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Abstract

Capturing the occurrence dynamics is crucial

to predicting which type of events will happen

next and when. A common method to do this

is through Hawkes processes. To enhance their

capacity, recurrent neural networks (RNNs) have

been incorporated due to RNNs’ successes in pro-

cessing sequential data such as languages. Re-

cent evidence suggests that self-attention is more

competent than RNNs in dealing with languages.

However, we are unaware of the effectiveness of

self-attention in the context of Hawkes processes.

This study aims to fill the gap by designing a

self-attentive Hawkes process (SAHP). SAHP em-

ploys self-attention to summarise the influence of

history events and compute the probability of the

next event. One deficit of the conventional self-

attention, when applied to event sequences, is that

its positional encoding only considers the order

of a sequence ignoring the time intervals between

events. To overcome this deficit, we modify its

encoding by translating time intervals into phase

shifts of sinusoidal functions. Experiments on

goodness-of-fit and prediction tasks show the im-

proved capability of SAHP. Furthermore, SAHP

is more interpretable than RNN-based counter-

parts because the learnt attention weights reveal

contributions of one event type to the happening

of another type. To the best of our knowledge,

this is the first work that studies the effectiveness

of self-attention in Hawkes processes.

1. Introduction

Humans and natural phenomena often generate a large

amount of irregular and asynchronous event sequences.

These sequences can be, for example, user activities on

social media platforms (Farajtabar et al., 2015), high-
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frequency financial transactions (Bacry & Muzy, 2014),

healthcare records (Wang et al., 2016), gene positions in

bioinformatics (Reynaud-Bouret et al., 2010), or earth-

quakes and aftershocks in geophysics (Ogata, 1998). Three

characteristics make these event sequences unique, their:

asynchronicity, multi-modality, and cross-correlation. A

sequence is asynchronous when multiple events happening

in the continuous time domain are sampled with unequal in-

tervals, in contrast to discrete sequences where events have

equal sampling intervals (Zhang et al., 2018b). A sequence

is multi-modal when sequences contain multiple type of

events. A sequence is cross-correlated when the occurrence

of one type of event at a certain time can excite or inhibit

the happening of future events of the same or another type.

Figure 1 shows four types of events and their mutual influ-

ence. A classic modelling problem with these sequences is

to predict which type and when future events will happen.

The occurrence of asynchronous event sequences are often

modelled by temporal point processes (TPPs) (Cox & Isham,

1980; Brillinger et al., 2002). They are stochastic processes

with (marked) events on the continuous time domain. One

special but significant type of TPPs is the Hawkes process.

A considerable amount of studies have used Hawkes process

as a de facto standard tool to model event streams, including:

topic modelling and clustering of textual documents (He

et al., 2015; Du et al., 2015a), construction and inference

on network structure (Yang & Zha, 2013; Choi et al., 2015;

Etesami et al., 2016), personalised recommendations based

on users’ temporal behaviour (Du et al., 2015b), discov-

ering of patterns in social interactions (Guo et al., 2015;

Lukasik et al., 2016), stance detection (Lukasik et al., 2016;

Zhang et al., 2018c; 2019a) and learning causality (Xu et al.,

2016). Hawkes processes usually model the occurrence

probability of an event with a so called intensity function.

For those events whose occurrence are influenced by history,

the intensity function is specified as history-dependent.

The vanilla Hawkes processes specify a fixed and static in-

tensity function, which limits the capability of capturing

complicated dynamics. To improve its capability, RNNs

have been incorporated as result of their success in dealing

with sequential data such as speech and language. RNN-

based Hawkes processes use a recurrent structure to sum-

marise history events, either in the fashion of discrete-

time (Du et al., 2016; Xiao et al., 2017b) or continuous-
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time
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Figure 1. Three users on social media platforms exert different types of actions. The filled dark symbols in (a) define action types while

the red arrows denote the influence of actions to other actions. A X symbol in the cell (i, j) in (b) indicates the influence of the column

event type j on the row type i on future events.

time (Mei & Eisner, 2017). This solution brings two bene-

fits: (1) historical contributions are not necessarily additive,

and (2) it allows the modelling of complex memory effects

such as delays. However, recent developments in natural

language processing (NLP) have led to an increasing interest

in the self-attention mechanism. Although self-attention is

empirically superior to RNNs in processing word sequences,

it has yet to be researched whether self-attention is capa-

ble of processing event sequences that are asynchronous,

multi-modal and cross-correlated.

