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Self-attention in vision
transformers performs perceptual
grouping, not attention

Paria Mehrani* and John K. Tsotsos

Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada

Recently, a considerable number of studies in computer vision involve deep

neural architectures called vision transformers. Visual processing in these models

incorporates computational models that are claimed to implement attention

mechanisms. Despite an increasing body of work that attempts to understand

the role of attention mechanisms in vision transformers, their e�ect is largely

unknown. Here, we asked if the attention mechanisms in vision transformers

exhibit similar e�ects as those known in human visual attention. To answer

this question, we revisited the attention formulation in these models and found

that despite the name, computationally, these models perform a special class

of relaxation labeling with similarity grouping e�ects. Additionally, whereas

modern experimental findings reveal that human visual attention involves both

feed-forward and feedback mechanisms, the purely feed-forward architecture of

vision transformers suggests that attention in these models cannot have the same

e�ects as those known in humans. To quantify these observations, we evaluated

grouping performance in a family of vision transformers. Our results suggest that

self-attention modules group figures in the stimuli based on similarity of visual

features such as color. Also, in a singleton detection experiment as an instance

of salient object detection, we studied if these models exhibit similar e�ects

as those of feed-forward visual salience mechanisms thought to be utilized in

human visual attention. We found that generally, the transformer-based attention

modules assign more salience either to distractors or the ground, the opposite

of both human and computational salience. Together, our study suggests that

the mechanisms in vision transformers perform perceptual organization based on

feature similarity and not attention.

KEYWORDS

vision transformers, attention, similarity grouping, singleton detection, odd-one-out

1. Introduction

The Gestalt principles of grouping suggest rules that explain the tendency of perceiving

a unified whole rather than a mosaic pattern of parts. Gestaltists consider organizational

preferences, or priors, such as symmetry, similarity, proximity, continuity and closure as

grouping principles that contribute to the perception of a whole. These principles which

rely on input factors and the configuration of parts can be viewed as biases that result in

the automatic emergence of figure and ground. To Gestalt psychologists, the perceptual

organization of visual input to figure and ground was an early stage of interpretation prior to

processes such as object recognition and attention. In fact, they posited that higher-level

processes operate upon the automatically emerged figure. Some proponents of emergent

intelligence go as far as to undermine the effect of attention on perceptual organization. For

example, Rubin, known for his face-vase illusion, presented a paper in 1926 titled “On the

Non-Existence of Attention" (Berlyne, 1974).
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Despite the traditional Gestalt view, modern experimental

evidence suggests that in addition to low-level factors, higher-

level contributions can affect figure-ground organization.

Specifically, experimental findings suggest that attention is

indeed real and among the higher-level factors that influence

figure-ground assignment (Qiu et al., 2007; Poort et al., 2012)

(see Peterson, 2015 for review). Considering these discoveries

and the enormous literature on attention (see Itti et al., 2005, for

example), an interesting development in recent years has been the

introduction of deep neural architectures dubbed transformers

that claim to incorporate attention mechanisms in their hierarchy

(Vaswani et al., 2017). Transformers, originally introduced in the

language domain, were “based solely on attention mechanisms,

dispensing with recurrence and convolutions entirely"

(Vaswani et al., 2017).

Following the success of transformers in the language

domain, Dosovitskiy et al. (2021) introduced the vision

transformer (ViT), a transformer model based on self-attention

mechanisms that received a sequence of image patches as input

tokens. Dosovitskiy et al. (2021) reported comparable performance

of ViT to convolutional neural networks (CNNs) in image

classification and concluded, similar to (Vaswani et al., 2017), that

convolution is not necessary for vision tasks. The reported success

of vision transformers prompted a myriad of studies (Bhojanapalli

et al., 2021; Caron et al., 2021; Dai et al., 2021; D’Ascoli et al.,

2021; Liu et al., 2021, 2022; Mahmood et al., 2021; Srinivas et al.,

2021; Touvron et al., 2021; Wu B. et al., 2021; Wu H. et al., 2021;

Xiao et al., 2021; Yang et al., 2021; Yuan et al., 2021; Zhou et al.,

2021; Bao et al., 2022; Guo et al., 2022; Han et al., 2022; Pan

et al., 2022; Park and Kim, 2022; Zhou D. et al., 2022). In most

of these studies, the superior performance of vision transformers,

their robustness (Bhojanapalli et al., 2021; Mahmood et al., 2021;

Naseer et al., 2021) and more human-like image classification

behavior compared to CNNs (Tuli et al., 2021) were attributed to

the attention mechanisms in these architectures. Several hybrid

models assigned distinct roles of feature extraction and global

context integration to convolution and attention mechanisms,

respectively, and reported improved performance over models

with only convolution or attention (Dai et al., 2021; D’Ascoli

et al., 2021; Srinivas et al., 2021; Wu B. et al., 2021; Wu H. et al.,

2021; Xiao et al., 2021; Guo et al., 2022). Hence, these studies

suggested the need for both convolution and attention in computer

vision applications.

A more recent study by Zhou Q. et al. (2022), however,

reported that hybrid convolution and attention models do not

“have an absolute advantage" compared to pure convolution

or attention-based neural networks when their performance in

explaining neural activities of the human visual cortex from two

neural datasets was studied. Similarly, Liu et al. (2022) questioned

the claims on the role of attention modules in the superiority

of vision transformers by proposing steps to “modernize” the

standard ResNet (He et al., 2016) into a new convolution-based

model called ConvNeXt. They demonstrated that ConvNeXt with

no attention mechanisms achieved competitive performance to

state-of-the-art vision transformers on a variety of vision tasks.

This controversy on the necessity of the proposed mechanisms

compared to convolution adds to the mystery of the self-attention

modules in vision transformers. Surprisingly, and to the best of our

knowledge, no previous work directly investigated whether the self-

attention modules, as claimed, implement attention mechanisms

with effects similar to those reported in humans. Instead, the

conclusions in previous studies were grounded on the performance

of vision transformers vs. CNNs on certain visual tasks. As a

result, a question remains outstanding: Have we finally attained a

deep computational vision model that explicitly integrates visual

attention into its hierarchy?

Answering this question is particularly important for advances

in both human and computer vision fields. Specifically, in human

vision sciences, the term attention has a long history (e.g., Berlyne,

1974; Tsotsos et al., 2005) and entails much confusion (e.g.,

Di Lollo, 2018; Hommel et al., 2019; Anderson, 2023). In a review of

a book on attention (Sutherland, 1998) says,“After many thousands

of experiments, we know only marginally more about attention

than about the interior of a black hole”. More recently, Anderson

(2023) calls attention a conceptually fragmented term, a term that is

assumed to have one meaning is found to have many, and suggests

aid from mathematical language for theoretical clarity. The call for

a more formal approach to vision research has appeared several

times (e.g., Zucker, 1981; Tsotsos, 2011; Anderson, 2023) but no

broadly accepted specification of attention is available. Themajority

of words in any dictionary have multiple meanings, and a particular

class of words, homonyms, are spelled and pronounced the same

yet differ in meaning which is only distinguished by the context

in which they are used. “Attention” is one such word, here we

seek to understand the scope of its use in order to provide the

correct context.

