
Self-awareness in autonomous automotive systems
Johannes Schlatow, Mischa Möstl

and Rolf Ernst
Institute of Computer and Network Engineering

Technische Universität Braunschweig
{schlatow,moestl,ernst}

@ida.ing.tu-bs.de

Marcus Nolte, Inga Jatzkowski
and Markus Maurer

Institute of Control Engineering
Technische Universität Braunschweig

{nolte,jatzkowski,maurer}
@ifr.ing.tu-bs.de

Christian Herber
and Andreas Herkersdorf
Institute for Integrated Systems
Technische Universität München

{christian.herber,herkersdorf}
@tum.de

Abstract—Self-awareness has been used in many research
fields in order to add autonomy to computing systems. In
automotive systems, we face several system layers that must be
enriched with self-awareness to build truly autonomous vehicles.
This includes functional aspects like autonomous driving itself,
its integration on the hardware/software platform, and among
others dependability, real-time, and security aspects. However,
self-awareness mechanisms of all layers must be considered in
combination in order to build a coherent vehicle self-awareness
that does not cause conflicting decisions or even catastrophic
effects. In this paper, we summarize current approaches for
establishing self-awareness on those layers and elaborate why
self-awareness needs to be addressed as a cross-layer problem,
which we illustrate by practical examples.

I. INTRODUCTION

Autonomous driving is currently a very hot topic in the
automotive domain. In particular, recent advances in the ap-
plication of machine learning for environmental perception
pave the way for fully automated vehicles. However, building
truly autonomous automotive systems requires sophisticated
self-assessment capabilities in order to be fail-operational (i.e.
continue a safe operation) in all scenarios. Autonomous vehi-
cles must therefore possess knowledge of (formal) boundaries
of their actions to avoid catastrophic effects.

Self-awareness has already been proposed for Autonomic
Computing as a means to cope with complexity [1]. Self-
awareness refers to a system’s capability to recognize its
own state, possible actions and the result of these actions on
the system itself and on its environment. This principle has
been researched on different system layers as, e.g. recently
presented in the context of the Internet of Things [2]. However,
in order to meet the complex requirements of autonomous
vehicles, self-awareness must not be taken separately on
each layer (i.e. hardware/software platform, communication,
sensors, driving function, etc.) but combined into a coherent
vehicle self-awareness which prevents destructive behavior due
to conflicting decisions. In this paper, we elaborate on our
observation that self-awareness for automotive systems must
be approached as a cross-layer problem.

In Section II, we present a research project into self-
aware automotive platforms. Section III illustrates how vir-
tualization technologies enable the model-based and platform-
independent management of autonomous systems. Section IV
summarizes the state of autonomous driving w.r.t. (functional)
self-awareness capabilities of automotive vehicles. In Sec-
tion V, we motivate that self-awareness must be addressed

as a cross-layer mechanism before we conclude this paper in
Section VI.

II. SELF-AWARENESS IN AUTOMOTIVE PLATFORMS

Today’s automotive vehicles are typically developed fol-
lowing the V-model process, which particularly suits the
deployment of entire, well-tested products as practiced in the
automotive domain. While being well-established and efficient
for safety-critical embedded systems, this process does not
natively address maintenance of these systems after deploy-
ment or product variants and product lines. More precisely,
every change/update must be adequately tested before it can
be applied in the garage, which typically restricts modifications
to a single-owner (i.e. the OEM).

The German DFG Research Unit Controlling Concurrent
Change (CCC) (8 faculty, 6 yrs funding) addresses the topic
of managing in-field changes to automotive and space vehicles
by establishing an automated model-based integration process
for safety-critical embedded systems that can be deployed as
a self-protecting mechanism along with these systems. As
a result, CCC combines a conventional lab-based design of
individual functions with an automated integration process
which ensures that updates are applied to an already deployed
system only if the system can still adhere to the required safety
and security constraints.