In this work we investigate the usefulness of self-attention

to Hawkes processes by proposing a Self-Attentive Hawkes

Process (SAHP). First, we employ self-attention to measure

the influence of history events to the next event by com-

puting its probability. As self-attention relies on positional

embeddings to take into account the order of events, conven-

tional embedding methods are based on sinusoidal functions

where each position is distanced by a constant shift of phase,

which if used for our sequences would ignore the actual

time interval between events. We remedy this deficiency

by proposing a time-shifted position embedding method:

time intervals act as phase shifts of sinusoidal functions.

Second, we argue that the proposed SAHP model is more

interpretable than the RNN-based counterparts: The learnt

attention weights can reveal contributions of one event type

to the happening of another.

The contributions of this paper can be summarised as fol-

lows:

• To the best of our knowledge, this work is the first

to link self-attention to Hawkes processes. SAHP in-

herits improved capability of capturing complicated

dynamics and a higher interpretability;

• To consider inter-event time intervals, we propose a

novel time-shifted positional encoding that converts

time intervals into phase shifts of sinusoidal functions;

• Through extensive experimentation on a synthetic

dataset and three real-world datasets with different

sequence lengths and different numbers of event types,

we demonstrate the superiority of SAHP.

2. Notation

In this section we introduce the notation used throughout

the paper.

Symbol Description

U a set of event types.

S an event sequence.

t the time of an event.

u, v the type of an event.

i, j the order number of an event in a sequence.

Nu(t) the counting process for event type u.

Ht the set of events that happened before time t.
λ∗(t) the conditional intensity function.

p∗(t) the conditional probability density function.

F ∗(t) the cumulative distribution function.

3. Background

3.1. Temporal Point Processes and Hawkes Process

A temporal point process (TPP) is a stochastic process

whose realisation is a list of discrete events at time t ∈ R
+

(Cox & Isham, 1980; Daley & Vere-Jones, 2007). A marked

TPP allocates a type (aka mark) u to each event. TPPs

can be equivalently represented as a counting process N(t),
which records the number of events that have happened till

time t. A multivariate TPP describes the temporal evolution

of multiple event types U .

We indicate with S = {(vi, ti)}
L
i=1 an event sequence,

where the tuple (vi, ti) is the i-th event of the sequence

S, vi ∈ U is its event type, and ti is its timestamp. We

indicate with Ht := {(v′, t′) |t′ < t, v′ ∈ U} the historical

sequence of events that happened before t.

Given an infinitesimal time window [t, t+ dt), the intensity

function of a TPP is defined as the probability of the occur-

rence of an event (v′, t′) in [t, t + dt) conditioned on the

history of events Ht:

λ∗(t) dt : = p ((v′, t′) : t′ ∈ [t, t+ dt)|Ht)

= E(dN(t)|Ht),
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where E(dN(t)|Ht) denotes the expected number of events

in [t, t+dt) based on the history Ht. Without loss of general-

ity, we assume that two events do not happen simultaneously,

i.e., dN(t) ∈ {0, 1}.

Based on the intensity function, it is straightforward to de-

rive the probability density function p∗(t) and the cumula-

tive distribution function F ∗(t) (Rasmussen, 2018):

p∗(t) = λ∗(t) exp

(

−

∫ t

ti−1

λ∗(τ)dτ

)

,

F ∗(t) = 1− exp

(

−

∫ t

ti−1

λ∗(τ)dτ

)

.

