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Abstract

In this paper, we propose the Self-Attention Gen-

erative Adversarial Network (SAGAN) which

allows attention-driven, long-range dependency

modeling for image generation tasks. Traditional

convolutional GANs generate high-resolution de-

tails as a function of only spatially local points

in lower-resolution feature maps. In SAGAN, de-

tails can be generated using cues from all feature

locations. Moreover, the discriminator can check

that highly detailed features in distant portions

of the image are consistent with each other. Fur-

thermore, recent work has shown that generator

conditioning affects GAN performance. Leverag-

ing this insight, we apply spectral normalization

to the GAN generator and find that this improves

training dynamics. The proposed SAGAN per-

forms better than prior work1, boosting the best

published Inception score from 36.8 to 52.52 and

reducing Fréchet Inception distance from 27.62 to

18.65 on the challenging ImageNet dataset. Visu-

alization of the attention layers shows that the gen-

erator leverages neighborhoods that correspond

to object shapes rather than local regions of fixed

shape.

1. Introduction

Image synthesis is an important problem in computer vi-

sion. There has been remarkable progress in this direc-

tion with the emergence of Generative Adversarial Net-

works (GANs) (Goodfellow et al., 2014). GANs based on

deep convolutional networks (Radford et al., 2016; Kar-

ras et al., 2018; Zhang et al.) have been especially suc-

cessful. However, by carefully examining the generated

samples from these models, we can observe that convo-
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lutional GANs (Odena et al., 2017; Miyato et al., 2018;

Miyato & Koyama, 2018) have much more difficulty in

modeling some image classes than others when trained on

multi-class datasets (e.g., ImageNet (Russakovsky et al.,

2015)). For example, while the state-of-the-art ImageNet

GAN model (Miyato & Koyama, 2018) excels at synthe-

sizing image classes with few structural constraints (e.g.,

ocean, sky and landscape classes, which are distinguished

more by texture than by geometry), it fails to capture geo-

metric or structural patterns that occur consistently in some

classes (for example, dogs are often drawn with realistic

fur texture but without clearly defined separate feet). One

possible explanation for this is that previous models rely

heavily on convolution to model the dependencies across

different image regions. Since the convolution operator has

a local receptive field, long range dependencies can only be

processed after passing through several convolutional layers.

This could prevent learning about long-term dependencies

for a variety of reasons: a small model may not be able

to represent them, optimization algorithms may have trou-

ble discovering parameter values that carefully coordinate

multiple layers to capture these dependencies, and these

parameterizations may be statistically brittle and prone to

failure when applied to previously unseen inputs. Increasing

the size of the convolution kernels can increase the represen-

tational capacity of the network but doing so also loses the

computational and statistical efficiency obtained by using

local convolutional structure. Self-attention (Cheng et al.,

2016; Parikh et al., 2016; Vaswani et al., 2017), on the

other hand, exhibits a better balance between the ability to

model long-range dependencies and the computational and

statistical efficiency. The self-attention module calculates

response at a position as a weighted sum of the features at

all positions, where the weights – or attention vectors – are

calculated with only a small computational cost.

In this work, we propose Self-Attention Generative Adver-

sarial Networks (SAGANs), which introduce a self-attention

mechanism into convolutional GANs. The self-attention

module is complementary to convolutions and helps with

modeling long range, multi-level dependencies across image

regions. Armed with self-attention, the generator can draw

images in which fine details at every location are carefully

coordinated with fine details in distant portions of the image.

Moreover, the discriminator can also more accurately en-

force complicated geometric constraints on the global image
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Figure 1. The proposed SAGAN generates images by leveraging complementary features in distant portions of the image rather than local

regions of fixed shape to generate consistent objects/scenarios. In each row, the first image shows five representative query locations with

color coded dots. The other five images are attention maps for those query locations, with corresponding color coded arrows summarizing

the most-attended regions.

structure.

In addition to self-attention, we also incorporate recent

insights relating network conditioning to GAN perfor-

mance. The work by (Odena et al., 2018) showed that

well-conditioned generators tend to perform better. We pro-

pose enforcing good conditioning of GAN generators using

the spectral normalization technique that has previously

been applied only to the discriminator (Miyato et al., 2018).