To complicate matters further, many kinds of visual attention

have been identified, the primary distinctions perhaps being that

of overt and covert attention (with and without eye movements

and viewpoint changes, respectively). Tsotsos (2011) shows over

20 kinds in his taxonomy, and other comprehensive reviews on

the topic such as Desimone and Duncan (1995), Pashler (1998),

Kastner and Ungerleider (2000), Itti et al. (2005), Styles (2006),

Knudsen (2007), Nobre et al. (2014), Moore and Zirnsak (2017),

andMartinez-Trujillo (2022) similarly covermany kinds, not all the

same. As Styles (2006) asserts, attention is not a unitary concept.

In addition, discussions of attention are always accompanied by

consideration of how attention can change focus; this dynamic

aspect does not appear in transformers at all.

The many descriptions of attention often conflate mechanism

with effect while assuming that an exposition within some

narrow domain easily generalizes to all of cognitive behavior.

One might think that as long as the discussion remains within a

particular community, all can be controlled with respect to use of

terminology. This is not the case. Machine learning approaches

have been already employed frequently in recent years in brain

research by utilizing deep neural architectures as mathematical

models of the brain (Cadieu et al., 2014; Khaligh-Razavi and

Kriegeskorte, 2014; Kubilius et al., 2016; Eickenberg et al., 2017;

Zhuang et al., 2021). Therefore, it is only a matter of time before

vision transformers with attention modules are used in human

vision studies, if not already by the time of this publication. As

a result, it is imperative to understand how attention modules

in vision transformers relate to attention mechanisms in the
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human visual system to avoid adding further confusion to attention

research in human vision sciences.

Similarly, on the computer vision side, a more engineering kind

of discipline, we need to specify the requirements of a solution

against which we test the results of any algorithm realization.

But the requirements of attention modules in vision transformers

are not specified. They are only implied, through the use of

the term ‘attention’ and can be traced back to the studies that

explicitly motivated these modules, specifically, by the effect of

attention mechanisms in the human visual system (i.e.,Vaswani

et al., 2017→ Kim et al., 2017→Xu et al., 2015).

One might argue that from an engineering point of view, there

is no need for these modules to remain faithful to their biological

counterparts, hence, there is no need for direct comparison between

the two systems. However, that train has already left the station.

Computer vision has been using the term “attention” since the

mid-1970’s, connected to both inspiration from and comparisons

to human visual attention, and continuously to this day (there are

many reviews as evidence, e.g., Tsotsos and Rothenstein, 2011; Borji

and Itti, 2012; Bylinskii et al., 2015). An expectation that a new

mechanism can affect amnesia for a whole field is unwarranted. For

example, Tan et al. (2021), Yue et al. (2021), Zhu et al. (2021), Paul

and Chen (2022), and Panaetov et al. (2023) among others, have

already mentioned effects of these modules as similar to those of

attention in the human visual system.

Regardless of whether one considers attention from a human

vision perspective or a machine vision point of view, it is

unprincipled to leave the term ill-defined. Our goal in this paper

is to contribute to an understanding of the function of the attention

modules in vision transformers by revisiting two of their aspects.

First, we hope to show that transformers formulate attention

according to similarity of representations between tokens, and that

this results in perceptual similarity grouping, not any of the many

kinds of attention in the literature. Second, because of their feed-

forward architecture, vision transformers cannot be not affected by

factors such as goals, motivations, or biases (also see Herzog and

Clarke, 2014). Such factors have played a role in attention models

in computer vision for decades. Vision Transformers fall into the

realm of the traditional Gestalt view of automatic emergence of

complex features.

In a set of experiments, we examined attention modules

in various vision transformer models. Specifically, to quantify

Gestalt-like similarity grouping, we introduced a grouping dataset

of images with multiple shapes that shared/differed in various

visual feature dimensions and measured grouping of figures

in these architectures. Our results on a family of vision

transformers indicate that the attention modules, as expected

from the formulation, group image regions based on similarity.

Our second observations indicates that if vision transformers

implement attention, it can only be in the form of bottom-

up attention mechanisms. To test this observation, we measured

the performance of vision transformers in the task of singleton

detection. Specifically, a model that implements attention is

expected to almost immediately detect the pop-out, an item in the

input that is visually distinct from the rest of the items. Our findings

suggest that vision transformers perform poorly in that regard and

even in comparison to CNN-based saliency algorithms.

To summarize, our observations and experimental results

suggest that “attention mechanisms” is a misnomer for

computations implemented in so-called self-attention modules of

vision transformers. Specifically, these modules perform similarity

grouping and not attention. In fact, the self-attention modules

implement a special class of in-layer lateral interactions that

were missing in CNNs (and perhaps this is the reason for their

generally improved performance). Lateral interactions are known

as mechanisms that counteract noise and ambiguity in the input

signal (Zucker, 1978). In light of this observation, the reported

properties of vision transformers such as smoothing of feature

maps (Park and Kim, 2022) and robustness (Mahmood et al., 2021;

Naseer et al., 2021) can be explained. These observations lead to the

conclusion that the quest for a deep computational vision model

that implements attention mechanisms has not come to an end yet.

In what follows, we will employ the terms attention

and self-attention interchangeably as our focus is limited to

vision transformers with transformer encoder blocks. Also, each

computational component in a transformer block will be referred

to as a module, for example, the attentionmodule or themulti-layer

perceptron (MLP) module. Both block and layer, then, will refer to

a transformer encoder block that consists of a number of modules.

2. Materials and methods

In this section, we first provide a brief overview of vision

transformers followed by revisiting attention formulation and the

role of architecture in visual processing in these models. Then, we

explain the details of the two experiments we performed in this

study.

2.1. Vision transformers

Figure 1 provides an overview of Vision Transformer (ViT)

and the various modules in its transformer encoder blocks. Most

vision transformer models extend and modify or simply augment

a ViT architecture into a larger system. Regardless, the overall

architecture and computations in the later variants resemble those

of ViT and each model consists of a number of stacked transformer

encoder blocks. Each block performs visual processing of its input

through self-attention, MLP and layer normalization modules.

Input to these networks includes a sequence of processed image

tokens (localized image patches) concatenated with a learnable class

token.

Vision transformer variants can be grouped into three main

categories:

1. Models that utilized stacks of transformer encoder blocks as

introduced in ViT butmodified the training regime and reported

a boost in performance, such as DeiT (Touvron et al., 2021) and

BEiT (Bao et al., 2022).