An Hawkes process (Hawkes, 1971) models the self-

excitation of events of the same type and the mutual ex-

citation of different event types, in an additive way. Hence,

the definition of the intensity function is given as:

λ∗(t) = µ+
∑

(v′,t′)∈Ht

φ(t− t′), (1)

where µ ≥ 0, named base intensity, is an exogenous com-

ponent of the intensity function independent of the history,

while φ(t) > 0 is an endogenous component dependent on

the history. Besides, φ(t) is a triggering kernel containing

the peer influence of different event types. To highlight the

peer influence represented by φ(t), we write φu,v(t), which

captures the impact of a historical type-v event on a subse-

quent type-u event (Farajtabar et al., 2014). In this example,

the occurrence of a past type-v event increases the intensity

function φu,v(t− t′) for 0 < t′ < t.

Most commonly φu,v(t) is parameterized as φu,v(t) =
αu,v · κ(t) · 1t>0 (Zhou et al., 2013; Xu et al., 2016). The

excitation parameter αu,v quantifies the initial influence

of the type-v event on the intensity of the type-u event.

The kick function κ(t) characterises the time-decaying in-

fluence. Typically, κ(t) is chosen to be exponential, i.e.,

κ(t) = exp(−γt), where γ is the decaying parameter con-

trolling the intensity decaying speed.

To learn the parameters of Hawkes processes, it is common

to use Maximum Likelihood Estimation (MLE). Other ad-

vanced and more complex adversarial learning (Xiao et al.,

2017a) and reinforcement learning (Li et al., 2018) methods

have been proposed, however we use MLE for its simplicity.

In experiments, we use the same optimization method for

our model and all baselines as done in their original papers.

To apply MLE, a loss function is derived based on the neg-

ative log-likelihood. Details of derivation can be found in

appendix. The log-likelihood of an event sequence S over a

time interval [0, T ] is given by:

L =

L
∑

i=1

log λvi(ti)−

∫ T

0

λ(τ)dτ, (2)

where the first term is the sum of the log-intensity functions

of past events, and the second term corresponds to the log-

likelihood of infinitely many non-events. Intuitively, the

probability that there is no event of any type in the infinites-

imally time interval [t, t + dt) is equal to 1 − λ(t)dt, the

log of which is −λ(t)dt.

3.2. Attention and Self-Attention

Attention. The attention mechanism enables machine

learning models to focus on a subset of the input se-

quence (Walther et al., 2004; Bahdanau et al., 2015; Zhang

et al., 2018a). In Seq2Seq models with the attention mecha-

nism the input sequence, in the encoder, is represented as a

sequence of key vectors K and value vectors V , (K,V ) =
[(k1,v1), (k2,v2), . . . , (kN ,vN )], and, in the decoder, as

a sequence of query vectors, Q = [q1, q2, . . . , qM ]. These

query vectors are used to find which part of the input se-

quence is more important (Vaswani et al., 2017). Given

these two sequences of vectors (K,V ) and Q, the atten-

tion mechanism computes a prediction sequence O =
[o1,o2, . . . ,oM ] as follows:

om =

(

∑

n

f(qm,kn)g(vn)

)

/
∑

n

f(qm,kn),

where m ∈ {1, . . . ,M}, n ∈ {1, . . . , N}, qm ∈ R
d,

kn ∈ R
d, vn ∈ R

p, g(vn) ∈ R
q and om ∈ R

q. The

similarity function f(qm,kn) characterises the relation be-

tween qm and kn, whose common form is composed of:

an embedded Gaussian, an inner-product, and a concatena-

tion (Wang et al., 2018). The function g(vn) is a linear trans-

formation specified as g(vn) := vnWv , where Wv ∈ R
p×q

is a weight matrix.

Self-attention. Self-attention is a special case of the at-

tention mechanism (Vaswani et al., 2017), where the query

vectors Q, like (K,V ), are come from the encoder. Self-

attention is a method of encoding sequences of input tokens

by relating these tokens to each other based on a pairwise

similarity function f(·, ·). It measures the dependency be-

tween each pair of tokens from the same input sequence. To

encode positional information of tokens a positional encoder

is used. Consequently, self-attention encodes both token

similarity and positional information.

