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Abstract

Herein we report a simple, one-pot, surfactant-free synthesis of 3D Ag microspheres (AgMSs) in aqueous phase at

room temperature. The 3D AgMSs act as supports to fix the gold nanoparticles (GNPs) in 3D space via the

interaction between the carboxyl groups of GNPs and the Ag atoms of AgMSs. The ensemble of AgMSs@GNPs with

high surface-enhanced Raman scattering (SERS) activity and sensitivity can be an ideal 3D substrate choice for

practical SERS detection applications. The simple self-assembly strategy may be extended to other metallic materials

with great potentials in SERS, catalysis, and photoelectronic devices.
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Background

Ensembles of inorganic nanoparticles, which display

unique collective properties that are different from those

of both the individual nanoparticles and bulk materials,

are of much scientific and technological interest [1-5].

The ensembles have the following potential advantages:

(1) to display new electronic, magnetic, and optical

properties as a result of interactions between the exci-

tons, magnetic moments, or surface plasmons of indi-

vidual nanoparticles; (2) to improve the mechanical

properties of composite materials; and (3) to allow mul-

tiple tasks to be performed simultaneously or in se-

quence. Typically, the self-assembly of noble-metal

nanoparticles has attracted much attention because of

their unique plasmon resonance and their tremendous

applications in the area of optical waveguides [6],

superlensing [7], photon detection [8], and surface-

enhanced Raman scattering (SERS) [9-12]. Recently, the

SERS effect based on noble-metal ensembles is of par-

ticular interest because of its extraordinary ability to

detect a wide variety of chemical/biological species at

extremely low concentrations even down to the single-

molecule level [9].

Gold nanoparticles (GNPs) have been widely used as

Raman active substrates because of their good biocom-

patibility and strong SERS enhancement [13-18]. How-

ever, it should be mentioned that the particles tend to

aggregate during aging, which results in an unwanted re-

duction of the active surface area [19,20]. To address

this issue, the fixation of GNPs in one-dimensional (1D),

2D, or 3D spaces can avoid the aggregation of the parti-

cles as SERS substrates. Tsukruk et al. assembled GNPs

onto 1D silver nanowires and 2D silver nanoplates to

create bimetallic nanostructures as efficient single-

nanoparticle Raman markers [21]. Li et al. developed a

2D GNP monolayer film as SERS substrate by the self-

assembly of nanoparticles at a liquid/liquid interface

[22]. Zhang et al. reported that GNPs dispersed on the

grapheme oxide (GO, 2D) and reduced graphene oxide

(RGO, 2D) supports exhibit excellent SERS and catalytic

performance compared with the metal nanoparticles

alone [23]. Qian et al. prepared the self-assembled 3D-

ordered GNP precursor composite (SiO2/GNPs) arrays

as SERS nanoprobes [24]. Choi et al. reported a highly
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ordered SERS-active surface that is provided by a 3D

GNP array based on thermal evaporation of gold onto

an indium tin oxide (ITO) surface through a nanoporous

alumina mask [25]. This SERS-active surface was applied

to analyze the intracellular state. Therefore, the develop-

ment of appropriate support materials to fix GNPs is

very important in practical SERS detection applications.

Recently, 3D Ag microspheres (AgMSs), which contain

special fine structure, large specific surface area, and

micron-sized particles, have been applied as SERS sub-

strates [19,26]. For example, Zhao et al. prepared 3D

AgMSs with nanotextured surface morphology by a sim-

ple, sonochemical, surfactant-free method. Due to their

special structural features with nanoscale corrugations,

the obtained 3D silver microstructures showed a struc-

turally enhanced SERS performance [19]. Zhang et al.

developed hierarchical assemblies of silver nanostruc-

tures as highly sensitive SERS platforms by an acid-

directed assembly method [26]. Our group also used

proteins [27] and microorganisms [28] as templates to

synthesize AgMSs and hollow porous AgMSs, respect-

ively. However, the controlled synthesis of AgMSs with

clean rough surface is still a significant challenge.

