-assembly hydrocarbonyl chain-modified
dipeptides (Cn-dipeptides) with lower toxicity and greater
biocompatibility than those modified with Boc, Nap, and/or
Fmoc have attracted more and more attention. The Adams
group has studied the hydrogelation properties of various
carbon chain lengths for modified dipeptide Cn-Phe-Phe
and found out that C12-CO-(C13-) was the optimal group
for dipeptide hydrogelators (Chen et al., 2013). In order to
understand the effects of the introduction of C13- into the

dipeptides, the combined computational and experimental
methods were used to investigate the self-assemblies and
gelations of C13-dipeptides (Hu T. et al., 2020). They have

tried to introduce a modified parameter-aggregation
propensity (APS), which accounted for side chain effects, to
help design peptide-based gelators (Figure 8). From those
experimental results, the APS values successfully
demonstrated the tendency of self-assembly of the C13-
dipeptides even though the models were based on a neutral
environment. However, the drawback of the selected C13-
dipeptides is that the hydrogels are usually formed at low
pH (∼4.0), which would limit the applications of those
hydrogels. Banerjee and coworkers (Baral et al., 2015) have
also reported that a C12-modified dipeptide (C12-Ala-Ala)

could form a hydrogel in phosphate buffer in the pH range
of 7.0–8.5, whereas the natural dipeptide (Ala-Ala) could not
form a gel.

FIGURE 10 | (A) The structure of Fmoc-Ile-Ile-TPP; (B) photographs of the hydrogel formed from the Fmoc-Ile-Ile-TPP in HFIP/H2O (2/8, v/v, 1 mM); (C) FESEM

image of the formed hydrogel (Nikoloudakis et al., 2019).

FIGURE 11 | LeuΔPhe can be self-assembled into a stable hydrogel at room temperature and applied in the biomedical field (Thota et al., 2016).
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C-TERMINAL MODIFIED DIPEPTIDES

The C-terminal carboxylic acid moieties of dipeptides could
usually be modified to perturb the hydrophobicity and
hydrogen bond capacity of the C-termius, which showed
significant effects on the self-assembling propensity, such as
the hydrogelation ability and morphology of the self-
assembled nanostructures.

Tuttle and Ulijn et al. have provided a combined experimental/
computational method to evaluate the hydrogelation properties
of various C-terminus modifications (amide vs. ester) of Fmoc-
dipeptide (Sasselli et al., 2016). The approach proved that amide
modification was more important than ester modification
because the Fmoc-Thr-Phe-NH2 could form more stable
hydrogels than Fmoc-Thr-Phe-OMe, possibly due to the extra
hydrogen bonds that the amide group forms upon self-assembly.
Ikeda et al. have reported C-terminal hydrazide-modified
dipeptide, Cbz-Phe-Phe-NHNH2, which showed limited
aqueous solubility and could not form a hydrogel, but its
carbohydrate derivatives could form a hydrogel (Tsuzuki et al.,

2017) (Figure 9). They have found out that the disaccharide
structures (epimer or glycosidic-bond geometry) have a

significant effect on the formation ability of the hydrogel and
the morphology of the self-assembled structures. The hydrazide
group C-terminal modified p-nitro-phenylmethoxycarbonyl
(NPmoc)-based dipeptide NPmoc-Phe-Ala-NHNH2 could
form a hydrogel, while the others like NPmoc-Ala-Phe-

NHNH2, NPmoc-Phe-Phe-NHNH2, and NPmoc-Ala-Ala-
NHNH2 failed to form hydrogel at the same conditions
(Ohtomi et al., 2020). Their results also indicated that
adjusting the side chain phenyl group position in the
dipeptide hydrazides could vary the dimensions of the self-
assembled nanostructures from 1D (fiber and tubular) to 2D
(sheet).

Coutsolelos et al. have synthesized several aliphatic dipeptides
bearing various protecting groups and found out that Fmoc-Ile-
Ile-TPP (TPP: tetraphenyl porphyrin) formed a hydrogel in
HFIP–water (2:8) solvent mixture, whereas TPP-Ile-Ile-OMe

and Boc-Ile-Ile-TPP failed to form hydrogel due to the
spherical assemblies in solvents (Figure 10) (Nikoloudakis
et al., 2019).