2. Models that modified ViT for better adaptation to the

visual domain. For example, Liu et al. (2021) introduced an

architecture called Swin and suggested incorporating various

scales and shifted local windows between blocks. A few other
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FIGURE 1

The ViT model architecture (Dosovitskiy et al., 2021). First, each input image is split into local patches called tokens. After linear embedding of the

tokens, a numerical position embedding is added to each token. After concatenating a learnable class embedding shown with an asterisk to the input

sequence, the combined embeddings are fed to L blocks of transformer encoders. The output of the final encoder block is fed to a classification

head in ViT. The zoomed-in diagram on the right demonstrates the various modules within a transformer encoder block. These modules consist of

norm, multi-head self-attention and MLP.

work suggested changes to the scope of attention, for example,

local vs. global (Chen et al., 2021; Yang et al., 2021).

3. Hybrid models that introduced convolution either as a

preprocessing stage (Xiao et al., 2021) or as a computational step

within transformer blocks (Wu H. et al., 2021).

The family of vision transformers that we studied in our

experiments includes ViT, DEiT, BEiT, Swin, and CvT. These

models span all three categories of vision transformers as classified

above. For each model, we studied a number of pre-trained

architectures available on HuggingFace (Wolf et al., 2020). Details

of these architectures are outlined in Table 1.

2.1.1. Attention formulation
In transformers, the attention mechanism for a query and

key-value pair is defined as:

Attention(Q,K,V) = softmax(
QKT

√

dk
)V , (1)

where Q, K, and V represent matrices of queries, keys and values

with tokens as rows of these matrices, and dk is the dimension of

individual key/query vectors. Multiplying each query token, a row

of Q, in the matrix multiplication QKT is in fact a dot-product of

each query with all keys in K. The output of this dot-product can

be interpreted as how similar the query token is to each of the key

tokens in the input; a compatibility measure. This dot product is

then scaled by
√

dk and the softmax yields the weights for value

tokens. Vaswani et al. (2017) explained the output of attention

modules as “a weighted sum of the values, where the weight

assigned to each value is computed by a compatibility function of

the query with the corresponding key”. The same formulation was

employed in ViT while the compatibility function formulation is

slightly modified in some vision transformer variants. Nonetheless,

the core of the compatibility function in all of these models is a dot-

product measuring representation similarity. Vaswani et al. (2017)

reported improved performance when instead of a single attention

function, they mapped the query, key and value tokens to h disjoint

representational learned spaces and computed attention in each

space called a head. Concatenation of the attention computed in

individual heads yields the output of the attention module that they

called Multi-Head Attention module.

In transformer encoders, the building block of vision

transformers, the query, key and value have the same source

and come from the output of the previous block. Hence, the

attention modules in these blocks are called self-attention. In this

case, the attention formulation can be explained as a process

that results in consistent token representations across all spatial

positions in the stimulus. Specifically, token representation and

attention can be described as follows: each token representation

signifies presence/absence of certain visual features, providing a

visual interpretation or label at that spatial position. The attention

mechanism incorporates the context from the input into its

process and describes the inter-token relations determined by

the compatibility function. As a result, Equation (1) shifts the

interpretation of a given token toward that of more compatible
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TABLE 1 The family of vision transformers studied in this work.

Model Architecture name # layers # params Training dataset Fine-tuned

ViT ViT-base-patch16-224 12 86 M ImageNet-21k –

DeiT

DeiT-tiny-distilled-patch16-224 12 5 M ImageNet-1k ImageNet-1k

DeiT-small-distilled-patch16-224 12 22 M ImageNet-1k ImageNet-1k

DeiT-base-distilled-patch16-224 12 86 M ImageNet-1k ImageNet-1k

BEiT

BEiT-base-patch16-224 12 86 M ImageNet-21k ImageNet-1k

BEiT-base-patch16-224-pt22k 12 86 M ImageNet-21k –

BEiT-base-patch16-224-pt22k-ft22k 12 86 M ImageNet-21k ImageNet-21k

CvT
CvT-13 13 19.98 M ImageNet-1k –

CvT-21 21 31.54 M ImageNet-1k –

Swin

Swin-tiny-patch4-window7-224 12 29 M ImageNet-1k –

Swin-small-patch4-window7-224 12 50 M ImageNet-1k –

For each model, a number of architecture variations were studied. For all models, pre-trained architectures available on HuggingFace (Wolf et al., 2020) were utilized. Input resolution to all

pre-trained models was 224 × 224. The datasets used for training and fine-tuning are specified. Whereas, DeiT and BEiT models use the same general architecture as ViT, Swin introduces

multiple scales and shifted windows to overcome the shortcomings of fixed size and position in tokens for visual tasks. The CvT architectures are hybrid models combining convolution and

self-attention mechanisms in each transformer encoder block.

tokens in the input. The final outcome of this process will be groups

of tokens with similar representations. Zucker (1978) referred to

this process as “Gestalt-like similarity grouping process”.

In Zucker (1978), the Gestalt-like similarity grouping process is

introduced as a type of relaxation labeling (RL) process. Relaxation

labeling is a computational framework for updating the possibility

of a set of labels (or interpretations) for an object based on the

current interpretations among neighboring objects. Updates in RL

are performed according to a compatibility function between labels.

In the context of vision transformers, at a given layer, each token

is an object for which a feature representation (label) is provided

from the output of the previous layer. A token representation is

then updated (the residual operation after the attention module)

according to a dot-product compatibility function defined between

representations of neighboring tokens. In ViT, the entire stimulus

forms the neighborhood for each token.

Zucker (1978) defined two types of RL processes in low-

level vision: vertical and horizontal. In horizontal processes,

the compatibility function defines interaction at a single level

of abstraction but over multiple spatial positions. In contrast,

vertical processes involve interaction in a single spatial position

but across various levels of abstraction. Although Zucker counts

both types of vertical and horizontal processes contributing to

Gestalt-like similarity grouping, self-attention formulation only fits

the definition of horizontal relaxation labeling process and thus,

implements a special class of RL. As a final note, while traditional

RL relies on several iterations to achieve consistent labeling

across all positions, horizontal processes in vision transformers

are limited to a single iteration and therefore, a single iteration of

Gestalt-like similarity grouping is performed in each transformer

encoder block.

2.1.2. Transformer encoders are feed-forward
models

Even though the formulation of self-attention in vision

transformers suggests Gestalt-like similarity grouping, this alone

does not rule out the possibility of performing attention in these

modules. We consider this possibility in this section.

It is now established that humans employ a set of mechanisms,

called visual attention, that limit visual processing to sub-regions

of the input to manage the computational intractability of the

vision problem (Tsotsos, 1990, 2017). Despite the traditional Gestalt

view, modern attention research findings suggest a set of bottom-

up and top-down mechanisms determine the target of attention.

For example, visual salience [“the distinct subjective perceptual

quality which makes some items in the world stand out from

their neighbors and immediately grab our attention” (Itti, 2007)]

is believed to be a bottom-up and stimulus-driven mechanism

employed by the visual system to select a sub-region of the

input for further complex processing. Purely feed-forward (also

called bottom-up) processes, however, were shown to be facing

an intractable problem with exponential computational complexity

(Tsotsos, 2011). Additionally, experimental evidence suggests that

visual salience (Desimone and Duncan, 1995) as well as other low-

level visual factors could be affected by feedback (also known as top-

down) and task-specific signals (Folk et al., 1992; Bacon and Egeth,

1994; Kim and Cave, 1999; Yantis and Egeth, 1999; Lamy et al.,

2003; Connor et al., 2004; Baluch and Itti, 2011; Peterson, 2015).

