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Abstract

Advanced methods of applying deep learning to

structured data such as graphs have been proposed

in recent years. In particular, studies have fo-

cused on generalizing convolutional neural net-

works to graph data, which includes redefining

the convolution and the downsampling (pooling)

operations for graphs. The method of generaliz-

ing the convolution operation to graphs has been

proven to improve performance and is widely

used. However, the method of applying down-

sampling to graphs is still difficult to perform

and has room for improvement. In this paper, we

propose a graph pooling method based on self-

attention. Self-attention using graph convolution

allows our pooling method to consider both node

features and graph topology. To ensure a fair

comparison, the same training procedures and

model architectures were used for the existing

pooling methods and our method. The experimen-

tal results demonstrate that our method achieves

superior graph classification performance on the

benchmark datasets using a reasonable number of

parameters.

1. Introduction

The advent of deep learning has led to extensive improve-

ments in technology used to recognize and utilize patterns

in data (LeCun et al., 2015). In particular, convolutional

neural networks (CNNs) successfully leverage the proper-

ties of data such as images, speech, and video on Euclidean

domains (grid structure) (Hinton et al., 2012; Krizhevsky

et al., 2012; He et al., 2016; Karpathy et al., 2014). CNNs

consist of convolutional layers and downsampling (pool-

ing) layers. The convolutional and pooling layers exploit

the shift-invariance (also known as stationary) property and
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compositionality of grid-structured data (Simoncelli & Ol-

shausen, 2001; Bronstein et al., 2017). As a result, CNNs

perform well with a small number of parameters.

In various fields, however, a large amount of data, such

as graphs, exists on the non-Euclidean domain. For exam-

ple, social networks, biological networks, and molecular

structures can be represented by nodes and edges of graphs

(Lazer et al., 2009; Davidson et al., 2002; Duvenaud et al.,

2015). Therefore, attempts have been made to successfully

use CNNs in the non-Euclidean domain. Most previous

studies have redefined the convolution and pooling layers to

process graph data.

To define graph convolution, studies have used the spectral

(Bruna et al., 2014; Henaff et al., 2015; Defferrard et al.,

2016; Kipf & Welling, 2016) and non-spectral (Monti et al.,

2017; Hamilton et al., 2017; Xu et al., 2018a; Velikovi et al.,

2018; Morris et al., 2018) methods. The application of

graph convolution has resulted in outstanding performance

in a variety of fields which include recommender systems

(van den Berg et al., 2017; Yao & Li, 2018; Monti et al.,

2017), chemical researches (You et al., 2018; Zitnik et al.,

2018), natural language processing (Bastings et al., 2017;

Peng et al., 2018; Yao et al., 2018), and in many tasks as

reported in Zhou et al..

There are fewer methods for graph pooling than for graph

convolution. Previous researches have adopted the pooling

method that considers only graph topology (Defferrard et al.,

2016; Rhee et al., 2018). With growing interest in graph

pooling, several improved methods have been proposed (Dai

et al., 2016; Duvenaud et al., 2015; Gilmer et al., 2017b;

Zhang et al., 2018b). They utilize node features to obtain a

smaller graph representation. Recently, Ying et al.; Gao &

Ji; Cangea et al. have proposed innovative pooling methods

that can learn hierarchical representations of graphs. These

methods allow Graph Neural Networks (GNNs) to attain

scaled-down graphs after pooling in an end-to-end fashion.

However, the above pooling methods have room for im-

provement. For example, the differentiable hierarchical

pooling method of Ying et al. has a quadratic storage com-

plexity and the number of its parameters is dependent on the

number of nodes. Gao & Ji; Cangea et al. have addressed

the complexity issue, but their method does not take graph

topology into account.
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Here, we propose SAGPool which is a Self-Attention Graph

Pooling method for GNNs in the context of hierarchical

graph pooling. Our method can learn hierarchical repre-

sentations in an end-to-end fashion using relatively few

parameters. The self-attention mechanism is exploited to

distinguish between the nodes that should be dropped and

the nodes that should be retained. Due to the self-attention

mechanism which uses graph convolution to calculate atten-

tion scores, node features and graph topology are considered.

In short, SAGPool, which has the advantages of the previ-

ous methods, is the first method to use self-attention for

graph pooling and achieve high performance. The code is

available on Github 1

2. Related Work

GNNs have drawn considerable attention due to their state-

of-the-art performance on tasks in the graph domain. Stud-

ies on GNNs focus on extending the convolution and pool-

ing operation, which are the main components of CNN, to

graphs.