This becomes particularly challenging as the target plat-
form is shared by multiple functions with different criticality.
All side-effects must therefore be anticipated and either be
bounded or mitigated in order to ensure safe operation of
critical functions at all times. For this purpose, all require-
ments and constraints must be explicitly specified in the input
models. Another challenge consists in finding (and specifying)
appropriate abstractions that guide the decisions which must
be made during such a model-based integration process as
these are usually based on experience and expert knowledge,
which is only implicitly available.

In CCC, a system’s architecture is divided into a model
domain and an execution domain as illustrated in Fig. 1.
As in any conventional system architecture, the execution
domain provides the run-time environment (RTE) including
the operating system (OS) required for hosting multiple ap-
plication components. The execution domain is augmented
by application and platform monitoring capabilities to close
the gap between model assumptions and the actual behavior
of the execution domain. The model domain employs formal

https://doi.org/10.24355/dbbs.084-201803221524



Run-Time Environment
(including OS)

Platform Monitor

Platform
Component

Platform
Component

. . .

Network

Application Monitor

Application
Component

Application
Component

. . .

Multi-Change
Controller

(MCC)

evolving contract

configuration

metrics

Fig. 1. CCC architecture comprising a model domain (red), an execution
domain (green) as well as changing application/platform components (gray).

methods to control changes of all platform components such
as CPUs or networks. In conjunction, the methods and mech-
anisms developed in both domains equip a CCC platform with
safe change capabilities. In the next sections, we summarize
the essential methods and mechanisms of both domains.

A. Model Domain

In the CCC architecture, a so-called Multi-Change Con-
troller (MCC) takes full control over the system and platform
configuration by implementing the methods developed in the
model domain. It performs the integration process and ensures
that a new configuration passes all necessary acceptance
and conformance tests. Similar to the conventional V-model
development process, the MCC gradually refines the model
representation of the new system configuration during the
integration process. It further introduces additional layers that
model certain aspects of the system in order to represent
particular viewpoints such as safety, availability or security.
The requirements for these viewpoints – e.g. a safety-level
requirement or a real-time constraint – are collected for each
component in a so-called contracting language, which serves
as an input to the MCC. Viewpoint-specific analyses can be
implemented as separate entities in the MCC, e.g. to resolve
run-time dependencies between software components [3] or to
build a security threat model for vehicular systems [4].

A change to a system can be the addition of a new
functionality that is modeled in a logical or functional system
architecture in a platform-independent way. The integration
process first involves fitting this functionality to the target
platform that typically consist of multiple processing resources
and networks. Secondly, the resulting technical architecture is
transformed and mapped to a model of its implementation
(i.e. software components and their interconnection) such that
undesired dependencies/interference is avoided. This process is
assisted by formal analyses that a) can guide the (mapping) de-
cisions and b) work as acceptance tests. For instance, a worst-
case response time analysis can check real-time constraints
based on a timing model of the system.

B. Execution Domain

In order to apply the model-based methods implemented
in the MCC, the execution domain must be able to enforce
the modeled behavior where necessary. In the scope of CCC,
we base the execution domain on microkernel-based operating
systems, which already provide a strong isolation of applica-
tion components and fine-grained access control that allows to
follow the principle of least privilege while being dynamically
configured at run time. The software-component model used in
the model domain is based on the component-based semantics
of these systems in which so-called micro servers provide
services that can be granted to other components that require
these services. Note that, however, the methods developed in
the model domain are not restricted to these semantics but can
be adapted to different implementation models.

As mentioned above, the execution domain is augmented
by run-time monitoring capabilities that a) enforce certain
model assumptions or b) extract run-time metrics that can
be fed back into the model domain for optimization. As the
MCC relies on the adherence of implementations to their
modeled behavior, it can configure the monitoring facilities
to enforce, e.g., the access policy to network resources [5] or
real-time behavior [6] where necessary. On the other hand,
supervising certain run-time properties, such as execution
times, access patterns, or sensor values, equips the system with
self-awareness capabilities w.r.t. certain performance metrics
and is actually implemented with very little interference on the
actual functionality. This enables the model domain to detect
deviations from the nominal behavior, refine its models, antic-
ipate changes, and adapt the system configuration accordingly.