We have conducted extensive experiments on the ImageNet

dataset to validate the effectiveness of the proposed self-

attention mechanism and stabilization techniques. SAGAN

significantly outperforms prior work in image synthe-

sis by boosting the best reported Inception score from

36.8 to 52.52 and reducing Fréchet Inception distance

from 27.62 to 18.65. Visualization of the attention layers

shows that the generator leverages neighborhoods that cor-

respond to object shapes rather than local regions of fixed

shape. Our code is available at https://github.com/

brain-research/self-attention-gan.

2. Related Work

Generative Adversarial Networks. GANs have achieved

great success in various image generation tasks, including

image-to-image translation (Isola et al., 2017; Zhu et al.,

2017; Taigman et al., 2017; Liu & Tuzel, 2016; Xue et al.,

2018; Park et al., 2019), image super-resolution (Ledig

et al., 2017; Snderby et al., 2017) and text-to-image syn-

thesis (Reed et al., 2016b;a; Zhang et al., 2017; Hong

et al., 2018). Despite this success, the training of GANs is

known to be unstable and sensitive to the choices of hyper-

parameters. Several works have attempted to stabilize the

GAN training dynamics and improve the sample diversity by

designing new network architectures (Radford et al., 2016;

Zhang et al., 2017; Karras et al., 2018; 2019), modifying

the learning objectives and dynamics (Arjovsky et al., 2017;

Salimans et al., 2018; Metz et al., 2017; Che et al., 2017;

Zhao et al., 2017; Jolicoeur-Martineau, 2019), adding reg-

ularization methods (Gulrajani et al., 2017; Miyato et al.,

2018) and introducing heuristic tricks (Salimans et al., 2016;

Odena et al., 2017). Recently, Miyato et al. (Miyato et al.,

2018) proposed limiting the spectral norm of the weight

matrices in the discriminator in order to constrain the Lip-

schitz constant of the discriminator function. Combined

with the projection-based discriminator (Miyato & Koyama,

2018), the spectrally normalized model greatly improves

class-conditional image generation on ImageNet.

Attention Models. Recently, attention mechanisms have

become an integral part of models that must capture global

dependencies (Bahdanau et al., 2014; Xu et al., 2015; Yang

et al., 2016; Gregor et al., 2015; Chen et al., 2018). In

particular, self-attention (Cheng et al., 2016; Parikh et al.,

2016), also called intra-attention, calculates the response at

a position in a sequence by attending to all positions within

the same sequence. Vaswani et al. (Vaswani et al., 2017)

demonstrated that machine translation models could achieve

state-of-the-art results by solely using a self-attention model.

Parmar et al. (Parmar et al., 2018) proposed an Image Trans-

former model to add self-attention into an autoregressive

model for image generation. Wang et al. (Wang et al., 2018)

formalized self-attention as a non-local operation to model

the spatial-temporal dependencies in video sequences. In

spite of this progress, self-attention has not yet been ex-

plored in the context of GANs. (AttnGAN (Xu et al., 2018)

uses attention over word embeddings within an input se-

quence, but not self-attention over internal model states).

SAGAN learns to efficiently find global, long-range depen-

dencies within internal representations of images.

https://github.com/brain-research/self-attention-gan
https://github.com/brain-research/self-attention-gan
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Figure 2. The proposed self-attention module for the SAGAN. The ⊗ denotes matrix multiplication. The softmax operation is performed

on each row.

3. Self-Attention Generative Adversarial

Networks

Most GAN-based models (Radford et al., 2016; Salimans

et al., 2016; Karras et al., 2018) for image generation are

built using convolutional layers. Convolution processes the

information in a local neighborhood, thus using convolu-

tional layers alone is computationally inefficient for model-

ing long-range dependencies in images. In this section, we

adapt the non-local model of (Wang et al., 2018) to intro-

duce self-attention to the GAN framework, enabling both

the generator and the discriminator to efficiently model rela-

tionships between widely separated spatial regions. We call

the proposed method Self-Attention Generative Adversarial

Networks (SAGAN) because of its self-attention module

(see Figure 2).