2.1. Graph Convolution

Convolution operation on graphs can be defined in either

the spectral or non-spectral domain. Spectral approaches

focus on redefining the convolution operation in the Fourier

domain, utilizing spectral filters that use the graph Lapla-

cian. Kipf & Welling proposed a layer-wise propagation

rule that simplifies the approximation of the graph Laplacian

using the Chebyshev expansion method (Defferrard et al.,

2016). The goal of non-spectral approaches is to define the

convolution operation so that it works directly on graphs.

In general non-spectral approaches, the central node aggre-

gates features from adjacent nodes when its features are

passed to the next layer rather than defining the convolution

operation in the Fourier domain. Hamilton et al. proposed

GraphSAGE which learns node embeddings through sam-

pling and aggregation. While GraphSAGE operates in a

fixed-size neighborhood, Graph Attention Network (GAT)

(Velikovi et al., 2018), based on attention mechanisms (Bah-

danau et al., 2014), computes node representations in entire

neighborhoods. Both approaches have improved perfor-

mance on graph-related tasks.

2.2. Graph Pooling

Pooling layers enable CNN models to reduce the number

of parameters by scaling down the size of representations,

and thus avoid overfitting. To generalize CNNs, the pooling

method for GNNs is necessary. Graph pooling methods can

be grouped into the following three categories: topology

based, global, and hierarchical pooling.

1https://github.com/inyeoplee77/SAGPool

Topology based pooling Earlier works used graph coarsen-

ing algorithms rather than neural networks. Spectral cluster-

ing algorithms use eigendecomposition to obtain coarsened

graphs. However, alternatives were needed due to the time

complexity of eigendecomposition. Graclus(Dhillon et al.,

2007) computes clustered versions of given graphs without

eigenvectors because of the mathematical equivalence be-

tween a general spectral clustering objective and a weighted

kernel k-means objective. Even in recent GNN models (Def-

ferrard et al., 2016; Rhee et al., 2018), Graclus is employed

as a pooling module.

Global pooling Unlike the previous methods, global pool-

ing methods consider graph features. Global pooling meth-

ods use summation or neural networks to pool all the rep-

resentations of nodes in each layer. Graphs with different

structures can be processed because global pooling meth-

ods collect all the representations. Gilmer et al. viewed

GNNs as message passing schemes, and proposed a general

framework for graph classification where entire graph repre-

sentations could be obtained by utilizing the Set2Set(Vinyals

et al., 2015) method. SortPool(Zhang et al., 2018b) sorts

embeddings for nodes according to the structural roles of a

graph and feeds the sorted embeddings to the next layers.

Hierarchical pooling Global pooling methods do not learn

hierarchical representations which are crucial for capturing

structural information of graphs. The main motivation of

hierarchical pooling methods is to build a model that can

learn feature- or topology-based node assignments in each

layer. Ying et al. proposed DiffPool which is a differentiable

graph pooling method that can learn assignment matrices in

an end-to-end fashion. A learned assignment matrix in layer

l, S(l) ∈ R
nl×nl+1 contains the probability values of nodes

in layer l being assigned to clusters in the next layer l + 1.

Here, nl denotes the number of nodes in layer l. Specifically,

nodes are assigned by the following equation:

S(l) = softmax(GNNl(A
(l), X(l)))

A(l+1) = S(l)⊤A(l)S(l) (1)

where X denotes the node feature matrix and A is the adja-

cency matrix.

Cangea et al. utilized gPool(Gao & Ji, 2019) and achieved

performance comparable to that of DiffPool. gPool requires

a storage complexity of O(|V |+ |E|) whereas DiffPool re-

quires O(k|V |2) where V , E, and k denote vertices, edges,

and pooling ratio, respectively. gPool uses a learnable vector

p to calculate projection scores, and then uses the scores to

select the top ranked nodes. Projection scores are obtained

by the dot product between p and the features of all the

nodes. The scores indicate the amount of information of

nodes that can be retained. The following equation roughly

describes the pooling procedure in gPool.

y = X(l)
p
(l)/‖p(l)‖, idx = top-rank(y, ⌈kN⌉)

https://github.com/inyeoplee77/SAGPool
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Figure 1. An illustration of the SAGPool layer.