III. VIRTUALIZATION AS ENABLER

Virtualization techniques are effective means to achieve
temporal and spatial segregation among mixed-criticality ap-
plications running on shared multicore computing platforms
using on- and off-chip interconnect and memory/storage re-
sources. This ability to isolate, i.e. guarantee freedom of
interference between, applications and provision them with
their own logical resources is a powerful enabling technology
to support environments witnessing continuous change. Mod-
ifications made on one virtual machine (VM) will not affect
other VMs. Such hypervisor- or VMM-based process virtual-
ization [7], interconnect and memory virtualization methods
are layered underneath the MCC services introduced above.
The concisely defined allocation and mapping between appli-
cation tasks and virtualized resources is also helpful in context
of system self-awareness. Autonomous automotive systems
have extremely high, variable and domain-specific demands
for computing, communication and memory requirements. In
the sequel, we describe an architecture for automotive CAN
controller virtualization for multicore processors. Performance
bounds and cost impacts of the virtualization wrapper are
assessed experimentally and via synthesis.

In the context of autonomous automotive systems, industry-
specific protocols and properties like real-time capability and

https://doi.org/10.24355/dbbs.084-201803221524



Fig. 2. System Architecture using a virtualized CAN controller [8].

safety have to be considered. Our solution follows a lay-
ered architecture (Fig. 2), which extends a traditional CAN
controller (referred to as protocol layer) by a virtualization
layer. The additional hardware virtualization layer ensures that
CAN messages from multiple VMs are properly isolated and
transmitted with respect to their bus priority in real-time. On
the receiving end, messages are filtered towards the VMs.

An important aspect of the architecture is the division
of the virtualized CAN controller into a physical function
(PF) and virtual functions (VFs). The VFs provide data path
functionality only, while the PF is able to perform privileged
operations, e.g. modifying the bus speed or managing the VF
resources. The PF shall only be accessible to privileged SW
components, e.g. the hypervisor running an MCC. The VMs
host multiple concurrent execution domains.

We quantified the performance of the solution in an ex-
perimental system setting [8], using an Intel i7-3770T CPU
and an FPGA prototype based on Xilinx Virtex-7. The results
show that near-native transmit and receive performance can be
achieved, with an added latency around 7-11µs for a round-
trip. In terms of FPGA resources, the virtualized solution
breaks even with multiple stand-alone controllers at for VMs.

The applicability of this solution to automotive scenarios
allows highly flexible but robust systems at the same time.
Platform virtualization in combination with proper (potentially
HW-assisted) virtualization of critical peripheral components
can thus be used as enablement technology in scenarios using
an MCC and multiple execution domains on a single chip.

IV. SELF-AWARENESS IN AUTONOMOUS DRIVING

Recent advances in the field of automated road vehicles,
have shifted the focus of the research community from
(advanced) driver assistance systems (SAE levels 1&2 [9])
towards fully automated vehicles (SAE level 5 [9]). With
increasing automation, the driver’s task shifts from performing
the actual driving task (levels 1&2) to system monitoring
(levels 3&4). Eventually, when considering fully automated

vehicles (level 5), the driver has to be assumed completely
out of the control loop. In this case, the vehicle must be able
to act autonomously also in critical situations. Thus the vehicle
must remain fail-operational at least until a safe stop is reached
without constituting a safety risk for other traffic participants.

In order to being able to maintain a fail-operational state,
the vehicle must be self-aware at the functional level. This
means, that each function must be able to assess its current
performance and be able to autonomously isolate faults in
order to being able to engage appropriate counter measures.
In addition it must also be aware of possible redundant func-
tional modules which can replace faulty modules, if degrading
performance is detected. From a functional safety perspective,
with self-monitoring of the system and the knowledge of the
vehicle’s current capabilities it is possible to maintain a safe
vehicle state at all times [10]. This knowledge of the vehicle’s
current capabilities can additionally be employed to influence
driving decisions of the automated vehicle and adapt these to
the current performance capabilities.