The image features from the previous hidden layer x ∈

R
C×N are first transformed into two feature spaces f , g

to calculate the attention, where f(x) = Wfx, g(x) =
Wgx

βj,i =
exp(sij)

∑N

i=1 exp(sij)
, where sij = f(xi)

Tg(xj), (1)

and βj,i indicates the extent to which the model attends to

the ith location when synthesizing the jth region. Here, C
is the number of channels and N is the number of feature

locations of features from the previous hidden layer. The out-

put of the attention layer is o = (o1,o2, ...,oj , ...,oN ) ∈
R

C×N , where,

oj = v

(

N
∑

i=1

βj,ih(xi)

)

, h(xi) = Whxi, v(xi) = Wvxi.

(2)

In the above formulation, Wg ∈ R
C̄×C , Wf ∈ R

C̄×C ,

Wh ∈ R
C̄×C , and Wv ∈ R

C×C̄ are the learned weight ma-

trices, which are implemented as 1×1 convolutions. Since

We did not notice any significant performance decrease

when reducing the channel number of C̄ to be C/k, where

k = 1, 2, 4, 8 after few training epochs on ImageNet. For

memory efficiency, we choose k = 8 (i.e., C̄ = C/8) in all

our experiments.

In addition, we further multiply the output of the attention

layer by a scale parameter and add back the input feature

map. Therefore, the final output is given by,

yi = γoi + xi, (3)

where γ is a learnable scalar and it is initialized as 0. In-

troducing the learnable γ allows the network to first rely

on the cues in the local neighborhood – since this is eas-

ier – and then gradually learn to assign more weight to the

non-local evidence. The intuition for why we do this is

straightforward: we want to learn the easy task first and then

progressively increase the complexity of the task. In the

SAGAN, the proposed attention module has been applied to

both the generator and the discriminator, which are trained

in an alternating fashion by minimizing the hinge version

of the adversarial loss (Lim & Ye, 2017; Tran et al., 2017;

Miyato et al., 2018),

LD = − E(x,y)∼pdata
[min(0,−1 +D(x, y))]

− Ez∼pz,y∼pdata
[min(0,−1−D(G(z), y))],

LG = − Ez∼pz,y∼pdata
D(G(z), y),

(4)

4. Techniques to Stabilize the Training of

GANs

We also investigate two techniques to stabilize the training

of GANs on challenging datasets. First, we use spectral

normalization (Miyato et al., 2018) in the generator as well

as in the discriminator. Second, we confirm that the two-

timescale update rule (TTUR) (Heusel et al., 2017) is effec-

tive, and we advocate using it specifically to address slow

learning in regularized discriminators.
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4.1. Spectral normalization for both generator and

discriminator

Miyato et al. (Miyato et al., 2018) originally proposed sta-

bilizing the training of GANs by applying spectral normal-

ization to the discriminator network. Doing so constrains

the Lipschitz constant of the discriminator by restricting

the spectral norm of each layer. Compared to other normal-

ization techniques, spectral normalization does not require

extra hyper-parameter tuning (setting the spectral norm of

all weight layers to 1 consistently performs well in practice).

Moreover, the computational cost is also relatively small.

We argue that the generator can also benefit from spectral

normalization, based on recent evidence that the condition-

ing of the generator is an important causal factor in GANs’

performance (Odena et al., 2018). Spectral normalization in

the generator can prevent the escalation of parameter magni-

tudes and avoid unusual gradients. We find empirically that

spectral normalization of both generator and discriminator

makes it possible to use fewer discriminator updates per

generator update, thus significantly reducing the computa-

tional cost of training. The approach also shows more stable

training behavior.

4.2. Imbalanced learning rate for generator and

discriminator updates

In previous work, regularization of the discriminator (Miy-

ato et al., 2018; Gulrajani et al., 2017) often slows down

the GANs’ learning process. In practice, methods using

regularized discriminators typically require multiple (e.g.,

5) discriminator update steps per generator update step dur-

ing training. Independently, Heusel et al. (Heusel et al.,

2017) have advocated using separate learning rates (TTUR)

for the generator and the discriminator. We propose using

TTUR specifically to compensate for the problem of slow

learning in a regularized discriminator, making it possible

to use fewer discriminator steps per generator step. Using

this approach, we are able to produce better results given

the same wall-clock time.

5. Experiments

To evaluate the proposed methods, we conducted extensive

experiments on the LSVRC2012 (ImageNet) dataset (Rus-

sakovsky et al., 2015). First, in Section 5.1, we present

experiments designed to evaluate the effectiveness of the

two proposed techniques for stabilizing GANs’ training.