A(l+1) = A
(l)
idx,idx (2)

As in Equation (2), the graph topology does not affect the

projection scores.

To further improve graph pooling, we propose SAGPool

which can use features and topology to yield hierarchical

representations with a reasonable complexity of time and

space.

3. Proposed Method

The key point of SAGPool is that it uses a GNN to provide

self-attention scores. In Section 3.1, we describe the mecha-

nism of SAGPool and its variants. Model architectures for

the evaluations are described in Section 3.2. The SAGPool

layer and the model architectures are illustrated in Figure 1

and Figure 2, respectively.

3.1. Self-Attention Graph Pooling

Self-attention mask Attention mechanisms have been

widely used in the recent deep learning studies (Parikh

et al., 2016; Cheng et al., 2016; Zhang et al., 2018a; Ve-

likovi et al., 2018). Such mechanisms make it possible to

focus more on important features and less on unimportant

features. In particular, self-attention, commonly referred

to as intra-attention, allows input features to be the criteria

for the attention itself (Vaswani et al., 2017). We obtain

self-attention scores using graph convolution. For instance,

if the graph convolution formula of Kipf & Welling is used,

the self-attention score Z ∈ R
N×1 is calculated as follows.

Z = σ(D̃−
1
2 ÃD̃−

1
2XΘatt) (3)

where σ is the activation function (e.g. tanh), Ã ∈ R
N×N

is the adjacency matrix with self-connections (i.e. Ã =

A+IN ), D̃ ∈ R
N×N is the degree matrix of Ã, X ∈ R

N×F

is the input features of the graph with N nodes and F -

dimensional features, and Θatt ∈ R
F×1 is the only parame-

ter of the SAGPool layer. By utilizing graph convolution to

obtain self-attention scores, the result of the pooling is based

on both graph features and topology. We adopt the node

selection method of Gao & Ji; Cangea et al., which retains

a portion of nodes of the input graph even when graphs of

varying sizes and structures are inputted. The pooling ratio

k ∈ (0, 1] is a hyperparameter that determines the number

of nodes to keep. The top ⌈kN⌉ nodes are selected based

on the value of Z.

idx = top-rank(Z, ⌈kN⌉), Zmask = Zidx (4)

where top-rank is the function that returns the indices of the

top ⌈kN⌉ values, ·idx is an indexing operation and Zmask is

the feature attention mask.

Graph pooling An input graph is processed by the opera-

tion notated as masking in Figure 1.

X ′ = Xidx,:, Xout = X ′ ⊙ Zmask, Aout = Aidx,idx (5)

where Xidx,: is the row-wise (i.e. node-wise) indexed fea-

ture matrix, ⊙ is the broadcasted elementwise product, and

Aidx,idx is the row-wise and col-wise indexed adjacency ma-

trix. Xout and Aout are the new feature matrix and the

corresponding adjacency matrix, respectively.

Variation of SAGPool The main reason for using graph

convolution in SAGPool is to reflect the topology as well as

node features. The various formulas of GNNs can be substi-

tuted for Equation (3), if GNNs take the node feature and

the adjacency matrix as inputs. The generalized equation

for calculating the attention score Z ∈ R
N×1 is as follows.

Z = σ(GNN(X,A)) (6)
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where X denotes the node feature matrix and A is the adja-

cency matrix.

There are several ways to calculate attention scores using

not only adjacent nodes but also multi-hop connected nodes.

In Equation (7) and (8), we illustrate examples of using the

two-hop connections which involve the augmentation of

edges and the stack of GNN layers. Adding the square of an

adjacency matrix creates edges between two-hop neighbors.

Z = σ(GNN(X,A+A2)) (7)

The stack of GNN layers allows for the indirect aggregation

of two-hop nodes. In this case, the nonlinearity and the

number of parameters of the SAGPool layer increase.

Z = σ(GNN2(σ(GNN1(X,A)), A)) (8)

Equations (7) and (8) can be applied to the multi-hop con-

nections.

Another variant is to average multiple attention scores. The

average attention score is obtained by M GNNs as follows:

Z =
1

M

∑

m

σ(GNNm(X,A)) (9)

In this paper, the models using Equation (7), (8), and (9)

are referred to as SAGPoolaugmentation, SAGPoolserial , and

SAGPoolparallel, respectively.