Self-attention is very expressive and flexible for both long-

term and local dependencies, which used to be modeled by

recurrent neural networks (RNNs) and convolutional neural

networks (CNNs) (Vaswani et al., 2017). Moreover, the

self-attention mechanism has fewer parameters and faster

convergence than RNNs. Recently, a variety of Natural

Language Processing (NLP) tasks have experienced large

improvements thanks to self-attention (Vaswani et al., 2017;

Devlin et al., 2019).
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4. Self-Attentive Hawkes Process

In this section, we describe how to adapt the self-attention

mechanism to Hawkes processes. A graphical representa-

tion of this adaptation is shown in Figure 2.

Event type embedding. The input sequence is made up

of events. To obtain a unique dense embedding for each

event type, we use a linear embedding layer,

tpv = evWE ,

where tpv is the type-v embedding, ev is a one-hot vector

of the type-v and WE is the embedding matrix.

Time-shifted positional encoding. Self-attention utilises

positional encoding to inject order information to a sequence.

To take into account time intervals of subsequent events,

we modify the conventional positional encoding. For an

event (vi, ti), the positional encoding is defined as a K-

dimensional vector such that the k-th dimension of the posi-

tion embedding is calculated as:

pek(vi,ti) = sin (ωk × i+ wk × ti),

where i is the absolute position of an event in a sequence,

and ωk is the angle frequency of the k-th dimension, which

is pre-defined and will not be changed. While wk is a scal-

ing parameter that converts the timestamp ti to a phase shift

in the k-th dimension. Multiple sinusoidal functions with

different ωk and wk are used to generate the multiple posi-

tion values, the concatenation of which is the new positional

encoding. Even and odd dimensions of pe are generated

from sin and cos respectively.

Figure 3 shows how conventional and the new positional

encodings work. Suppose an event (vi, ti) is at the i = 14
position of a sequence. Conventional methods calculate

the values of sinusoidal functions at the i = 14 position

as the position value of this event. Our encoding modifies

this by shifting the original position i to a new position

i′k = i+ wkti
ωk

, where k denotes the embedding dimension.

This is equivalent to interpolating the time domain and to

produce shorter equal-length time periods. Positions in a

sequence are thus shifted by the time ti. The length of time

periods is decided by wk

ωk

. Since wk and ωk are dimension-

specific, the shift in one dimension can be different to the

one performed to the others.

History hidden vector. As an event consists of its type

and timestamp, we add the positional encoding to the event

type embedding in order to obtain the representation of the

event (vi, ti):

xi = tpv + pe(vi,ti).

Self-Attention. Given a series of historical events until

ti, to compute the intensity of the type-u at the timestamp

t, we need to consider the influence of all types of events

before it. To do this, we compute the pairwise influence

of one previous event to the next event by employing self-

attention. This generates a hidden vector that summarizes

the influence of all previous events:

hu,i+1 =





i
∑

j=1

f(xi+1,xj)g(xj)



 /

i
∑

j=1

f(xi+1,xj),

where xi+1 is like query (q) in the attention terminology,

xj is the key (k) and g(xj) is the value (v). The function

g(·) is a linear transformation while the similarity function

f(·, ·) is specified as an embedded Gaussian:

f(xi+1,xj) = exp
(

xi+1x
T
j

)

.

The temporal information is provided to the model during

training by preventing the model to learn about future events

via masking. We implement this in the attention mechanism

by masking out all values in the input sequence that corre-

spond to future events. Hence, the intensity of one event is

obtained only based on its history.

Intensity function. Since the intensity function of

Hawkes processes is history-dependent, we compute three

parameters of the intensity function based on the history hid-

den vector hu,i+1 via the following three non-linear trans-

formations:

µu,i+1 = gelu (hu,i+1Wµ) ,

ηu,i+1 = gelu (hu,i+1Wη) ,

γu,i+1 = softplus (hu,i+1Wγ) .

The function gelu represents the Gaussian Error Linear Unit

for nonlinear activations. We use this activation function

because this has been empirically proved to be superior to

other activation functions for self-attention (Hendrycks &

Gimpel, 2016). softplus is used for the decaying parameter

since γ needs to be constrained to strictly positive values.