Considering the state of the art in series vehicles, current
monitoring strategies only take small sets of system states
into account, such as tire pressure or battery charge. Simple
faults of single sensors or actuators, particularly in the drive
train, can then be detected using on-board diagnosis (OBD).
For fully automated vehicles, these self-diagnostic capabilities
need to be extended towards the data quality assessment
for environmental sensors (e.g. cameras, LiDAR-, RADAR-
sensors) and, as mentioned above, the quality assessment of
functions (e.g. object tracking, control algorithms).

First ideas towards self-awareness at a functional level for
autonomous systems have already been stated in [11] and [12],
without specifying detailed concepts. More concrete concepts
for the explicit internal representation of an autonomous
vehicle’s skills and abilities have been developed by [13]
and detailed at the example of monitoring the performance
of control algorithms. These concepts have been extended by
[14] and [15] to serve as an input for decision making.

Within the RACE project [16], a flexible software and
partially redundant hardware architecture is proposed as a
solution to the challenge of creating highly available and
dependable automated vehicle systems. However, detection of
sensor failures is limited to performing a set of boundary
checks for the respective sensors. With SAFER, a flexible
framework was proposed in [17], which uses hot and cold
stand-by nodes in the system as an effort to increase the
dependability of the system. Any degradation strategy is only
activated if the heartbeat of a sensor goes missing [17],
a more detailed monitoring of sensor data quality is not
considered by the authors. Both approaches do not use the
gathered information in a wider context to create a detailed
representation of the current system performance as it would
be required for a self-aware vehicle.

In the context of the Stadtpilot project, a surveillance and
safety subsystem for monitoring the current system operation
state of an automated vehicle was proposed [18]. It states
the necessity of being able to detect failures of software and

https://doi.org/10.24355/dbbs.084-201803221524



hardware modules, and have the system react to these failures
immediately. Performance criteria for the system are identified
and functional degradation strategies are proposed and applied
to the research vehicle Leonie.

Bergmiller [19] suggests a skill network for monitoring and
fault-detection in full-by-wire vehicles. In the scope of the
above mentioned research unit CCC, we use the experimental
x-by-wire vehicle MOBILE which is contributed by the In-
stitute of Control Engineering. For this vehicle, we evaluate
use cases including control applications and automated driving
functions on top of the CCC architecture presented in Sec-
tion II. The integration of the CCC architecture in MOBILE
for these use cases has been specified in [20]. In addition,
we develop monitoring mechanisms for self-protection against
harmful (function) updates and for self-awareness of control
applications [21]. The latter is of particular importance as
it allows to react to decreased control performance due to
operating conditions that have not been anticipated. By com-
bining a model of the vehicle with a performance model this
self-representation allows to monitor the physical state of the
vehicle and to assess the current performance of each of the
vehicle’s skills. Following this concept and the ideas of [14]
and [15], Reschka [22] proposes the concept of ability and
skill graphs as an holistic approach for modeling the vehicle’s
capabilities considering self-perception and self-representation
not only for runtime monitoring, but also as a modeling tool
in a development process. A skill can be understood as an
abstract representation of the driving task including the condi-
tions necessary to provide it while an ability is derived from an
abstract skill by instantiation and including information about
the ability’s current performance. Skill graphs can be used in
the development phase of a vehicle guidance system to model
the required abilities for the application domain of the system.
With a variable degree of detail, skill graphs may guide the
development process by revealing necessary redundancies in
the system to achieve identified safety goals. It can also
be employed to visualize error propagation and performance
degradation in the system. Within the implemented system
ability graphs are used during operation of the vehicle to
monitor the current system performance. The ability level of
the vehicle can then guide decision making and the vehicle’s
behavior execution.