In other words, theoretical and experimental findings portray

an important role for top-down and guided visual processing.

Finally, Herzog and Clarke (2014) showed how a visual processing

strategy for human vision cannot be both hierarchical and strictly

feed-forward through an argument that highlights the role of visual

context. A literature going back to the 1800’s extensively documents

human attentional abilities (Itti et al., 2005; Carrasco, 2011; Nobre

et al., 2014; Tsotsos, 2022; Krauzlis et al., 2023).

Modern understanding of visual attention in humans

provides a guideline to evaluate current computational models

for visual attention. Vision transformers are among more

recent developments that are claimed to implement attention

mechanisms. However, it is evident that these models with

their purely feed-forward architectures implement bottom-up

mechanisms. Therefore, if it can be established that these models
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implement attention mechanisms, they can only capture the

bottom-up signals that contribute to visual attention and not all

aspects of visual attention known in humans. These observations

call for a careful investigation of the effect of attention on visual

processing in these models.

2.2. Experiments

In our experiments, we will consider the output of the attention

module in eachmodel block (the green rectangle in Figure 1) before

the residual connection. In both experiments, we removed the class

token from our analysis. Suppose that an attention module receives

an input of size H ×W × C, where H,W, and C represent height,

width and feature channels. Then, the output, regardless of whether

the attention module is multi-head or not, will also be of size

H×W×C. In what follows, the term attentionmap is used for each

H×W component of the attentionmodule output along each single

feature dimension c ∈ {1, 2, . . . ,C}. In other words, the values

comprising each attention map are obtained from the attention

scores (Equation 1), along a single feature dimension. Also, feature

channel and hidden channel will be employed interchangeably.

It is important to emphasize that the attention maps we

consider for our experiments and evaluations differ from those

often visualized in the vision transformer literature. Specifically,

in our evaluations, we consider what the model deems as salient,

the regions that affect further processing in later model blocks.

In contrast, what is commonly called an attention map in

previous work (Dosovitskiy et al., 2021) is computed for a token,

usually the output token in vision transformers and by recursively

backtracking the compatibility of the token with other tokens to the

input layer (Abnar and Zuidema, 2020). Therefore, a different map

can be plotted for the various class tokens in the model and these

maps are conditioned on the given token. One can interpret these

maps as regions of input that are most relevant to yielding the given

class token. Also, note that the compatibility (result of the softmax

function in Equation 1) employed for this visualization, is only part

of what (Vaswani et al., 2017) called the attention score defined

Equation 1. Maps obtained with this approach do not serve our

goal: we seek to determine regions of the input that were considered

as salient, as Xu et al. (2015) put it, and were the focus of attention

during the bottom-up flow of the signal in inference mode. These

regions with high attention scores from Equation (1) are those

that affect the visual signal through the residual connection (the +

sign after the green rectangle in Figure 1). Hence, we evaluated the

output of the attention module in both experiments.

2.2.1. Experiment 1: similarity grouping
To quantify Gestalt-like similarity grouping in vision

transformers, we created a dataset for similarity grouping with

examples shown in Figure 2 and measured similarity grouping

performance in vision transformers mentioned in Section 2.1. As

explained earlier, the attention from Equation (1) signals grouping

among tokens. Therefore, we measured similarity grouping by

recording and analyzing the output of attention modules in

these models.

2.2.1.1. Dataset

Each stimulus in the dataset consists of four rows of figures

with features that differ along a single visual feature dimension

including hue, orientation, lightness, shape, orientation and size.

Each stimulus is 224 × 224 pixels and contains two perceptual

groups of figures that alternate between the four rows. The values

of the visual feature that formed the two groups in each stimulus

were randomly picked.

In some vision transformers, such as ViT, the token size

and position are fixed from input and across the hierarchy. This

property has been considered a shortcoming in these models when

employed in visual tasks and various work attempted to address this

issue (Liu et al., 2021). Since we included vision transformers that

employ ViT as their base architecture in our study, and in order to

control for the token size and position in our analysis, we created

the dataset such that each figure in the stimulus would fit within a

single token of ViT. In this case, each figure fits a 16 × 16 pixels

square positioned within ViT tokens. To measure the effect of fixed

tokens on grouping, we created two other sets of stimuli. In the

first set, we considered the center of every other token from ViT

as a fixed position for figures and generated stimuli with figures

that would fit 32 × 32 pixels squares. In this case, each figure will

be relatively centered at a ViT token, but will span more than a

single token. In the second set, we generated stimuli with figures

that were token-agnostic. We designed these stimuli such that the

set of figures was positioned at the center of the image instead of

matching token positions, with each figure size fitting a 37 × 37

pixels square.

Each version of our grouping dataset consists of 600 images

with 100 stimuli per visual feature dimension, summing to a total

of 1,800 stimuli for all three versions.

2.2.1.2. Evaluation and metrics

For a self-attention module that yields aH×W×Cmap, where

H and W represent height and width and C the number of feature

channels, we first normalized the attention maps across individual

feature channels so that attention scores are in the [0, 1] range.

Then, we measured grouping along each feature channel based on

two metrics:

• Grouping index: Suppose Ag1 and Ag2 represent the average

attention score of pixels belonging to figures in group 1 and

group 2, respectively. We defined the grouping index as:

GI =
‖Ag1 − Ag2‖

Ag1 + Ag2
. (2)

The grouping index GI varies in [0, 1], with larger values

indicating better grouping of one group of figures in the

stimulus along the feature channel.

• Figure-background ratio: The overall performance of vision

transformers will be impacted if background tokens are

grouped with figure tokens (mixing of figure and ground).

Therefore, we measured the figure-background attention

ratio as:

AR = max(
Ag1

Abkg
,
Ag2

Abkg
), (3)
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FIGURE 2

Similarity grouping stimuli examples. The stimuli in this dataset consists of two groups defined according to di�erence in one of hue, saturation,

lightness, shape, orientation, size features. Each stimuli has four rows with alternating figures from the two groups. The values for the visual features

that define the groups are chosen randomly. The shape set in this dataset consists of rectangle, triangle, ellipse, star, rhombus, right triangles,

trapezoid, hexagon and square. Examples in this figure were picked from the version in which each figure fits within a 37× 37 square.

where Ag1,Ag2 represent the average attention for group

1 and group 2 figures, respectively, and Abkg is the average

score of background. The attention ratio AR is positive and

values larger than 1 indicate the attention score of at least

one group of figures is larger than that of the background

(the larger the ratio, the less the mixing of figure and

ground). Note that the attention ratio AR signifies the relative

attention score assigned to figure and ground. Therefore,

values close to 1 suggest similar attention scores assigned to

figure and ground, quite contrary to the expected effect from

attention mechanisms.