3.2. Model Architecture

According to Lipton & Steinhardt, if numerous modifica-

tions are made to a model, it may be difficult to identify

which modification contributes to improving performance.

For a fair comparison, we adopted the model architectures

from Zhang et al. and Cangea et al., and compared the

baselines and our method using the same architectures.

Convolution layer As mentioned in Section 2.1, there are

many definitions for graph convolution. Other types of

graph convolution may improve performance, but we utilize

the widely used graph convolution proposed by Kipf &

Welling for all the models. Equation (10) is the same as

Equation (3), except for the dimension of Θ.

h(l+1) = σ(D̃−
1
2 ÃD̃−

1
2h(l)Θ) (10)

where h(l) is the node representation of l-th layer and

Θ ∈ R
F×F ′

is the convolution weight with input feature di-

mension F and output feature dimension F ′. The Rectified

Linear Unit (ReLU) (Nair & Hinton, 2010) function is used

as an activation function.

Readout layer Inspired by the JK-net architecture (Xu et al.,

2018b), Cangea et al. proposed a readout layer that aggre-

gates node features to make a fixed size representation. The

Figure 2. The global pooling architecture (left) and the hierarchical

pooling architecture (right). These architectures are applied to all

the baselines and SAGPool for a fair comparison. In this paper,

the architecture on the left side is referred to as POOLg and the

architecture on the right side is referred to as POOLh with the

POOL method (e.g. SAGPoolg , gPoolh).

summarized output feature of the readout layer is as follows:

s =
1

N

N∑

i=1

xi ||
N

max
i=1

xi (11)

where N is the number of nodes, xi is the feature vector of

i-th node, and || denotes concatenation.

Global pooling architecture We implemented the global

pooling architecture proposed by Zhang et al.. As shown in

Figure 2, the global pooling architecture consists of three

graph convolutional layers and the outputs of each layer are

concatenated. Node features are aggregated in the readout

layer which follows the pooling layer. Then graph feature

representations are passed to the linear layer for classifica-

tion.

Hierarchical pooling architecture In this setting, we im-

plemented the hierarchical pooling architecture from the

recent hierarchical pooling study of Cangea et al.. As shown

in Figure 2, the architecture is comprised of three blocks

each of which consists of a graph convolutional layer and

a graph pooling layer. The outputs of each block are sum-

marized in the readout layer. The summation of the outputs

of each readout layer is fed to the linear layer for classifica-



Self-Attention Graph Pooling

Table 1. Statistics of data sets.

Data set Number of Graphs Number of Classes Avg. # of Nodes per Graph Avg. # of Edges per Graph

D&D 1178 2 284.32 715.66
PROTEINS 1113 2 39.06 72.82
NCI1 4110 2 29.87 32.30
NCI109 4127 2 29.68 32.13
FRANKENSTEIN 4337 2 16.90 17.88

Table 2. The grid search space for the hyperparameters. The pool-

ing ratio is used only for the hierarchical pooling architecture

because the the global pooling architecture uses the same node

selection strategy as SortPool. The node selection strategy of

SortPool does not require the pooling ratio.

Hyperparameter Range

Learning rate 1e-2, 5e-2, 1e-3, 5e-3, 1e-4, 5e-4

Hidden size 16, 32, 64, 128

Weight decay
1e-2, 1e-3, 1e-4, 1e-5

(L2 regularization)

Pooling ratio 1/2, 1/4

tion.

4. Experiments

We evaluate the global pooling and hierarchical pooling

methods on the graph classification task. In Section 4.1,

we discuss the datasets used for evaluation. Section 4.3

describes how we train the models. The methods compared

in the experiments are introduced in Sections 4.4 and 4.5.

4.1. Datasets

Five datasets with a large number of graphs (> 1k) were

selected among the benchmark datasets (Kersting et al.,

2016). The statistics of the datasets are summarized in

Table 1.

D&D (Dobson & Doig, 2003; Shervashidze et al., 2011)

contains graphs of protein structures. A node represents

an amino acid and edges are constructed if the distance of

two nodes is less than 6 Å. A label denotes whether a pro-

tein is an enzyme or non-enzyme. PROTEINS (Dobson &

Doig, 2003; Borgwardt et al., 2005) is also a set of proteins,

where nodes are secondary structure elements. If nodes

have edges, the nodes are in an amino acid sequence or in

a close 3D space. NCI (Wale et al., 2008) is a biological

dataset used for anticancer activity classification. In the

dataset, each graph represents a chemical compound, with

nodes and edges representing atoms and chemical bonds,

respectively. NCI1 and NCI109 are commonly used as

benchmark datasets for graph classification. FRANKEN-

STEIN (Orsini et al., 2015) is a set of molecular graphs

(Costa & Grave, 2010) with node features containing con-

tinuous values. A label denotes whether a molecule is a

mutagen or non-mutagen.