Next, the proposed self-attention mechanism is investigated

in Section 5.2. Finally, our SAGAN is compared with state-

of-the-art methods (Odena et al., 2017; Miyato & Koyama,

2018) on the image generation task in Section 5.3.

Evaluation metrics. We choose the Inception score

(IS) (Salimans et al., 2016) and the Fréchet Inception dis-

tance (FID) (Heusel et al., 2017) for quantitative evaluation.

The Inception score (Salimans et al., 2016) computes the KL

divergence between the conditional class distribution and

the marginal class distribution. Higher Inception score indi-

cates better image quality. We include the Inception score

because it is widely used and thus makes it possible to com-

pare our results to previous work. However, it is important

to understand that Inception score has serious limitations—

it is intended primarily to ensure that the model generates

samples that can be confidently recognized as belonging to

a specific class, and that the model generates samples from

many classes, not necessarily to assess realism of details or

intra-class diversity. FID is a more principled and compre-

hensive metric, and has been shown to be more consistent

with human evaluation in assessing the realism and varia-

tion of the generated samples (Heusel et al., 2017). FID

calculates the Wasserstein-2 distance between the gener-

ated images and the real images in the feature space of an

Inception-v3 network. Besides the FID calculated over the

whole data distribution (i.e.., all 1000 classes of images in

ImageNet), we also compute FID between the generated

images and dataset images within each class (called intra

FID (Miyato & Koyama, 2018)). Lower FID and intra FID

values mean closer distances between synthetic and real data

distributions. In all our experiments, 50k samples are ran-

domly generated for each model to compute the Inception

score, FID and intra FID.

Network structures and implementation details. All

the SAGAN models we train are designed to generate

128×128 images. By default, spectral normalization (Miy-

ato et al., 2018) is used for the layers in both the generator

and the discriminator. Similar to (Miyato & Koyama, 2018),

SAGAN uses conditional batch normalization in the gen-

erator and projection in the discriminator. For all models,

we use the Adam optimizer (Kingma & Ba, 2015) with

β1 = 0 and β2 = 0.9 for training. By default, the learning

rate for the discriminator is 0.0004 and the learning rate for

the generator is 0.0001.

5.1. Evaluating the proposed stabilization techniques

In this section, experiments are conducted to evaluate the

effectiveness of the proposed stabilization techniques, i.e.,

applying spectral normalization (SN) to the generator and

utilizing imbalanced learning rates (TTUR). In Figure 3, our

models “SN on G/D” and “SN on G/D+TTUR” are com-

pared with a baseline model, which is implemented based

on the state-of-the-art image generation method (Miyato

et al., 2018). In this baseline model, SN is only utilized

in the discriminator. When we train it with 1:1 balanced

updates for the discriminator (D) and the generator (G), the

training becomes very unstable, as shown in the leftmost

sub-figures of Figure 3. It exhibits mode collapse very early

in training. For example, the top-left sub-figure of Figure 4
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Figure 3. Training curves for the baseline model and our models with the proposed stabilization techniques, “SN on G/D” and two-

timescale learning rates (TTUR). All models are trained with 1:1 balanced updates for G and D.

illustrates some images randomly generated by the baseline

model at the 10k-th iteration. Although in the the original

paper (Miyato et al., 2018) this unstable training behavior

is greatly mitigated by using 5:1 imbalanced updates for

D and G, the ability to be stably trained with 1:1 balanced

updates is desirable for improving the convergence speed

of the model. Thus, using our proposed techniques means

that the model can produce better results given the same

wall-clock time. Given this, there is no need to search for a

suitable update ratio for the generator and discriminator. As

shown in the middle sub-figures of Figure 3, adding SN to

both the generator and the discriminator greatly stabilized

our model “SN on G/D”, even when it was trained with

1:1 balanced updates. However, the quality of samples does

not improve monotonically during training. For example,

the image quality as measured by FID and IS is starting to

drop at the 260k-th iteration. Example images randomly

generated by this model at different iterations can be found

in Figure 4. When we also apply the imbalanced learning

rates to train the discriminator and the generator, the quality

of images generated by our model “SN on G/D+TTUR”

improves monotonically during the whole training process.