For each stimulus, we excluded all feature dimensions along

which both Ag1 = 0 and Ag2 = 0 from our analysis. This happens

when, for example, the feature channels represent green hues, and

the figures in the stimulus are figures of red and blue. Moreover,

when analyzing AR, we excluded all channels with Abkg = 0 as our

goal was to investigate grouping of figure and ground when some

attention was assigned to the background.

2.2.2. Experiment 2: singleton detection
Evidence for similarity grouping does not disprove

implementation of attention in vision transformers. Since

these models are feed-forward architectures, investigating the

effect of attention modules in their visual processing must be

restricted to bottom-up mechanisms of attention. Therefore,

we limited our study to evaluating the performance of these

models in the task of singleton detection as an instance of saliency

detection (see Bruce et al., 2015; Kotseruba et al., 2019 for a

summary of saliency research). Specifically, strong performance on

saliency detection would suggest that these models implement the

bottom-up mechanisms deployed in visual attention.

In this experiment, we recorded the attention map of all blocks

in vision transformers mentioned in Section 2.1. Following Zhang

and Sclaroff (2013), we computed an average attention map for

each transformer block by averaging over all the attention channels

and considered the resulting map as a saliency map. Then, we

tested if the saliency map highlights the visually salient singleton.

Additionally, we combined the feature maps obtained after the

residual operation of attention modules and evaluated saliency

detection performance for the average feature map. It is worth

noting that self-attention modules, and not the features maps, are

expected to highlight salient regions as the next targets for further

visual processing. Nonetheless, for a better understanding of the

various representations andmechanisms in vision transformers, we

included feature-based saliency maps in our study.

2.2.2.1. Dataset

For the singleton detection experiment, we utilized the

psychophysical patterns (P3) and odd-one-out (O3) dataset

introduced by Kotseruba et al. (2019). Examples of each set are

shown in Figure 3. The P3 dataset consists of 2,514 images of size

1,024×1,024. Each image consists of figures on a regular 7× 7 grid

with one item as the target that is visually different in one of color,

orientation or size from other items in the stimulus. The location of

the target is chosen randomly. TheO3 dataset includes 2,001 images

with the largest dimension set to 1,024. In contrast to the grouping

and P3 datasets whose stimuli were synthetic images, the O3 dataset

consists of natural images. Each image captures a group of objects

that belong to the same category with one that stands out (target)

from the rest (distractors) in one or more visual feature dimensions

(color, texture, shape, size, orientation, focus and location). The

O3 with natural images provides the opportunity to investigate the

performance of the vision transformer models in this study on the

same type of stimuli those were trained. Both P3 andO3 datasets are

publicly available and further details of both datasets can be found

in Kotseruba et al. (2019).

2.2.2.2. Metrics

We followed Kotseruba et al. (2019) to measure singleton

detection performance in vision transformers. We employed their

publicly available code for the computation of metrics they used

to study traditional and deep saliency models. The number of

fixation and saliency ratio were measured for P3 and O3 images,

respectively, as explained below.

• Number of fixations: Kotseruba et al. (2019) used the number

of fixations required to detect pop-out as a proxy for salience.

Specifically, they iterated through the maxima of the saliency

map until the target was detected or a maximum number

of iterations was reached. At each iteration that resembles

a fixation of the visual model on a region of input, they

suppressed the fixated region with a circular mask before

moving the fixation to the next maxima. Lower number of
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FIGURE 3

Samples of stimuli from P3 and O3 datasets introduced by Kotseruba et al. (2019) are illustrated. These datasets consist of stimuli with singletons in

various feature dimensions. (A) Examples from the psychophysical patterns (P3) dataset. The singletons in this dataset are defined according to color,

orientation and size. (B) Examples from the odd-one-out (O3) dataset with singletons in color, size, texture, shape and orientation feature dimensions.

fixations indicates higher relative salience of the target to that

of distractors.

• Saliency ratio: Kotseruba et al. (2019) employed the ratio

of the maximum saliency of the target vs. the maximum

saliency of the distractors. They also measured the ratio of

the maximum saliency of the background to the maximum

saliency of the target. These two ratios that are referred to

as MSRtarg and MSRbg determine if the target is more salient

than the distractors or the background, respectively. Ideally,

MSRtarg is >1 andMSRbg is <1.

3. Results

3.1. Experiment 1: similarity grouping

Each vision transformer in our study consists of a stack of

transformer encoder blocks. In this experiment, our goal was to

investigate similarity grouping in attention modules in transformer

encoder blocks. We were also interested in changes in similarity

grouping over the hierarchy of transformer encoders. Therefore,

for each vision transformer, we took the following steps: We

first isolated transformer encoders in the model and computed

the grouping index (GI) and attention ratio (AR) per channel as

explained in Section 2.2.1.2. Then, we considered the mean GI and

AR per block as the representative index and ratio of the layer.

Figure 4A shows the mean GI for the architecture called “ViT-

base-patch16-224” in Table 1 over all layers of the hierarchy. The

GI is plotted separately according to the visual feature that differed

between the groups of figures. This plot demonstrates that GI for

all blocks of this model across all tested feature dimensions is

distinctly larger than 0, suggesting similarity grouping of figures

in all attention modules of this architecture. Interestingly, despite

some variations in the first block, all layers have relatively similar

GI. Moreover, the grouping indices for all feature dimensions are

close, except for hue with GI larger than 0.6 in the first block,

indicating stronger grouping among tokens based on this visual

feature.

Figure 4B depicts the mean AR for the same architecture, ViT-

base-patch16-224, for all the encoder blocks. Note that all curves in

this plot are above the AR = 1 line denoted as a dashed gray line,

indicating that all attention modules assign larger attention scores

to at least one group of figures in the input vs. the background

tokens. However, notable is the steep decline in the mean AR across

the hierarchy. This observation confirms the previous reports of

smoother attention maps in higher stages of the hierarchy (Park

and Kim, 2022) with similar attention assigned to figure and

background tokens.

Figure 5 shows the mean GI for all the architectures from

Table 1 separately based on the visual feature that defined the

groups in the input. All models, across all their layers, with some

exceptions, demonstrate mean GI that are distinctly larger than

0. The exceptions include the first layer of all BEiT architectures

and Swin-small-patch4-window7-224, and the last block of CvT-

13 and CvT-21. Interestingly, BEiT and Swin architectures jump

in their mean GI in their second block. Even though DeiT and

BEiT architectures utilized the same architecture as ViT but trained

the model with more modern training regimes, both models

demonstrate modest improvement over ViT-base-patch16-224.

Plots in Figure 6 depict the mean AR over all the

architectures. Interestingly, ViT-base-patch16-224 is the only

architecture whose mean AR for the first block is the largest

in its hierarchy and unanimously for all visual features.