Herein, we report a simple, ‘one-pot’, surfactant-free syn-

thesis of 3D Ag microspheres by using silver nitrate

(AgNO3) along with L-ascorbic acid (L-AA) as a reducer in

aqueous phase at room temperature. The present method

provides a facile and rapid route to the large-scale synthesis

of 3D AgMSs with nanotextured surface morphology. The

GNPs were successfully assembled on the clean rough sur-

face of AgMSs via the interaction between the carboxyl

groups of GNPs and the silver atoms of AgMSs (Figure 1).

Figure 1 Schematic representation of the self-assembly between gold nanoparticles (GNPs) and Ag microspheres (AgMSs) via the

coupling between the carboxyl groups of GNPs and the silver atoms of AgMSs.

Figure 2 SEM images of the AgMSs obtained from a typical experiment. (a) Low-magnification SEM image of AgMSs, (b) high-

magnification SEM image of an individual AgMS, (c) SEM image of an individual AgMS after cut by vibratome, and (d) XRD pattern of AgMSs.
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Methods

Experimental section

Preparation of gold nanoparticles

Briefly, 50 mL (0.2 mg/mL) of chloroauric acid (Sigma-

Aldrich) was heated to boiling point, and then 1.2 mL

(10 mg/mL) of sodium citrate (Sigma-Aldrich) was added.

Boiling lasted for 5 min until the solution became dark

red in color. After cooling down to room temperature,

20 μL of GNPs was used for the analysis using transmis-

sion electron microscopy (TEM).

Zeta potential of the assemblies prepared at different molar

ratios of Ag microspheres to gold nanoparticles

Typically, 2.5 mL of 5 mM AgNO3 aqueous solution was

added to 95 mL of deionized (DI) water in a 150-mL

beaker. Then, 2.5 mL of 5 mM L-AA (Sigma-Aldrich)

was added into the above-mentioned solution under vig-

orous stirring at room temperature. The system was

stirred vigorously under ambient conditions for 4 h. The

color of the solution rapidly changed from colorless to

gray. The resulting product was collected by centrifuga-

tion, washed three times with DI water and ethanol, and

then dispersed in ethanol for further use.

Preparation of the assemblies of GNPs to AgMSs

AgMSs (10.8 mg) was dispersed in 0.9 mL of ethanol so-

lution, then 100 μL of different concentrations of GNPs

(0.4, 0.2, 0.1, 0.02, and 0.01 mg) were mixed with AgMSs

solution under ultrasonic interaction, respectively. After

10 min, the resulting product was collected by centrifu-

gation at 1,000 rpm for 5 min and washed twice with DI

water and then dispersed in 1 mL DI H2O for further use.

Preparation of Raman samples

A total of 200 μL of GNPs to AgMSs (AgMSs@GNPs)

was immersed in ethanol solutions containing 200 μL of

2-mercaptopyridine (2-Mpy) (10 to 7 M) under ultra-

sound for 10 min. After 2-Mpy molecules (Sigma-Aldrich)

were adsorbed on the AgMSs@GNPs, the samples were

washed twice with DI water and ethanol by centrifugation

and finally dispersed in 10 μL ethanol. Then, an aliquot of

10 μL of 2-Mpy-loaded AgMSs@GNPs in ethanol solution

was dropped onto a Si wafer. The dropped solution was

spread evenly into a circle. After evaporation of ethanol

under the dry N2, the sample was measured by a simple

Raman instrument for six times. All of the experiments

were carried out at room temperature.

Characterization

The UV-visible spectra were recorded in a Shimadzu

UV-2450 UV-visible spectrophotometer (Shimadzu Co.