UNCAPPED DIPEPTIDE

Although uncapped dipeptides are very attractive building blocks
due to their chemical simplicity, they usually fail to form a stable

hydrogel, e.g., the Phe-Phe hydrogels were reported to be
metastable (Conte et al., 2016; Kurbasic et al., 2019; Kralj
et al., 2020), unless the Phe benzene ring of the dipeptide was
further modified by adding a p-nitro (Kurbasic et al., 2019) or
p-iondin (Kralj et al., 2020) substitution. For the uncapped
dipeptide composed of natural amino acids, Ventura and
coworkers have reported that Ile-Phe dipeptide can form a
stable hydrogel at pH 5.8 (de Groot et al., 2007); later,
Marchesan et al. found out that Leu-Phe dipeptide could form
a stable hydrogel in phosphate buffer (Bellotto et al., 2020).
However, besides these two dipeptides, no other dipeptide

FIGURE 12 | (A) and (B) Single-crystal XRD structure of D-(4-I)-Phe-L-

Phe (CCDC 016374). The light blue represents the hydrophilic layers and

iodine atoms (purple sphere) allowed Phe side chains in hydrophobic layers

(yellow); (C) single-crystal XRD structure (CCDC 2016373) of D-(4-F)-

Phe-L-Phe, which can pack to an intermediate level of bundling to generate

27 nm wide fibrils as observed by TEM (Kralj et al., 2020).

FIGURE 13 | (A) The structure of pentafluorinated Fmoc-Phe used by

Halperin-Sternfeld et al. (Halperin-Sternfeld et al., 2017); (B) The structure of

PEGylated (Phe-Tyf)3 hexapeptide.
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hydrogelator composed of natural amino acids has been reported
to form a stable hydrogel.

α,β-Dehydrophenylalanine (ΔPhe), an unsaturated analog of
Phe, was found to induce conformational constraints in the
peptide backbone and to usually yield a hydrogel. Chauhan
et al. have reported that uncapped dipeptide Phe-ΔPhe could
self-assemble into a stable hydrogel at minimal gelation

concentrations of 0.2 wt% in a buffer solution at pH 7.0
(Panda et al., 2008). Yadav and Thota have reported another
ΔPhe-containing dipeptide, Leu-ΔPhe, which could form a highly
stable andmechanically strong hydrogel under mild physiological
aqueous conditions (Thota et al., 2016). These hydrogels from
ΔPhe-containing dipeptide were found to be nontoxic and were
used to entrap several hydrophobic and hydrophilic drug
molecules and release them in a controlled manner (Figure 11).

The chirality of the composed amino acids affects the
hydrogelation ability of the uncapped dipeptide. Marchesan
et al. chose diphenylalanine as a model compound and studied

the self-organization of heterochiral D-Phe-L-Phe and its
halogenated derivatives (Figure 12, Kralj et al., 2020). Their
studies showed that D-Phe-L-Phe self-assembled into
nanofibrils and resulted in a transparent hydrogel. Besides,
they also found that halogenation had significant effects on
the self-assembling process. For example, fluorination induced
the analogous packing to nanotube formation, and iodination was
the most effective strategy to augment the stability of the
hydrogel.

MULTICOMPONENT SELF-ASSEMBLY

Multicomponent self-assembly is a hot topic at present, which
generally has advantages over a single component system (Li
et al., 2021a). Multicomponent self-assembly of two or more
different building blocks into one ordered nanostructure can
promote the formation of a wider and more complex
architecture, provide the tunable mechanical properties, enhance
stability, and provide spatiotemporal control of self-assembly
(Raeburn and Adams, 2015; Halperin-Sternfeld et al., 2017;
Makam and Gazit, 2018). Recently, multicomponent hydrogels
containing dipeptides have also attracted interest due to the
innovative scaffolds from multicomponent self-assembly. Some