4.2. Evaluation of GNNs

In addition, the same early stopping criterion and hyper-

parameter selection strategy are used for all the models to

ensure a fair comparison.

4.3. Training Procedures

Shchur et al. demonstrate that different splits of data can

affect the performance of GNN models. In our experiments,

we evaluated the pooling methods over 20 random seeds

using 10-fold cross validation. A total of 200 testing results

were used to obtain the final accuracy of each method on

each dataset. 10 percent of the training data was used for val-

idation in the training session. We used the Adam optimizer

(Kingma & Ba, 2014), early stopping criterion, patience,

and hyperparameter selection strategy for the global pool-

ing architecture and hierarchical pooling architecture. We

stopped the training if the validation loss did not improve

for 50 epochs in an epoch termination condition with a max-

imum of 100k epochs, as done in (Shchur et al., 2018). The

optimal hyperparameters are obtained by grid search. The

ranges of grid search are summarized in Table 2.

4.4. Baselines

We consider the following four pooling methods as base-

lines: Set2Set, SortPool, DiffPool, and gPool. DiffPool,

gPool, and SAGPoolh were compared using the hierarchical

pooling architecture while Set2Set, SortPool, and SAGPoolg
were compared using the global pooling architecture. We

used the same hyperparameter search strategy for all the

baselines and SAGPool. The hyperparameters are summa-

rized in Table 2.

Set2Set (Vinyals et al., 2015) requires an additional hyper-

parameter which is the number of processing steps for the

LSTM(Hochreiter & Schmidhuber, 1997) module. We use

10 processing steps for all the experiments. We assume that

the readout layer is unnecessary because the LSTM module
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Table 3. Average accuracy and standard deviation of the 20 random seeds. The subscript g (e.g. POOLg) denotes the global pooling

architecture and the subscript h (e.g. POOLh) denotes the hierarchical pooling architecture.

Models D&D PROTEINS NCI1 NCI109 FRANKENSTEIN

Set2Setg 71.27± 0.84 66.06± 1.66 68.55± 1.92 69.78± 1.16 61.92± 0.73
SortPoolg 72.53± 1.19 66.72± 3.56 73.82± 0.96 74.02± 1.18 60.61± 0.77
SAGPoolg (Ours) 76.19± 0.94 70.04± 1.47 74.18± 1.20 74.06± 0.78 62.57± 0.60

DiffPoolh 66.95± 2.41 68.20± 2.02 62.32± 1.90 61.98± 1.98 60.60± 1.62
gPoolh 75.01± 0.86 71.10± 0.90 67.02± 2.25 66.12± 1.60 61.46± 0.84
SAGPoolh (Ours) 76.45± 0.97 71.86± 0.97 67.45± 1.11 67.86± 1.41 61.73± 0.76

Table 4. Experimental results of SAGPoolh variants. We com-

pare ChebConv(K=2) (Defferrard et al., 2016), GCNConv (Kipf

& Welling, 2016), SAGEConv (Hamilton et al., 2017), and

GATConv(heads=6) (Velikovi et al., 2018). GCNConv is ap-

plied to SAGPoolh, SAGPoolh,augmentation, SAGPoolh,serial, and

SAGPoolh,parallel.

Graph Convolution D&D PROTEINS

SAGPoolh 76.45± 0.97 71.86± 0.97

SAGPoolh,Cheb 75.82± 0.79 71.98± 0.93
SAGPoolh,SAGE 76.28± 1.06 71.93± 0.82
SAGPoolh,GAT 75.49± 0.93 71.98± 1.01

SAGPoolh,augmentation 77.07± 0.82 71.82± 0.81
SAGPoolh,serial,2layers 76.68± 0.96 72.17± 0.87

SAGPoolh,parallel,M=2 75.79± 0.96 72.05± 0.43
SAGPoolh,parallel,M=4 76.77± 0.61 71.66± 0.98

produces embeddings for graphs invariant to the order of

nodes.