As shown in Figure 3 and Figure 4, we do not observe any

significant decrease in sample quality or in the FID or the

Inception score during one million training iterations. Thus,

both quantitative results and qualitative results demonstrate

the effectiveness of the proposed stabilization techniques

for GANs’ training. They also demonstrate that the effect

of the two techniques is at least partly additive. In the rest

of experiments, all models use spectral normalization for

both the generator and discriminator and use the imbalanced

learning rates to train the generator and the discriminator

with 1:1 updates.

5.2. Self-attention mechanism.

To explore the effect of the proposed self-attention mecha-

nism, we build several SAGAN models by adding the self-

attention mechanism to different stages of the generator and

the discriminator. As shown in Table 1, the SAGAN mod-

els with the self-attention mechanism at the middle-to-high

level feature maps (e.g., feat32 and feat64) achieve better

performance than the models with the self-attention mecha-

nism at the low level feature maps (e.g., feat8 and feat16).

For example, the FID of the model “SAGAN, feat8” is im-

proved from 22.98 to 18.28 by “SAGAN, feat32”. The rea-

son is that self-attention receives more evidence and enjoys

more freedom to choose conditions with larger feature maps

(i.e., it is complementary to convolution for large feature

maps), however, it plays a similar role as the local convo-

lution when modeling dependencies for small (e.g., 8×8)

feature maps. It demonstrates that the attention mechanism

gives more power to both the generator and the discrimi-

nator to directly model the long-range dependencies in the

feature maps. In addition, the comparison of our SAGAN
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Baseline: SN on D
(10k, FID=181.84)

SN on G/D
(10k, FID=93.52)

SN on G/D
(160k, FID=33.39)

SN on G/D
(260k, FID=72.41)

SN on G/D+TTUR
(10k, FID=99.04)

SN on G/D+TTUR
(160k, FID=40.96)

SN on G/D+TTUR
(260k, FID=34.62)

SN on G/D+TTUR
(1M, FID=22.96)

Figure 4. 128×128 examples randomly generated by the baseline model and our models “SN on G/D” and “SN on G/D+TTUR”.

Model
no

attention
SAGAN Residual

feat8 feat16 feat32 feat64 feat8 feat16 feat32 feat64
FID 22.96 22.98 22.14 18.28 18.65 42.13 22.40 27.33 28.82

IS 42.87 43.15 45.94 51.43 52.52 23.17 44.49 38.50 38.96

Table 1. Comparison of Self-Attention and Residual block on GANs. These blocks are added into different layers of the network. All

models have been trained for one million iterations, and the best Inception scores (IS) and Fréchet Inception distance (FID) are reported.

featk means adding self-attention to the k×k feature maps.

and the baseline model without attention (2nd column of

Table 1) further shows the effectiveness of the proposed

self-attention mechanism.

Compared with residual blocks with the same number of pa-

rameters, the self-attention blocks also achieve better results.

For example, the training is not stable when we replace the

self-attention block with the residual block in 8×8 feature

maps, which leads to a significant decrease in performance

(e.g., FID increases from 22.98 to 42.13). Even for the cases

when the training goes smoothly, replacing the self-attention

block with the residual block still leads to worse results in

terms of FID and Inception score. (e.g., FID 18.28 vs 27.33

in feature map 32 × 32). This comparison demonstrates that

the performance improvement given by using SAGAN is

not simply due to an increase in model depth and capacity.

To better understand what has been learned during the gen-

eration process, we visualize the attention weights of the

generator in SAGAN for different images. Some sample

images with attention are shown in Figure 5 and Figure 1.

We observe that the network learns to allocate attention ac-

cording to similarity of color and texture, rather than just

spatial adjacency. For example, in the top-left cell of Fig-

ure 1, the red point attends mostly to the body of the bird

around it, however, the green point learns to attend to other

side of the image. In this way, the image has a consistent

background (i.e., trees from the left to the right though they

are separated by the bird). Similarly, the blue point allocates

the attention to the whole tail of the bird to make the gener-

ated part coherent. Those long-range dependencies could

not be captured by convolutions with local receptive fields.