A skill graph is a directed acyclic graph (DAG) that con-
sists of skill nodes, data sink nodes, data source nodes, and
dependency relations between the nodes. A path in this DAG,
starting with a main skill and ending at a data source or data
sink, represents a chain of dependencies between abilities. To
illustrate the construction of a skill graph we take the example
of Adaptive Cruise Control (ACC) as the driving task that shall
be modeled. In this case, ACC driving will make up the main
skill or root of the DAG. The main skill is gradually refined
to an arbitrary degree of detail until the data sources and data
sinks are reached. More precisely, for realizing ACC driving,
the abilities to control distance, to control speed and to keep
the vehicle controllable for the driver are required. To keep the
vehicle controllable for the driver it is necessary to estimate

the driver’s intent and to be able to decelerate the vehicle if
required. To control the distance to the preceding vehicle and
to control the speed of the ego vehicle the skill to select a
target object is needed. Both the aforementioned abilities are
also dependent on the skill to estimate the driver’s intent and
the skill to accelerate and decelerate. For the selection of a
target object, the system has to be able to perceive and track
dynamic objects which itself depends on environment sensors
as data sources. To estimate the driver’s intent, a form of HMI
is required as a data source. Acceleration and deceleration both
require the powertrain system as a data sink while deceleration
also requires the braking system as a data sink. A graphical
representation of this skill graph can be found in [22]. To
use this graph for monitoring it has to be transformed into an
ability graph by choosing a suitable implementation.

Given appropriate metrics for the ability graph, this ap-
proach allows for error detection within the different levels of
detail in the graph. In case of a reduced ability level it is pos-
sible for the system to apply graceful degradation tactics, e.g.
by switching to different software modules or by performing
self-reconfiguration. The development of appropriate metrics,
aggregated measures and models for performance propagation
is subject to ongoing research.

V. CROSS-LAYER ASPECTS OF SELF-AWARENESS

A general challenge for self-aware autonomous systems
is the fact that they are operated in an environment that
allows only limited predictability. In general, not all the effects
that impact the system can be fully anticipated. This targets
functional as well as non-functional properties of a system
in the same manner. While certain effects can be modeled
probabilistically to allow a limited predictability of the influ-
enced properties, other properties are influenced by effects that
lack such descriptions. For instance, while platform reliability
(property) is typically approached with probabilistic modeling
of hardware failures (effect), data integrity is challenging to
guarantee since the absence of security threats (as modeled in
[4]) cannot be trivially proved due to a lacking model for the
influencing effects. Instead, the system must be able to assess
such uncertainty in a self-aware manner, meaning that its goal
in case of an attack is to find suitable countermeasures.

However, finding a suitable countermeasure requires the
capability to identify the leak and isolate it on the appropriate
layer. For instance, if only a single IP-based service is affected
by a security leak, it will be more appropriate to contain
this service than to terminate all network connections on the
Ethernet layer. The security leak in this case is the environment
that excretes an influence on the system, forcing it to react. A
self-aware system is then able to identify the most appropriate
layer to respond to detected anomalies without the need to
anticipate the exact situation at design time.

As mentioned above, self-awareness of an automated ve-
hicle is crucial for guaranteeing its safe operation. When
considering level 5 (fully automated according to [9]) systems,
in which the driver is not in the loop to take over control, the
system needs to provide mechanisms for resilient operation

https://doi.org/10.24355/dbbs.084-201803221524



because the vehicle must remain fail-operational at least until a
safe stop in a safe place is reached. Classical fault tolerance is
not sufficient, here, as errors may have many causes including
conceptual and implementation faults, and interference effects
in function and platform. The task of detecting and handling
such effects cannot be addressed on a single layer, i.e. rep-
resentation of the system, alone. Knowledge of critical cross-
layer dependencies and their effects is an essential part of self-
awareness. In traditional design, such dependencies are iden-
tified with semiformal methods, such as a Failure Mode and
Effects Analysis (FMEA). In CCC, such dependency analysis is
automated to derive cross-layer dependency models describing
the effect of change and actions on the overall system [23],
[24]. In future vehicles, cross-layer dependencies are likely to
grow as hardware component and power management become
more sophisticated and stateful. Self-awareness and learning
algorithms will also be helpful at this level, but will contribute
to a richer system state [25]. Because environmental effects
(e.g. security leaks, component failures) and their impact on
the system can never be fully anticipated at design time, an
automated vehicle must be able to engage countermeasures
against complete system failure at run time.