Among the three DeiT architectures (tiny, small, and base),

DeiT-tiny-distilled-patch16-224, demonstrates larger mean AR
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FIGURE 4

Mean grouping index and attention ratio for the ViT-base-patch16-224 architecture over all stimuli but separated according to the visual features

that defined the groups of figures in the input. (A) The mean grouping index is larger than 0.2 for all layers of the model across all visual features,

suggesting perceptual grouping based on similarity in this architecture. (B) The attention ratio of larger than 1 for all transformer encoder blocks of

ViT-base-patch16-224 indicates larger scores are assigned to figure tokens. However, the steep decline in the AR ratio in the hierarchy demonstrates

mixing of figure and background tokens due to similar attention scores. (A) Mean grouping index (GI). (B) Mean attention ratio (AR).

ratios. Comp ared to ViT, DeiT-tiny-distilled-patch16-224 has

far fewer parameters and the comparable mean AR for this

architecture with Vit confirms the suggestion of Touvron et al.

(2021) that an efficient training regime in a smaller model

could result in performance gain against a larger model. Results

from Figure 6 are also interesting in that all of Swin and CvT

architectures that are claimed to adapt transformer models to the

vision domain, have relatively small mean AR over their hierarchy.

These results show that these models mix figure and background

tokens in their attention score assignments, an observation that

deserves further investigation in a future work.

Finally, Figure 7 summarizes the mean grouping index GI

for the DeiT-base-distilled-patch16-224 architecture over the three

versions of the grouping dataset as explained in Section 2.2.1.1.

These results demonstrate similar grouping index over all three

versions, suggesting little impact of token position and size relative

to figures in the input.

3.2. Experiment 2: singleton detection

Generally, in saliency experiments, the output of the model

is considered for performance evaluation. In this study, however,

not only we were interested in the overall performance of vision

transformers (the output of the last block), but also in the

transformation of the saliency signal in the hierarchy of these

models. Examining the saliency signal over the hierarchy of

transformer blocks would provide valuable insights into the role of

attention modules in saliency detection. Therefore, we measured

saliency detection in all transformer blocks.

3.2.1. The P3 dataset results
Following Kotseruba et al. (2019), to evaluate the performance

of vision transformer models on the P3 dataset, we measured the

target detection rate at 15, 25, 50, and 100 fixations. Chance level

performance for ViT-base-patch16-224, as an example, would be

6, 10, 20, and 40% for 15, 25, 50, and 100 fixations, respectively

(masking after each fixation explained in Section 2.2.2 masks an

entire token). Although these levels for the various models would

differ due to differences in token sizes and incorporating multiple

scales, these chance level performances fromViT-base-patch16-224

give a baseline for comparison.

Figure 8 demonstrates the performance of saliency maps

obtained from attention and feature maps of all ViT-base-patch16-

224 blocks. These plots clearly demonstrate that the feature-

based saliency maps in each block outperform those computed

from the attention maps. This is somewhat surprising since

as explained in Section 2.2.2, if vision transformers implement

attention mechanisms, attention modules in these models are

expected to highlight salient regions in the input for further visual

processing. Nonetheless, plots in Figure 8 tell a different story,

namely that feature maps are preferred options for applications

that require singleton detection. Comparing target detection rates

across color, orientation and size for both attention and feature

maps demonstrate higher rates in detecting color targets compared

to size and orientation. For all three of color, orientation and size,

the target detection rates peak at earlier blocks for attention-based

saliency maps and decline in later blocks, with lower than chance

performance for most blocks. This pattern is somewhat repeated in

feature-based saliency maps with more flat curves in the hierarchy,

especially for a larger number of fixations.

Similar detection rate patterns were observed in other vision

transformer models. However, due to limited space, we refrain

from reporting the same plots as in Figure 8 for all the vision

transformer models that we studied. These plots can be found in

the Supplementary material. Here, for each model, we report the

mean target detection rate over all blocks and the detection rate

for the last block of each model for both attention and feature-

based saliency maps. These results are summarized in Figures 9,

10 for the last and mean layer target detection rates, respectively.

Consistent with the observations from ViT-base-patch16-224 in
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FIGURE 5

Mean grouping index for all the architectures from Table 1 plotted separately for each visual feature that defined the perceptual grouping of figures in

the input. For comparison purposes, we plotted the grouping index of all models within the same range on the x-axis. Accordingly, we labeled the

first and last block on the horizontal axis. These plots demonstrate that all models perform similarity grouping of figures based on low-level visual

features such as hue and orientation. Except for the final block of CvT models, all layers of all architectures have mean GI higher than 0. The legend at

the top applies to all plots.

Figure 8, the feature-based saliency maps outperform attention-

based ones in Figure 9 and in general have higher detection rates

than the chance levels stated earlier. The attention-based saliency

maps, across most of the models, fail to perform better than

chance. Generally, all models have higher detection rates for color

targets, repeating similar results reported by Kotseruba et al. (2019).

Interestingly, Swin architectures that incorporate multiple token

scales, perform poorly in detecting size targets with both feature

and attention-based saliency maps.

Results for mean target detection rates over all blocks in

Figure 10 are comparable to those of last layer detection rates,

except for a shift to higher rates. Specifically, all models are

more competent at detecting color targets and that the feature-

based saliency maps look more appropriate for singleton detection.

In Swin architectures, the mean detection rate of feature-based

saliency maps are relatively higher for size targets than that of other

models. This observation, together with the last layer detection

rate of Swin models for size targets suggest that incorporating

multiple scales in vision transformers improves representing figures

of various sizes but the effect fades higher in the hierarchy.

In summary, the attention maps in vision transformers were

expected to reveal high salience for the target vs. distractors.

Nonetheless, comparing the detection rate of attention-based

saliency maps in vision transformers at 100 fixations with those

of traditional and deep saliency models reported by Kotseruba

et al. (2019) suggest that not only do the attention modules in

vision transformers fail to highlight the target, but also come

short of convolution-based deep saliency models with no attention

modules. Although the feature-based saliency maps in vision

transformers showed promising results in target detection rates
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FIGURE 6

Mean attention ratio for all the architectures from Table 1 plotted separately for each visual feature that defined the perceptual grouping of figures in

the input. Similar to Figure 5, and for ease of comparison, we plotted the AR for all models within the same range on the x-axis. Interestingly, Swin

and CvT, two models that adapted ViT to the visual domain, have relatively smaller attention ratios compared to the rest of the architectures,

suggesting that incorporating scale and shifting the token position in Swin and convolution in CvT architectures results in mixing of figure and

background representations and consequently attention scores. Among the other architectures that use ViT as the underlying model, the attention

ratio plots are somewhat similar to those of Figure 4B, that is, larger attention ratios in earlier blocks with a decline in the hierarchy.

relative to attention-based maps, in comparison with convolutional

saliency models (see Kotseruba et al., 2019, their Figure 3),

those performed relatively similar to convolution-based models.

Together, these results suggest that contrary to the expectation,

the proposed attention mechanisms in vision transformers are

not advantageous vs. convolutional computations in representing

visual salience.