Finally, we express the intensity function as follows:

λu(t) = softplus(µu,i+1+

(ηu,i+1 − µu,i+1) exp(−γu,i+1(t− ti))),

for t ∈ (ti, ti+1], where the softplus is employed to con-

strain the intensity function to be positive. The starting

intensity at t = ti is ηu,i+1. When t increases from ti, the

intensity decays exponentially. As t → ∞, the intensity

converges to µu,i+1. The changing speed is decided by

(ηu,i+1 − µu,i+1) that can be both positive and negative.

This enables us to capture both excitation and inhibition

effects. With inhibition we mean the effect that manifests

when past events reduce the likelihood of future events to

happen (Mei & Eisner, 2017).
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Figure 2. An event stream and the SAHP for one event type (u). The intensity function λu(t) is determined by a sequence of history

events via the SAHP.
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Figure 3. The time-shifted position encoding of an event with i =
14 in a sequence. Squares and diamonds denote conventional and

new encoding values with time-shifts.

5. Experiments

To compare our method with the state-of-the-art, we conduct

experiments on one synthetic dataset and three real-world

asynchronous event datasets. The real-world datasets have

been purposefully chosen in order to span over various prop-

erties, i.e., the number of event type ranges from 2 to 75
and the average sequence length ranges from 4 to 132. As

usual, sequences from the same dataset are assumed to be

drawn independently from the same process. These datasets

are all available at the following weblink1. Each dataset

is split into a training set, a validation set and a testing

set. The validation set is used to tune the hyper-parameters

while the testing set is used to measure the model perfor-

mance. Details about the datasets can be found in Table 1

and Appendix.

1https://drive.google.com/drive/folders/

0BwqmV0EcoUc8UklIR1BKV25YR1U

5.1. Synthetic Dataset

We generate a synthetic dataset with the open-source Python

library tick2. A two-dimensional Hawkes process is gen-

erated with base intensities µ1 = 0.1 and µ2 = 0.2. The

triggering kernels have a power law kernel, an exponential

kernel, a sum of two exponential kernels, and a sine kernel:

φ1,1(t) = 0.2× (0.5 + t)−1.3

φ1,2(t) = 0.03× exp(−0.3t)

φ2,1(t) = 0.05× exp(−0.2t) + 0.16× exp(−0.8t)

φ2,2(t) = max(0, sin(t)/8) for 0 ≤ t ≤ 4

In Figure 4 we show the four triggering kernels of the 2-

dimensional Hawkes processes. The simulated intensities

of each dimension is shown in the appendix.

5.2. Training Details

We implement the multi-head attention. This allows the

model to jointly attend information from different repre-

sentation subspaces (Vaswani et al., 2017). The number of

heads is a hyper-parameter. We explore this hyper-parameter

in the set {1, 2, 4, 8, 16}. Another hyper-parameter is the

number of attention layers. We explore this hyper-parameter

in the set {2, 3, 4, 5, 6}. We adapt the Adam as the basic

optimiser and develop a warm-up stage for the learning rate

whose initialisation is set to 1e−4. To mitigate overfitting

we apply dropout with rate set to 0.1. Early stopping is used

when the validation loss does not decrease more than 1e−3.

2https://github.com/X-DataInitiative/tick

https://drive.google.com/drive/folders/0BwqmV0EcoUc8UklIR1BKV25YR1U
https://drive.google.com/drive/folders/0BwqmV0EcoUc8UklIR1BKV25YR1U
https://github.com/X-DataInitiative/tick


Self-Attentive Hawkes Process

Table 1. Statistics of the used datasets.

Dataset # of Types Sequence Length # of Sequences

Min Mean Max Train Validation Test

Synth. 2 68 132 269 3,200 400 400

RT 3 50 109 264 20,000 2,000 2,000

SOF 22 41 72 736 4,777 530 1,326

MMC 75 2 4 33 527 58 65
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Figure 4. The four triggering kernels of the synthetic dataset with

2 event types.