An example of possible environment interference is the
temperature regime within and around the considered system.
Ambient temperatures are a source of common cause faults
that can affect the operation of a system in many ways. On
the one hand, temperature can alter the physical properties of
the system such that the anticipated plant models for control
software no longer apply. On the other hand, it can cause
performance degradation of the (hardware) platform, which,
in a self-aware system, may influence the error model and/or
require voltage or frequency scaling to prevent permanent
damage. This alone, however, does not fully contain the
fault as the deteriorated hardware performance can still cause
deadline misses and other, functional, faults.

Many more challenges that manifest with different effects
on distinct layers exist, ranging from other platform (hardware)
aspects over safety and security side-channels to security flaws
of the employed hardware. All of them have in common
that a deviation of the anticipated/expected behavior must be
detectable by a system as a prerequisite to become self-aware.
This can be facilitated by monitoring capabilities that allow
the system to capture its current status and compare it to
an expected state, or sequence of expected states. Generally
speaking, monitoring is also performed based on models
and metrics extracted from individual layers. Yet in order to
achieve a meaningful self-awareness, the overall monitoring
concept must ensure that metrics from different layers can be
aggregated to a consistent self-representation of the system.

Furthermore, a system must have capabilities to counteract
the experienced effects on each layer in order to properly
handle them. However, this does not imply that every con-
sequence of an observed event must be handled locally on
each layer. Instead, resolving the situation is a primal example
where cross-layer solutions are necessary in order to avoid that
complexity gets out of hands on individual layers.

Thus, in order to provide the required level of resilience, we
propose to combine a self-aware middleware (cf. Section II)
also with self-awareness at a functional level (cf. Section IV).
In this way, the system can be equipped with multiple problem
solving strategies, which shall be illustrated by the example
of an intrusion detection system.

By monitoring communication behavior, the system itself
is capable of detecting components or subsystems affected by
a security leak [5]. In this example, we assume a security
flaw in the software component governing rear braking. The
only viable option for the system is often to shut down
the affected component, however, this can happen in two
fundamentally different ways. On the one hand, the effect
of the suddenly switched off component can be treated as a
component failure on the safety layer, where this effect must
have been anticipated as part of the safety design. For instance,
a safe-guard such as a redundancy concept is in place and
allows to continue the service even in the presence of the
faulty or switched off component. Also, recovery mechanisms
such as restarting the service with a different software setup
may count as a countermeasure on the safety layer.

On the other hand, the fact that the rear braking capability
is compromised and must be shut off can be propagated
to the ability layer within the functional level to reassess
available skills. The layer can then search for solutions how the
system can keep up desired functionalities that require rear-
braking. One solution to this could be that the objective of
driving can be kept operational although the ability to brake
is only partially available by reducing the maximum speed
and generating additional brake torque from the drive train in
order to stay in safe margins. On the contrary, the ability layer
can forward the search for solutions to the objective layer and
alter the driving objective of the system. An option would
be to transition the system into a safe state, i.e. stop driving
and, only afterwards, deactivate the affected component and
subsystems. In conclusion, the cross-layer approach to the
problem allows quite different solution spaces for detected
problems while the system is in operation, forcing the system
to be aware of the consequences of the chosen solution. Hence,
as the system can propagate detected problems through the
layers, it must ensure that these also cooperate and avoid
situations in which the problem is forwarded ad infinitum.
Therefore, the correct degree of cooperation between the layers
must be found such that the system is able to protect itself from
the impact of the environment effects.