SortPool (Zhang et al., 2018b) is a recent global pooling

method which uses sorting for pooling. The K number of

nodes is set such that 60% of graphs have more than K
nodes. In the global pooling setting, SAGPoolg has the

same K number of output nodes as SortPool.

DiffPool (Ying et al., 2018) is the first end-to-end trainable

graph pooling method that can produce hierarchical repre-

sentations of graphs. We did not use batch normalization for

DiffPool, which is not related to the pooling method. For

the hyperparameter search, the pooling ratio ranges from

0.25 to 0.5 for the following reasons. In the reference im-

plementation, the cluster size is set to 25% of the maximum

number of nodes. DiffPoolh causes the out of memory error

when the pooling ratio is larger than 0.5.

gPool (Gao & Ji, 2019) selects top-ranked nodes for pool-

ing, which makes it similar to our method. The comparison

between our method and gPool demonstrates that consider-

ing topology can help improve performance on the graph

classification task.

Figure 3. The increase in the number of parameters according to

the number of graph nodes. The x-axis label denotes the number

of input graph nodes and the y-axis label denotes the number of

parameters of the hierarchical pooling models: the number of input

node features is 128, the hidden feature size is 128, and the number

of classes is 2. Equation (3) is used as a graph convolution of

SAGPool. k denotes the pooling ratio and k = 1.0 indicates that

the entire node is preserved after pooling. gPool and SAGPool

have a consistent number of parameters regardless of the input

graph size and the pooling ratio.

4.5. Variations of SAGPool

As mentioned in section 3.1, three variations of SAGPool

are used to obtain attention scores Z. In our experiments,

we compared each variant on the two datasets. First, any

kind of GNNs can be applied to Equation (6). We com-

pared the performance of the three most widely used GNNs

(SAGPoolCheb, SAGPoolSAGE, SAGPoolGAT). Second, we

made the following modifications to SAGPool so that it can

consider the two-hop connection: an edge augmentation

(SAGPoolaugmentation) in Equation (7) and a stack of GNN

layers (SAGPoolserial) in Equation (8). Last, multiple GNNs

calculate attention scores and the scores are averaged to ob-

tain the final attention score (SAGPoolparallel). We evaluated

the performance of M = 2 and M = 4 using Equation (9).

The results are summarized in Table 4.
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4.6. Summary of Results

The results are summarized in Table 3 and 4. The accuracies

and standard deviations are given in percentages. From the

comparison of the global pooling methods and SAGPool, the

results demonstrate that SAGPool generally performs well,

but it performs especially well on D&D and PROTEINS. In

the experiments, SAGPool outperformed the hierarchical

pooling methods on all the datasets. We also compared

variants of SAGPool with the hierarchical pooling architec-

ture on the two benchmark datasets. The performance of

the variants of SAGPool varied. The experimental results

of the SAGPool variants show that SAGPool has the po-

tential to improve performance. A detailed analysis of the

experimental results is provided in the next section.

5. Analysis

In this section, we provide an analysis of the experimental

results. In Section 5.1, we compare global pooling and

hierarchical pooling. Section 5.2 provides an explanation on

how the SAGPool method addresses the shortcomings of the

gPool method. In the 5.3 and 5.4 sections, we compare the

efficiency of SAGPool with that of DiffPool. We provide an

analysis of SAGPool variants in Section 5.5.

5.1. Global and Hierarchical Pooling

It is difficult to determine whether the global pooling archi-

tecture or hierarchical pooling architecture is completely

beneficial to graph classification. Since the global pool-

ing architecture POOLg (SAGPoolg , SortPoolg , Set2Setg)

minimizes the loss of information, it performs better than

the hierarchical pooling architecture POOLh (SAGPoolh,

gPoolh, DiffPoolh) on datasets with fewer nodes (NCI1,

NCI109, FRANKENSTEIN). However, POOLh is more

effective on datasets with a large number of nodes (D&D,

PROTEINS) because it efficiently extracts useful informa-

tion from large scale graphs. Therefore, it is important to

use the pooling architecture that is the most suitable for the

given data. Nonetheless, SAGPool tends to perform well

with each architecture.