5.3. Baselines

We compare our method (SAHP) against the following state-

of-the-art baselines:

Hawkes Processes (HP). This is the most conventional

Hawkes process statistical model which intensity is

described in Eq. (1). It uses an exponential kernel;

Recurrent Marked Temporal Point Processes (RMTPP).

Du et al. (2016) use RNN to learn a representation

of influences from past events, and time intervals are

encoded as explicit inputs;

Continuous Time LSTM (CTLSTM). Mei & Eisner

(2017) use a continuous-time LSTM, which includes

intensity decay and eliminates the need to encode

event intervals as numerical inputs of the LSTM;

Fully Neural Network (FullyNN). Omi et al. (2019) pro-

pose to model the cumulative intensity function with a

feed-forward neural network.

Log Normal Mixture (LogNormMix). Shchur et al.

(2020) suggest to model the conditional probability

density distribution by a log-normal mixture model.

6. Results and Discussion

For a fair comparison, we tried different hyper-parameter

configurations for baselines and our model, and selected

the configuration with the best validation performance. The

software used to run these experiments is available at the

following weblink3.

Goodness of fit on the synthetic dataset. In order to con-

duct a goodness-of-fit evaluation, we used the synthetic

dataset where the true intensity is known, and compared the

estimated intensity against the true intensity. We chose the

QQ-plot to visualise how well the proposed SAHP is able to

approximate the true intensity. Figure 5 shows the QQ-plots

of the estimated intensity by the five baselines and SAHP.

From this figure, we observe that the intensity estimated

by SAHP produces the most similar distribution to the true

one, which indicates that SAHP is able to best capture the

underlying complicated dynamics of the synthetic dataset.

Moreover, by comparing the upper and the lower sub-figures

in one column, all models obtain slightly better approxima-

tions to the intensity of the second event type.

Sequence modelling. We further compare the ability of

the methods to model an event sequence. As done in previ-

ous works (Mei & Eisner, 2017; Shchur et al., 2020), the

negative log-likelihood (NLL) was selected as the evaluation

metric. The lower the NLL is, the more capable a model is

to model a specific event sequence.

In Table 2 we report the per-event NLL of these models on

each test set. According to Table 2, our method significantly

outperforms the baselines in all datasets. As expected, the

conventional HP method is the worst in modelling an event

sequence in all datasets. RMTPP and CTLSTM have very

similar performance except on the Retweet dataset, where

CTLSTM achieves a lower NLL than RMTPP.

Event prediction. We also evaluate the ability of the

methods to predict the next event, including the event type

and the timestamp, according to history. To emphasises the

3https://github.com/QiangAIResearcher/

sahp_repo

https://github.com/QiangAIResearcher/sahp_repo
https://github.com/QiangAIResearcher/sahp_repo
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Figure 5. QQ-plot of the true vs. estimated intensities for each type. The x-axis and the y-axis represent the quantiles of the true and

estimated intensities. For each model the top plot is for the type-1 events while the bottom plot is for the type-2 events.

Table 2. Negative log-likelihood per event on the four test sets.

Dataset Synth. RT SOF MMC

HP 2.12 9.84 3.21 1.81

RMTPP 1.85 7.43 2.44 1.33

CTLMST 1.83 6.95 2.38 1.36

FullyNN 1.55 6.23 2.21 1.03

LogNormMix 1.43 5.32 2.01 0.78

SAHP 1.35 4.56 1.86 0.52

importance of the time-shifted positional encoding, we also

compare SAHP with a version (SAHP-TSE) where the new

positional encoding is replaced with the standard encod-

ing (Vaswani et al., 2017). We categorise type prediction

as a multi-class classification problem. As there is class

imbalance among event types, we use the macro F1 as the

evaluation metric. Also, since time interval prediction is

assumed to be a real number, a common evaluation metric

to evaluate these cases is to use the Root Mean Square Error

(RMSE). In order to eliminate the effect of the scale of time

intervals, we compute the prediction error according to the

formula as follows

εi+1 =
(t̂i+1 − ti)− (ti+1 − ti)

ti+1 − ti
,

where t̂i+1 is the predicted timestamp while ti+1 is the

ground truth, and t̂i+1 − ti is the predicted time interval

while ti+1 − ti is the true time interval. The results of type

and time prediction are summarised in Tables 3 and 4.