Obviously, the environment does not only constitute of
physical effects on the system but also of other participants in
networks to which the system is connected, and other traffic
participants. This requires awareness of the system that any
reaction it takes might require cooperation with others and
even delegation, raising issues of trust and self-protection
against other malicious neighbors. Future self-aware vehicles
may cooperate to share information or even to agree on
collective behavior as needed in platooning scenarios. Building
a platoon with other vehicles can be beneficial in scenarios
where the vehicles are differently suited for driving in certain

https://doi.org/10.24355/dbbs.084-201803221524



weather conditions. For instance, driving in dense fog with
inappropriate or broken sensors will not be possible by a single
autonomous vehicle. Nevertheless, building a platoon with
better equipped vehicles could still be a viable option, which,
however, raises the issue of trustworthiness and uncertainty.
In this case, agreeing on a common velocity or a minimum
distance between vehicles in a platoon is an essential but
non-trivial problem as the communication to or the platform
of another vehicle might not be fully trustworthy or even
compromised. While, in this scenario, this can be addressed
by agreement or consensus protocols, there is also information
that inherently contains uncertainty such as weather forecasts.
Typically, the latter does not dramatically influence safe op-
eration of a vehicle. However, if the system was aware, that
its systems may degrade on a certain route due to possible
weather influences, it could plan alternative routes which avoid
weather-related degradation. In this case, a self-aware vehicle
could determine whether it plans a (possibly shorter) route
across an alpine pass in winter or whether it is advantageous
to take a longer detour without risking degraded performance.
For the realization of such strategies advanced reasoning under
uncertainty will be required at the functional level.

In summary, an autonomous vehicle must be self-aware
across all layers in order to assess the above mentioned
scenarios adequately.

VI. CONCLUSION

Autonomous automotive systems are not only expected to
meet certain dependability and security requirements but are
also exposed to a very heterogeneous and dynamic environ-
ment that cannot be fully anticipated at design time. Due to this
fact, such systems must also be able to autonomously detect
and react to unexpected situations on several layers, such as
degrading hardware components, functional deficiency, or a
changing physical environment. In this paper, we presented
self-awareness as a key property on multiple layers in auto-
motive systems. In order to detect and adapt to unanticipated
effects such as thermal stress or security leaks, self-awareness
must be introduced on every layer. In particular, we summa-
rized our approaches to this on the hardware/software platform
and the autonomous driving function. More importantly, how-
ever, we illustrated by several examples that self-awareness is
actually a cross-layer property particularly when considered in
the complex and safety-critical automotive context. Otherwise,
conflicting decisions between multiple layers of self-awareness
could lead to catastrophic effects. Building self-aware auto-
motive systems therefore requires new methods – such as a
cross-layer dependency analysis or cross-layer modeling for
in-field integration – to be developed and applied to address
this property.

ACKNOWLEDGEMENT

This work was funded within the DFG Research Unit Con-
trolling Concurrent Change (FOR 1800), and partially within
the project ARAMiS by the German Federal Ministry for
Education and Research with the funding IDs 01|S11035.

REFERENCES

[1] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, Jan. 2003.

[2] M. Möstl, J. Schlatow, R. Ernst, H. Hoffmann, A. Merchant, and
A. Shraer, “Self-aware systems for the internet-of-things,” in Intern.
Conf. on Hardware/Software Codesign and System Synthesis, 2016.

[3] J. Schlatow, M. Moestl, and R. Ernst, “An Extensible Autonomous
Reconfiguration Framework for Complex Component-Based Embedded
Systems,” in Intern. Conf. on Autonomic Computing (ICAC), 2015.

[4] M. Hamad, M. Nolte, and V. Prevelakis, “Towards Comprehensive
Threat Modeling for Vehicles,” in Workshop on Security and Depend-
ability of Critical Embedded Real-Time Systems (CERTS), 2016.

[5] M. Hamad, J. Schlatow, V. Prevelakis, and R. Ernst, “A communication
framework for distributed access control in microkernel-based systems,”
in Operating Sys. Platforms f. Embedded Real-Time App., 2016.

[6] M. Neukirchner, K. Lampka, S. Quinton, and R. Ernst, “Multi-Mode
Monitoring for Mixed-Criticality Real-time Systems,” in Intern. Conf.
on Hardware/Software Codesign and System Synthesis, 2013.

[7] I. Pratt, K. Fraser, S. Hand, C. Limpach, A. Warfield, D. Magenheimer,
J. Nakajima, and A. Mallick, “Xen 3.0 and the art of virtualization,” in
Linux symposium, vol. 2. Ottawa, Ontario, Canada, 2005.