5.2. Effect of Considering Graph Topology

To calculate the attention scores of nodes, SAGPoolh uti-

lizes the graph convolution in Equation (3). Unlike gPool,

SAGPool uses the D̃−
1
2 ÃD̃−

1
2 term, which is the first order

approximation of the graph Laplacian. This term allows

SAGPool to consider graph topology. As shown in Table 3,

considering graph topology improves performance. In addi-

tion, the graph Laplacian does not have to be recalculated

because it is the term used in a previous graph convolu-

tional layer in the same block. Although SAGPool has the

same parameters as gPool (Figure 3), it achieves superior

performance in the graph classification task.

5.3. Sparse Implementation

Manipulating graph data with a sparse matrix is important

for GNNs because the adjacency matrix is usually sparse.

When graph convolution is calculated using a dense ma-

trix, the computational complexity of multiplication AX
is O(|V |2) where A is the adjacency matrix, X is the fea-

ture matrix of nodes, and V denotes vertices. Pooling with

a dense matrix causes the memory efficiency problem, as

mentioned by (Cangea et al., 2018). However, if a sparse

matrix is used in the same operation, the computational com-

plexity is reduced to O(|E|) where E represents the edges.

Since SAGPool is a sparse pooling method, it can reduce

its computational complexity, unlike DiffPool which is a

dense pooling method. Sparseness also affects space com-

plexity. Since SAGPool uses GNN for obtaining attention

scores, SAGPool requires O(|V |+|E|) of storage for sparse

pooling whereas dense pooling methods need O(|V |2).

5.4. Relation with the Number of Nodes

In DiffPool, the cluster size has to be defined when con-

structing a model because a GNN produces an assignment

matrix S as stated in Equation (1). The cluster size has to be

proportional to the maximum number of nodes according

to the reference implementation. These requirements of

DiffPool can lead to two problems. First, the number of

parameters is dependent on the maximum number of nodes

as shown in Figure 3. Second, it is difficult to determine the

right cluster size when the number of nodes varies greatly.

For example, only 10 out of 1178 graphs have over 1000

nodes, where the maximum number of nodes is 5748 and

the minimum is 30. The cluster size is 574 if the pooling

ratio is 10%, which expands the size of graphs after pool-

ing for most of the data. On the other hand, in SAGPool,

the number of parameters is independent of the cluster size.

In addition, the cluster size can be changed based on the

number of input nodes.

5.5. Comparison of the SAGPool Variants

To investigate the potential of our method, we evaluated

SAGPool variants on two datasets. SAGPool can be modi-

fied to perform the following: changing the type of GNN,

considering the two-hop connections, and averaging the

attention scores of multiple GNNs. As shown in Table 4,

the performance on graph classification varies depending

on which dataset and type of GNN in SAGPool are used.

We used two techniques to consider two-hop connections.

The attention scores obtained by the two sequential GNN

layers (SAGPoolserial) reflect the information of two-hop

neighbors. Another technique is to add the square of an ad-

jacency matrix to itself, resulting in a new adjacency matrix
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that has two-hop connectivity. Without any modifications

to the SAGPool layer, the new adjacency matrix can be pro-

cessed in SAGPoolaugmentation. The information of two-hop

neighbors may help improve performance. The last variants

of SAGPool is to average the attention scores from multiple

GNNs. We found that choosing the right M for the dataset

can help achieve stable performance.

5.6. Limitations

We retain a certain percentage (pooling ratio k) of nodes to

handle different input graphs of various sizes, which has also

been done in previous studies (Gao & Ji, 2019; Cangea et al.,

2018). In SAGPool, we cannot parameterize the pooling

ratios to find optimal values for each graph. To address this

limitation, we used binary classification to decide which

nodes to preserve, but this did not completely solve the

issue.

6. Conclusion

In this paper, we proposed SAGPool which is a novel graph

pooling method based on self-attention. Our method has

the following features: hierarchical pooling, consideration

of both node features and graph topology, reasonable com-

plexity, and end-to-end representation learning. SAGPool

uses a consistent number of parameters regardless of the

input graph size. Extensions of our work may include using

learnable pooling ratios to obtain optimal cluster sizes for

each graph and studying the effects of multiple attention

masks in each pooling layer, where final representations can

be derived by aggregating different hierarchical represen-

tations. Our experiments were run on a NVIDIA TitanXp

GPU. We implemented all the baselines and SAGPool us-

ing PyTorch (Paszke et al., 2017) and the geometric deep

learning extension library provided by Fey & Lenssen.
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