These two tables illustrate that our model outperforms the

baselines in terms of F1 and RMSE on all the prediction

tasks. We also observe that SAHP demonstrates a larger

margin in type prediction for F1. FullyNN and LogNorm-

Mix are consistently better than the other baselines in time

prediction, yet LogNormMix is not good at predicting event

types, which confirms the previous findings (Shchur et al.,

2020). Another important finding is that the use of the time-

shifted positional encoding improves the performance of

our method in both tasks.

Table 3. F1(%) of event type prediction on the four test-sets.

Dataset Synth. RT SOF MMC

HP 33.20 32.43 2.98 19.32

RMTPP 40.32 41.22 5.44 28.76

CTLMST 43.80 39.21 4.88 34.00

FullyNN 45.21 43.80 6.34 33.32

LogNormMix 42.09 45.25 3.23 32.86

SAHP-TSE 57.93 53.24 24.05 34.23

SAHP 58.50 53.92 24.12 36.90

Table 4. RMSE of event timestamp prediction on the four test sets.

Dataset Synth. RT SOF MMC

HP 42.80 1293.32 221.82 7.68

RMTPP 37.07 1276.41 207.79 6.83

CTLMST 35.08 1255.05 194.87 6.49

FullyNN 33.34 1104.41 173.92 5.43

LogNormMix 32.64 1090.45 154.13 4.12

SAHP-TSE 33.32 1102.34 143.54 4.03

SAHP 31.16 1055.05 133.61 3.89

Number of samples’ influence. When we optimise the

objective function Eq. (2), since it is not a closed form of the

expectation, we use Monte Carlo sampling to approximate

the integral. This experiment studies how the number of

samples influences the SAHP’s performance. The number

of samples varies from 5 to 30 with step size 5. We re-

port experimental results obtained from the StackOverflow

dataset; other datasets share similar findings.



Self-Attentive Hawkes Process

5 10 15 20 25 30
Number of samples

0.215
0.22

0.225
0.23

0.235
0.24

0.245
F 1

24
25
26
27
28
39
30
31
32

RM
SE

Figure 6. The influence of the number of samples of the Monte

Carlo estimation on SAHP’s performance for event prediction.

Figure 6 describes how the performance of event prediction

changes with different number of samples. From 5 to 10

samples, there is a significant improvement on the evaluation

metrics. With more than 10 samples, we observe that the

performance plateaus. To reduce computational time, we

use 10 as the default number of samples in Monte Carlo.

Computational efficiency. To compare the computa-

tional efficiency of our method with neural baselines, we

report in Table 5 the running time on the retweet dataset

with a Titan Xp GPU card. The mini-batch size is 32 and

running time is averaged by 10 epochs. We make two obser-

vations: (1) CTLSTM is the least computationally efficient

model, which could be due to the recurrent architecture

and Monte Carlo sampling, and (2) the proposed SAHP

model enjoys the same level of computational efficiency

with LogNormMix and FullyNN.

Table 5. Model running time on the retweet dataset with a Titan

Xp GPU card.

Model Time (Seconds)

RMTPP 92.22

CTLSTM 134.69

LogNormMix 85.32

FullyNN 87.53

SAHP 86.97

Model interpretability. Apart from strong capacity in re-

constructing the intensity function, the other advantage of

our method is its higher interpretability. SAHP is able to

reveal peer influence among event types. To demonstrate

that, we extract the attention weight that the type-u events

allocate to the type-v events and accumulate such attention

weight over all the sequences on the StackOverflow test set.

We remove the effect of the frequency of the (u, v) pairs

in the dataset through dividing the accumulated attention

weight via the (u, v) frequency. After normalisation, we

obtain the statistical attention distribution as shown in Fig-

ure 7. The cell at the u-th row and v-th column means the

statistical attention that the type-u allocates to the type-v.