Ltd., Beijing, China) from 300 to 600 nm. DI water was

used as the blank. SEM images were taken on a ZEISS-

ULTRA 55 scanning electron microscope (Carl Zeiss

AG, Oberkochen, Germany). For TEM, a drop of aque-

ous solution containing the samples was placed on the

carbon-coated copper grids and dried under an infrared

lamp for 30 min. The micrographs were obtained using

Figure 3 Histogram showing the size distribution of Ag

microspheres. Gaussian curve is represented by a red line.

Figure 4 TEM image and SAED pattern of Ag microspheres. TEM image of Ag microspheres (a) and the selected area electron diffraction

(SAED) pattern of the sample (b).
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a JEOL JEM-2010 transmission electron microscope

(JEOL Ltd., Tokyo, Japan) operating at an accelerating

voltage of 200 kV. Electron diffraction patterns were

also recorded for the selected area. The surface charge

of the samples was performed on NICOMP 380ZLS

(Zeta potential/particle sizer; Agilent Technologies Inc.,

Santa Clara, CA, USA) system. SERS spectra of 2-Mpy-

loaded AgMSs@GNPs were recorded by a simple Raman

instrument (BWS415 B&W Tek Inc., Newark, DE, USA).

Results and discussion

In a typical synthesis of AgMSs, 2.5 mL of 5 mM aque-

ous solution of AgNO3 was added to 95 mL of deionized

water in a 150 mL beaker. Then, 2.5 mL of 5 mM L-AA

was added into the above-mentioned solution under vig-

orous stirring at room temperature. The system was

stirred vigorously under ambient conditions for 4 h.

During the whole process, there was no addition of any

surfactants and/or organic solvents, and L-AA plays dual

roles as both reducing and capping agent. Figure 2a

shows the scanning electron microscopy (SEM) images

of the AgMSs obtained from a typical experiment. The

as-synthesized AgMSs are quasi-spherical with large

quantity and good uniformity. The average overall diam-

eter of Ag microspheres was 1.26 ± 0.11 μm, estimated

by measuring 200 randomly selected spheres in the en-

larged SEM images. The corresponding histogram of

AgMSs shows the particle size distribution fitted by a

Gaussian curve (Figure 3). The magnified SEM image

(Figure 2b) indicates that these microspheres possess

walnut-like rough morphologies with many trenches on

their surfaces. To investigate the structure of AgMSs,

the AgMSs were cut using a vibratome (UltraPro 5000;

Leica Biosystems Inc., Weltzar, Germany) and observed

by SEM, as shown in Figure 2c. It can be seen that the

AgMSs are solid inside. Figure 2d is the X-ray diffraction

(XRD) pattern of AgMSs. The peaks are assigned to

diffractions from the (111), (200), (220), and (311) planes

of face-centered cubic (fcc) Ag phase, respectively, which

were in good agreement with the reference (JCPDS

Figure 5 TEM image of gold nanoparticles dispersed in water.

Figure 6 SEM images of the assemblies prepared at molar ratios of AgMSs to GNPs. (a,b) 100:20, (c) 100:2, and (d) 100:1.
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04-0783). These planes with sharp peaks indicate that

the AgMSs are all well crystallized. The peaks can be

easily indexed to a pure cubic phase of silver. Meanwhile,

no other impurity peaks were detected, suggesting the

high purity of AgMSs. TEM is also performed to observe

the morphologies of the as-prepared AgMSs (Figure 4a).

The morphology of AgMSs is quasi-spherical, and the size

is approximately 1.26 μm. There are some convex struc-

tures on the edges of microspheres, indicating that their

surfaces are very rough. The results are consistent with

the observation of SEM. The selected area electron diffrac-

tion (SAED) pattern (Figure 4b) further reveals that the

AgMSs are crystalline with fcc structure and independent

orientations.

Gold nanoparticles were synthesized according to our

previous report [29]. TEM image of GNPs is shown in

Figure 5, indicating that the GNPs are spherical and

monodisperse with an average diameter of 15 nm. Based

on the interaction between the carboxyl groups and sil-

ver atoms, the GNPs were successfully assembled on the

surface of AgMSs [30]. Figure 6a,b,c,d clearly reveals

that GNPs are homogeneously distributed on the surface

of AgMSs. As can be seen, there are no changes in the

shape and size of GNPs and AgMSs after self-assembly.