3.2.2. The O3 dataset results
Wemeasured the maximum saliency ratiosMSRtarg andMSRbg

for feature and attention-based saliency maps of all blocks of

vision transformers in Table 1. These ratios are plotted in Figure 11,

demonstrating poor performance of all models in detecting the

target in natural images of the O3 dataset. We acknowledge that

we expected improved performance of vision transformers on

the O3 dataset with natural images compared to the results on

synthetic stimuli of the P3 dataset. However, whereas MSRtarg
ratios larger than 1 are expected (higher salience of target vs.

distractors), in both feature and attention-based saliency maps, the

ratios were distinctly below 1 across all blocks of all models, with

the exception of later blocks of two BEiT architectures. Notable

are the feature-based ratios of ViT-base-patch16-224 with peaks in

earlier blocks and a steep decrease in higher layers. In contrast, all

three BEiT architectures show the opposite behavior and perform

poorly in earlier blocks but correct the ratio in mid-higher stages

of processing.

TheMSRbg ratios illustrated in Figure 11 follow a similar theme

as MSRtarg ratios. Even though MSRbg ratios <1 suggest that the

target is deemed more salient than the background, most of these
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FIGURE 7

Each token in ViT-based architectures has a fixed position and size across the hierarchy of transformer encoders. This property is noted as a

shortcoming of some vision transformers. To control for position and size of tokens in these models, we designed our grouping dataset according to

the ViT model tokens such that each figure in the stimulus would fit within and positioned inside the model 16× 16 tokens. To test for the e�ect of

figure size, we introduced a version of grouping dataset with figures centered at every other ViT token but larger in size such that each figure would

fit a 32× 32 square. We also introduced a third version where figures in the stimuli were token-agnostic. In the third version, the set of figures occupy

the center of image and each figure fits within a 37× 37 square. We tested the grouping performance of the DeiT-base-distilled-patch16-224

architecture over all three versions of the dataset. Note that DeiT-base-distilled-patch16-224 utilizes an identical architecture as

ViT-base-patch16-224 with a di�erent training regime. Our results over the various visual features in the dataset demonstrate comparable results

over the three versions of the dataset, suggesting no significant e�ect of token position or size in grouping in vision transformers.

models have MSRbg ratios larger than 1 in their hierarchy. Among

all models, feature-based saliency of BEiT and Swin architectures

have the best overall performance.

For a few randomly selected images from the O3 dataset,

Figures 12–14 demonstrate the attention-based saliency map of the

block with bestMSRtarg ratio for each model. Each saliency map in

these figures is scaled to the original image size for demonstration

purposes. Interestingly, saliency maps in Figure 13 show how the

same BEiT model with varying training result in vastly different

attention-based maps.

To summarize, for a bottom-up architecture that is claimed to

implement attention mechanisms, we expected a boost in saliency

detection compared to convolution-based models with no explicit

attention modules. Our results on the O3 dataset, however, point

to the contrary, specifically in comparison with the best ratios

reported in Kotseruba et al. (2019) for MSRtarg and MSRbg at 1.4

and 1.52, respectively. These results, together with the proposal

of Liu et al. (2022) for a modernized convolution-based model with

comparable performance to vision transformers, overshadow the

claim of attention mechanisms in these models.
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FIGURE 8

Target detection rate of the ViT-base-patch16-224 model for 15, 25, 50, and 100 fixations on images of the P3 dataset. Legend on top applies to all

plots. For this model with 16× 16 pixels tokens, each masking after a fixation masks almost an entire token. Therefore, chance performance will be at

6, 10, 20, and 40% for 15, 25, 50, and 100 fixations. Comparing the plots of the left column for attention-based saliency maps vs. those on the right

obtained from feature-based saliency maps indicates superior performance of feature-based maps for salient target detection. This is interesting in

that modules claimed to implement attention mechanisms are expected to succeed in detecting visually salient figures in the input. Overall, for both

attention and feature-based maps, color targets have higher detection rates vs. orientation and size, the conditions in which performance is mainly at

chance level for all fixation thresholds and across all blocks in the ViT hierarchy. Additionally, in both attention and feature-based maps, performance

peaks in earlier blocks and declines in later layers, suggesting multiple transformer encoder blocks mix representations across spatial locations such

that the model cannot detect the visually salient target almost immediately or even by chance.
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FIGURE 9

Target detection rate of the last block of vision transformers investigated in this work for 15, 25, 50, and 100 fixations on stimuli from the P3 dataset.

The chance level performance of the ViT model is plotted as dashed lines with matching colors for each fixation threshold. Similar to the observation

of ViT, feature-based maps outperform attention-based maps and generally at rates higher than chance. Color targets are easier to detect for both

map types. Interestingly, both Swin architectures struggle to detect size targets in both attention and feature-based maps, despite incorporating

multiple scales in their model.

4. Discussion

Our goal in this work was to investigate if the self-attention

modules in vision transformers have similar effects to human

attentive visual processing. Vision transformers have attracted

much interest in the past few years partly due to out-performing

CNNs in various visual tasks, and in part due to incorporating

modules that were claimed to implement attention mechanisms.

Specifically, the origins of attention mechanisms in transformers

could be traced back to the work by Xu et al. (2015), where they
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FIGURE 10

Average target detection rate over all blocks of vision transformers for 15, 25, 50, and 100 fixations on stimuli from the P3 dataset. Compared to

detection rates in Figure 9, mean detection rates are higher for all models in all conditions (color, size, and orientation), indicating superior

performance of earlier transformer blocks compare to the final block in these models. In line with results in Figures 8, 9, color targets are easier to

detect and that generally, feature-based maps outperform attention-based maps in salient target detection.

introduced an attention-based model for image captioning. Xu

et al. (2015) motivated modeling attention in their network

by reference to attention in the human visual system and its

effect that “allows for salient features to dynamically come to

the forefront as needed”, especially in the presence of clutter in

the input. In light of these observations, a curious question to

ask is if these computational attention mechanisms have similar

effects as their source of inspiration. Despite some previous

attempts (Naseer et al., 2021; Tuli et al., 2021; Park and Kim,

2022), the role and effect of the attention modules in vision
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FIGURE 11

Target and background saliency ratios (MSRtarg and MSRbg) for all vision transformer architectures on natural images of the O3 dataset. Even though

these models were trained on natural images, they fail in assigning higher saliency to the target object vs. the distractors or background (smaller than

1 MSRtarg and larger than 1 MSRbg ratios) in both feature and attention-based maps. For easier comparison, we also plotted MSRtarg and MSRbg for

the top-3 best performing deep saliency models from Kotseruba et al. (2019). These results compared to the reported ratios in Kotseruba et al. (2019)

for traditional and deep convolution-based saliency models suggest that the proposed attention mechanisms do not enhance the performance of

vision transformers when the goal is to detect the visually salient object in the stimulus.