Two interesting findings can be drawn from this figure: 1)

for most cells in the diagonal line, when the model computes

the intensity of one type, it attends to the history events of

the same type; 2) for dark cells in the non-diagonal line, such

as Constituent and Caucus, Boosters and Enlightened, and

Caucus and Publicist, the model attends to the latter when

computing the likelihood of the former. The first finding

is attributed to the fact that attention is computed based

on similarity between two embeddings while the second

finding indicates the statistical co-occurrence of event types

in a sequence.

Figure 7. Expected attention weights among event types on the

StackOverflow test set.

7. Related Work

Neural temporal point process. Complicated dynamics

of event occurrence demands for higher capacity of Hawkes

processes. To meet this demand, neural networks have been

incorporated to modify the intensity function. Du et al.

(2016) proposed a discrete-time RNN to encode history

to fit parameters of the intensity function. Mei & Eisner

(2017) designed a continuous-time Long Short-Term Mem-

ory model that avoids encoding time intervals as explicit

inputs. Another two works chose not to model the intensity

function. Omi et al. (2019) proposed to model the cumula-

tive intensity function with a feed forward neural network,

yet it suffers from two problems: (1) the probability den-

sity function is not normalised and (2) negative inter-event

times are assigned a non-zero probability. Then, Shchur

et al. (2020) suggested modelling the conditional proba-

bility density distribution by a log-normal mixture model.

They only studied the one-dimensional distribution of inter-

event times, neglecting mutual influence among different

event types. Also, despite their claimed flexibility, it fails to

achieve convincing performance on predicting event types.

Above all, history events have always been encoded by a re-

current structure. Moreover, RNN and its variants have been
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empirically proved to be less competent than self-attention

in NLP (Vaswani et al., 2017; Devlin et al., 2019). Also,

RNN-modified Hawkes processes do not provide a simple

way to interpret the peer influence among events. Each his-

torical event updates hidden states in the RNN cells but the

process lacks of straightforward interpretability (Karpathy

et al., 2016; Krakovna & Doshi-Velez, 2016).

Besides, recent works have advanced methods of parameter

optimisation. The conventional objective is the maximum

likelihood; alternatives to the maximum likelihood estima-

tion can be adversarial training (Xiao et al., 2017a), online

learning (Yang et al., 2017), Wasserstein loss (Xiao et al.,

2018), noise contrastive estimation (Guo et al., 2018) and

reinforcement learning (Li et al., 2018; Upadhyay et al.,

2018). This line of research is orthogonal to our work.

Positional encoding. RNN-based models are able to nat-

urally capture position information of tokens in a se-

quence while convolutional neural networks (CNN) and

self-attention has to rely on positional encoding to capture

sequential orders. Gehring et al. (2017) equipped CNN

with an absolute order numbers of input tokens; the position

embeddings were learnt during model training. Vaswani

et al. (2017) computed the absolute positional encoding by

feeding order numbers to sinusoidal functions. In contrast,

the relative positional encoding uses relative distance of the

centre token to others in the sequence. Shaw et al. (2018)

represented the relative position by learning an embedding

matrix. Wang et al. (2019) introduced a structural position to

model a grammatical structure of a sentence, which involves

both the absolute and the relative strategy. However, these

methods only consider the order of tokens, which ignores

time intervals for temporal event sequences.

8. Conclusion

The intensity function plays an important role in Hawkes

processes for predicting asynchronous events in the continu-

ous time domain. In this paper, we propose a self-attentive

Hawkes process where self-attention is adapted to enhance

the expressivity of the intensity function. This method en-

hances the model prediction and model interpretability. For

the former, the proposed method outperforms state-of-the-

art methods via better capturing event dependencies; while

for the latter, the model is able to reveal peer influence via

attention weights. For future work, we plan to apply this

work to social network analysis (Zhang et al., 2019b) and

extend it for causality analysis of asynchronous events.
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