We also find that although some query points are quite close

in spatial location, their attention maps can be very differ-

ent, as shown in the bottom-left cell. The red point attends

mostly to the background regions, whereas the blue point,

though adjacent to red point, puts most of the attention on

the foreground object. This also reduces the chance for the

local errors to propagate, since the adjacent position has

the freedom to choose to attend to other distant locations.

These observations further demonstrate that self-attention
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Figure 5. Visualization of attention maps. These images were generated by SAGAN. We visualize the attention maps of the last generator

layer that used attention, since this layer is the closest to the output pixels and is the most straightforward to project into pixel space

and interpret. In each cell, the first image shows three representative query locations with color coded dots. The other three images are

attention maps for those query locations, with corresponding color coded arrows summarizing the most-attended regions. We observe that

the network learns to allocate attention according to similarity of color and texture, rather than just spatial adjacency (see the top-left cell).

We also find that although some query points are quite close in spatial location, their attention maps can be very different, as shown in the

bottom-left cell. As shown in the top-right cell, SAGAN is able to draw dogs with clearly separated legs. The blue query point shows that

attention helps to get the structure of the joint area correct. See the text for more discussion about the properties of learned attention maps.

is complementary to convolutions for image generation in

GANs. As shown in the top-right cell, SAGAN is able to

draw dogs with clearly separated legs. The blue query point

shows that attention helps to get the structure of the joint

area correct.

5.3. Comparison with the state-of-the-art

Our SAGAN is also compared with the state-of-the-art GAN

models (Odena et al., 2017; Miyato & Koyama, 2018) for

class conditional image generation on ImageNet. As shown

in Table 2, our proposed SAGAN achieves the best Incep-

tion score, intra FID and FID. The proposed SAGAN sig-

nificantly improves the best published Inception score from

36.8 to 52.52. The lower FID (18.65) and intra FID (83.7)

achieved by the SAGAN also indicates that the SAGAN

can better approximate the original image distribution by

using the self-attention module to model the long-range

dependencies between image regions.

Figure 6 shows some comparison results and generated-

images for representative classes of ImageNet. We observe

that our SAGAN achieves much better performance (i.e.,

lower intra FID) than the state-of-the-art GAN model (Miy-

ato & Koyama, 2018) for synthesizing image classes with

complex geometric or structural patterns, such as goldfish

and Saint Bernard. For classes with few structural con-

straints (e.g., valley, stone wall and coral fungus, which

are distinguished more by texture than by geometry), our

SAGAN shows less superiority compared with the baseline

model (Miyato & Koyama, 2018). Again, the reason is

that the self-attention in SAGAN is complementary to the

convolution for capturing long-range, global-level depen-

dencies occurring consistently in geometric or structural

patterns, but plays a similar role as the local convolution

when modeling dependencies for simple texture.

6. Conclusion

In this paper, we proposed Self-Attention Generative Ad-

versarial Networks (SAGANs), which incorporate a self-

attention mechanism into the GAN framework. The self-

attention module is effective in modeling long-range de-

pendencies. In addition, we show that spectral normaliza-

tion applied to the generator stabilizes GAN training and

that TTUR speeds up training of regularized discrimina-

tors. SAGAN achieves the state-of-the-art performance on

class-conditional image generation on ImageNet.
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Model Inception Score Intra FID FID

AC-GAN (Odena et al., 2017) 28.5 260.0 /

SNGAN-projection (Miyato & Koyama, 2018) 36.8 92.4 27.62∗

SAGAN 52.52 83.7 18.65

Table 2. Comparison of the proposed SAGAN with state-of-the-art GAN models (Odena et al., 2017; Miyato & Koyama, 2018) for class

conditional image generation on ImageNet. FID of SNGAN-projection is calculated from officially released weights.

goldfish

(44.4, 58.1)

indigo

bunting

(53.0, 66.8)

redshank
(48.9, 60.1)

saint
bernard

(35.7, 55.3)

tiger
cat

(88.1, 90.2)

stone
wall

(57.5, 49.3)

geyser

(21.6, 19.5)

valley

(39.7, 26.0)

coral
fungus

(38.0, 37.2)

Figure 6. 128x128 example images generated by SAGAN for different classes. Each row shows examples from one class. In the leftmost

column, the intra FID of our SAGAN (left) and the state-of-the-art method (Miyato & Koyama, 2018)) (right) are listed.
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