transformers have been largely unknown. To give a few examples,

in a recent work, Li et al. (2023) studied the interactions of the

attention heads and the learned representations in multi-head

attention modules and reported segregation of representations

across heads. (Abnar and Zuidema, 2020) investigated the effect

of various approaches for visualizing attention map as an

interpretability step and with their attention rollout approach

often employed for this purpose. Ghiasi et al. (2022) visualized

the learned representations in vision transformers and found

similarity to those of CNNs. In contrast, Caron et al. (2021)

and Raghu et al. (2021) reported dissimilarities in learned

representations across the hierarchy of vision transformers and

CNNs. Cordonnier et al. (2020) as well as some others (D’Ascoli

et al., 2021) suggested attention mechanisms as a generalized form

of convolution. The quest to understand the role and effect of

attention modules in transformers is still ongoing as these models

are relatively new and the notable variations in findings (for

example, dis/similarity to CNNs) adds to its importance. Yet, and

to the best of our knowledge, none of these studies investigated

if the computations in self-attention modules would have similar

effects on visual processing as those discovered with visual attention

in humans.
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FIGURE 12

The attention-based saliency map of the block with the best MSRtarg ratio for ViT and DeiT models on a select few images from the O3 dataset. In

each map, saliency varies from blue (least salient) to yellow (most salient). Each saliency map in these figures is scaled to the original image size for

demonstration purposes.

In this work, we studied two aspects of processing in

vision transformers: the formulation of attention in self-attention

modules, and the overall bottom-up architecture of these deep

neural architectures. Our investigation of attention formulation

in vision transformers suggested that these modules perform

Gestalt-like similarity grouping in the form of horizontal relaxation

labeling whereby interactions from multiple spatial positions

determine the update in the representation of a token. Additionally,
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FIGURE 13

The attention-based saliency map of the block with the best MSRtarg ratio for BEiT models on a select few images from the O3 dataset. In each map,

saliency varies from blue (least salient) to yellow (most salient). Each saliency map in these figures is scaled to the original image size for

demonstration purposes. An interesting observation is how the variants of the same model with di�ering training regimes result in vastly di�erent

attention-based saliency maps.

given previous evidence on the role of feedback in human visual

attention (Folk et al., 1992; Bacon and Egeth, 1994; Desimone and

Duncan, 1995; Kim and Cave, 1999; Yantis and Egeth, 1999; Lamy

et al., 2003; Connor et al., 2004; Baluch and Itti, 2011; Peterson,

2015), we argued that if vision transformers implement attention

mechanisms, those can only be in the form of bottom-up and

stimulus-driven visual salience signals.

Testing a family of vision transformers on a similarity

grouping dataset suggested that the attention modules in these

architectures perform similarity grouping and that the effect

decays as hierarchical level increases in the hierarchy especially

because more non-figure tokens are grouped with figures in

the stimulus over multiple transformer encoder blocks. Most

surprising, however, were our findings in the task of singleton

detection as a canonical example of saliency detection. With both

synthetic and natural stimuli, vision transformers demonstrated

sub-optimal performance in comparison with traditional and deep

convolution-based saliency models.

The P3O3 dataset was designed according to psychological

and neuroscience findings on human visual attention.
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FIGURE 14

The attention-based saliency map of the block with the best MSRtarg ratio for CvT and Swin models on a select few images from the O3 dataset. In

each map, saliency varies from blue (least salient) to yellow (most salient). Each saliency map in these figures is scaled to the original image size for

demonstration purposes.

Kotseruba et al. (2019) demonstrated a gap between human

performance and traditional/CNN-based saliency models in

singleton detection tasks. The fact that Kotseruba et al. (2019)

reported that training CNN-based saliency models on these

stimuli did not improve their performance, hints on a more

fundamental difference between the two systems. Several other
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works have provided evidence on the lack of human equivalence

in deep neural networks (Ghodrati et al., 2014; Dodge and

Karam, 2017; Kim et al., 2018; Geirhos et al., 2019; Horikawa

et al., 2019; Hu et al., 2019; RichardWebster et al., 2019; Wloka

and Tsotsos, 2019; Baker et al., 2020; Lonnqvist et al., 2021;

Ricci et al., 2021; Xu and Vaziri-Pashkam, 2021a,b, 2022;

Ayzenberg and Lourenco, 2022; Feather et al., 2022; Fel et al.,

2022; Vaishnav et al., 2022; Zerroug et al., 2022; Zhou Q. et al.,

2022) on various aspects of visual processing. The claim of

implementing attention mechanisms in vision transformers offered

the possibility that these models might be more human-like.

This impression was confirmed in the work of Tuli et al. (2021)

who reported that vision transformers are more human-like

than CNNs based on performance on the Stylized ImageNet

dataset (Geirhos et al., 2019). Our work, however, adds to the

former collection of studies and reveals a gap between human

visual attention and the mechanisms implemented in vision

transformers.

This work can be further extended in several directions. For

example, even though Kotseruba et al. (2019) found training CNN-

based saliency models on the O3 dataset did not improve their

saliency detection performance, an interesting experiment is to

fine-tune vision transformers on the O3 dataset and evaluate the

change or lack of change in their saliency detection performance.

Additionally, incorporating vertical visual processes into the

formulation in Equation (1) is another avenue to explore in

the future.

To conclude, not only does our deliberate study of attention

formulation and the underlying architecture of vision transformers

suggest that these models perform perceptual grouping and do

not implement attention mechanisms, but also our experimental

evidence, especially from the P3O3 datasets confirms those

observations. The mechanisms implemented in self-attention

modules of vision transformers can be interpreted as lateral

interactions within a single layer. In some architectures, such as

ViT, the entire input defines the neighborhood for these lateral

interactions, in some others (Yang et al., 2021) this neighborhood

is limited to local regions of input. Although Liu et al. (2022)

found similar performance in a modernized CNNs, the ubiquity

of lateral interactions in the human and non-human primate

visual cortex (Stettler et al., 2002; Shushruth et al., 2013) suggest

the importance of these mechanisms in visual processing. Our

observation calls for future studies to investigate whether vision

transformers show the effects that are commonly attributed

to lateral interactions in the visual cortex such as crowding,

tilt illusion, perceptual filling-in, etc. (Lin et al., 2022). Self-

attention in vision transformers performs perceptual organization

using feature similarity grouping, not attention. Additionally,

considering Gestalt principles of grouping, vision transformers

implement a narrow aspect of perceptual grouping, namely

similarity, and other aspects such as symmetry and proximity

seem problematic for these models. The term attention has a

long history going back to the 1800’s and earlier (see Berlyne,

1974) and in computer vision to 1970’s (for examples, see Hanson

and Riseman, 1978). With decades of research on biological

and computational aspects of attention, the confusion caused by

inappropriate use of terminology and technical term conflation

has already been problematic. Therefore, we remain with the

suggestion that even though vision transformers do not perform

attention as claimed, they incorporate visual mechanisms in deep

architectures that were previously absent in CNNs and provide

new opportunities for further improvement of our computational

vision models.
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