With the increase of GNP concentration, the number of

GNPs on the surface of AgMSs is also increased. When

the molar ratio of AgMSs/GNPs is 100:20, the surface of

AgMSs is completely coated by GNPs (Figure 6b).

To further testify the self-assembly between GNPs and

AgMSs, the assemblies were also detected by a UV–vis

spectrophotometer. As shown in Figure 7a, there is a

strong absorption band in 350 to 600 nm for AgMSs.

The broad half-peak width indicates that the size of

AgMSs is bigger than nanoscale, which agrees with SEM

and TEM observations. The absorption spectrum of

GNPs displays a characteristic surface plasmon reson-

ance band at approximately 520 nm. Figure 7b shows

the UV–vis spectra of the assemblies prepared at differ-

ent AgMSs/GNPs molar ratios. With the increase of

GNP concentration, the intensity of the characteristic

band at approximately 520 nm in the assemblies is also

gradually increased. This is attributed to the increase of

GNPs on the surface of AgMSs. The assemblies are

negatively charged and display a GNP concentration-

dependent increase of negative charges on the surface

(Figure 8). The above facts suggest that the GNPs were

successfully assembled on the surface of AgMSs.

To evaluate the SERS activities of the assemblies of

GNPs to AgMSs (AgMSs@GNPs), we chose 2-Mpy as

targeted probing molecules [28]. Figure 9a shows the

representative SERS spectra of 2-Mpy molecules on the

assembled substrates of AgMSs to GNPs. All spectra ex-

hibit peaks at 1,001, 1,049, 1,080, and 1,114 cm−1, which

are assigned to the characteristic peaks of 2-Mpy mole-

cules. Figure 9b shows the corresponding enhancement

of the assembled substrates at different molar ratios of

AgMSs to GNPs relative to 2-Mpy on pure AgMSs.

Compared with the SERS activity of pure AgMSs, all

AgMSs@GNPs exhibit obvious enhancement of SERS sig-

nal in varying degrees. The most significant enhancement

Figure 8 Zeta potential of the assemblies prepared at different

molar ratios of Ag microspheres to gold nanoparticles.

Figure 7 Assemblies of AgMSs and GNPs detected by a UV–vis spectrophotometer. (a) UV–vis spectra of AgMSs and GNPs; (b) UV–vis

spectra of the assemblies prepared at different molar ratios of AgMSs to GNPs.
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of SERS signal is found at nAg/nAu ratio of 100:2, which is

about 14-fold higher than that of pure AgMSs. Further

increase of nAg/nAu ratio leads to decrease of SERS sig-

nal, which is likely due to the decreased nanogaps with

increased gold particle deposition onto the surface of

AgMSs. Several reasons can account for the enhanced

Raman scattering signal: (1) The 3D assemblies of

AgMSs@GNPs with huge, rough, and clean surface can

absorb more molecules; (2) There are abundant ‘hotspots’

at the nanoparticles junctions to amplify the local E-fields

as well as the Raman signal; and (3) AgMSs support the

GNPs in 3D space to avoid the aggregation of the particles

during application as SERS substrates.

Conclusions

In summary, we report a simple, one-pot, surfactant-free

synthesis of 3D AgMSs in aqueous phase at room temper-

ature. The 3D AgMSs act as supports to fix the GNPs in

3D space via the interaction between the carboxyl groups

of GNPs and the Ag atoms of AgMSs. The ensemble of

AgMSs@GNPs with high SERS activity and sensitivity can

be an ideal 3D substrate choice for practical SERS detec-

tion applications. The simple self-assembly strategy may

be extended to other metallic materials with great poten-

tials in SERS, catalysis, photoelectronic devices, etc.
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