[8] C. Herber, D. Reinhardt, A. Richter, and A. Herkersdorf, “HW/SW
trade-offs in I/O virtualization for Controller Area Network,” in
ACM/EDAC/IEEE Design Automation Conference (DAC), 2015.

[9] SAE International, “Taxonomy and Definitions for Terms Related to On-
Road Motor Vehicle Automated Driving Systems,” Tech. Rep., 2014.

[10] A. Reschka and M. Maurer, “Conditions for a safe state of automated
road vehicles,” it - Information Technology, vol. 57, no. 4, Jan. 2015.

[11] E. D. Dickmanns, “Multisensorielle Fahrzeugführung,” 1987.
[12] K. M. Passino and P. J. Antsaklis, “Modeling and analysis of artificially

intelligent planning systems,” P. J. Antsaklis and K. M. Passino, Eds.
Norwell, MA, USA: Kluwer Academic Publishers, 1993.

[13] M. Maurer, “Flexible Automatisierung von Straßenfahrzeugen mit Rech-
nersehen,” Ph.D. dissertation, Univ. der Bundeswehr München, 2000.

[14] K.-H. Siedersberger, “Komponenten zur automatischen Fahrzeugführung
in sehenden (semi-)autonomen Fahrzeugen,” Ph.D. dissertation, Univ.
der Bundeswehr München, 2003.

[15] M. Pellkofer, “Verhaltensentscheidung für autonome Fahrzeuge mit
Blickrichtungssteuerung,” Ph.D. dissertation, Univ. der Bundeswehr
München, 2003.

[16] A. Scholz, S. Sommer, A. Kemper, A. Knoll, C. Buckl, G. Kainz,
J. Heuer, and A. Schmitt, “Towards an adaptive execution of applications
in heterogeneous embedded networks,” in ICSE Workshop on Software
Engineering for Sensor Network Applications, 2010.

[17] J. Kim, G. Bhatia, R. Rajkumar, and M. Jochim, “SAFER: System-level
architecture for failure evasion in real-time applications,” in Real-Time
Systems Symposium (RTSS), 2012.

[18] A. Reschka, J. R. Böhmer, T. Nothdurft, P. Hecker, B. Lichte, and
M. Maurer, “A surveillance and safety system based on performance
criteria and functional degradation for an autonomous vehicle,” in Intern.
Conf. on Intelligent Transportation Systems, 2012.

[19] P. Bergmiller, Towards Functional Safety in Drive-by-Wire Vehicles.
Springer, 2015.

[20] A. Reschka, M. Nolte, T. Stolte, J. Schlatow, R. Ernst, and M. Maurer,
“Specifying a middleware for distributed embedded vehicle control
systems,” in Intern. Conf. on Vehicular Electronics and Safety (ICVES),
Hyderabad, India, Dec. 2014.

[21] M. Möstl, J. Schlatow, M. Nolte, M. Maurer, and R. Ernst, “Automating
Future (Function-)Updates,” in Tagungsband ELIV-Marketplace: E/E im
Pkw, Düsseldorf, Germany, 2016, ISBN: 978-3-945435-05-2.

[22] A. Reschka, G. Bagschik, S. Ulbrich, M. Nolte, and M. Maurer, “Ability
and skill graphs for system modeling, online monitoring, and decision
support for vehicle guidance systems,” in Intelligent Vehicles Symposium
(IV), 2015.

[23] M. Moestl and R. Ernst, “Handling complex dependencies in system
design,” in Design, Automation Test in Europe (DATE), 2016.

[24] M. Moestl and R. Ernst, “Cross-layer dependency analysis for safety-
critical systems design,” in Architecture of Computing Systems, 2015.

[25] N. Dutt, F. J. Kurdahi, R. Ernst, and A. Herkersdorf, “Conquering MP-
SoC complexity with principles of a self-aware information processing
factory,” in Intern. Conf. on Hardware/Software Codesign and System
Synthesis, 2016.

https://doi.org/10.24355/dbbs.084-201803221524