studies have reported that the multicomponent self-assembly
containing dipeptides has significant effects on the mechanical
properties of those formed hydrogels. For example, Tendler and
coworkers have reported that themechanical properties of hydrogels
formed by two peptides Phe-Phe and di-D-2-napthylalanine could
be fine-tuned via changing their relative concentration (Sedman
et al., 2013). Abramovich et al. have analyzed the gelation kinetics of
mixed Fmoc-Phe-Phe/pentafluorinated Fmoc-Phe (Figure 13A)
and discovered that the mechanical properties were improved
(Halperin-Sternfeld et al., 2017). In the same way, the mix of
Fmoc-Phe-Phe and Fmoc-Arg can form new hydrogels, which
demonstrated high mechanical strength with a storage modulus

of up to 29 kPa in combination with the bone mineral
hydroxyapatite (Ghosh et al., 2017).

FIGURE 14 | AFM of (A) the gelators Pyr-YL and Fmoc-YL; (B) the surfactants Fmoc-S and Pyr-S; (C) orthogonal Pyr-YL/Fmoc-S and Fmoc-YL/Pyr-S; (D)

cooperative Pyr-YL/Fmoc-YL and Pyr-S/Fmoc-S; (E) disruptive Pyr-YL/Pyr-S and Fmoc-YL/Fmoc-S (Fleming et al., 2014).
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Fmoc-Phe-Phe and hexapeptide-based multicomponent
hydrogels were studied by the Accardo group, and they found
out that the combination of Fmoc-Phe-Phe with (Phe-Tyf)3
hexapeptide or its PEGylated analog (Figure 13B) at different

volumetric ratios (2/1 or 1/1 v/v) could provide hydrogels with
tunable mechanical properties (Diaferia et al., 2019a). For
instance, the PEGylated gel showed a decrease of the gel
rigidity and slowing down of the gel formation kinetics
compared to the un-PEGylated gel, and thus the mixed
hydrogel Fmoc-Phe-Phe/PEG8-(Phe-Tyf)3 (1/1) have minor
rigidity compared to Fmoc-Phe-Phe/PEG8-(Phe-Tyf)3 (2/1).

Ulijn and coworkers examined four different combinations of
Fmoc- and pyrene (Py)-modified compounds (Fleming et al.,
2014). The results showed that the combinations of two
structurally different peptides (Py-Tyr-Leu/Fmoc-Ser and

Fmoc-Tyr-Leu/Py-Ser) resulted in orthogonal coassembly,
while the structurally similar peptides (Py-Tyr-Leu/Fmoc-Tyr-
Leu and Py-Ser/Fmoc-Ser) followed the cooperative coassembly
process (Figures 14A,B,D). They discovered that Pyr-Ser could
perturb the intermolecular H-bonding and fiber formation
associated with Fmoc-Tyr-Leu and Py-Tyr-Leu (Figures
14C,E), while Fmoc-Ser showed a disruptive effect on the self-
assembly structure of Fmoc-Tyr-Leu (Figure 14E).

Yan et al. utilized the combination of dipeptide Fmoc-Phe-Phe
and fullerene to improve the mechanical properties of the
hydrogel for a better injectable formulation for biomedical

applications (Zhang et al., 2018). Due to the coassembly of
dipeptide and fullerene, the aggregation of fullerene in the
hydrogel was largely inhibited via the noncovalent interactions

between the dipeptide and the fullerene, and at the same time,
fullerene enhanced the mechanical properties of the dipeptide
hydrogel. The incorporation of the fullerene profoundly
improved the photodynamic therapy (PDT) efficiency

compared to the untreated fullerene, and the dipeptide-
fullerene hydrogels could effectively inhibit multiantibiotic-
resistant Staphylococcus aureus both in vitro and in vivo.

CONCLUSION

Self-assembly dipeptide hydrogel is the result of coordinated

noncovalent interactions among molecular, environmental,
and kinetic considerations. Although some successful dipeptide
hydrogels have been reported, it is still difficult to predict and
control the results of molecular assembly, which are derived by
various factors that are external (solvent, temperature, light, etc.)
and internal (molecular geometry, hydrophobicity, electronics,
etc.). Nonetheless, through the subtle design of dipeptide
molecules and the modification of the N- and C-terminus,
dipeptide hydrogels can have great potential applications in
preparing minimal biocompatible materials.
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