
UC San Diego
UC San Diego Previously Published Works

Title
Self bounding learning algorithms

Permalink
https://escholarship.org/uc/item/7kh3f2zr

Author
Freund, Yoav

Publication Date
1998

DOI
10.1145/279943.279993

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7kh3f2zr
https://escholarship.org
http://www.cdlib.org/

Self bounding learning algorithms

Yoav Freund
AT&T Labs

180 Park Avenue
Florham Park, NJ 07932-0971 USA

yoav@research.att.com

January 17, 2000

Abstract

Most of the work which attempts to give bounds on the generalization error
of the hypothesis generated by a learning algorithm is based on methods from the
theory of uniform convergence. These bounds are a-priori bounds that hold for
any distribution of examples and are calculated before any data is observed. In this
paper we propose a different approach for bounding the generalization error after
the data has been observed. A self-bounding learning algorithm is an algorithm
which, in addition to the hypothesis that it outputs, outputs a reliable upper bound
on the generalization error of this hypothesis. We first explore the idea in the
statistical query learning framework of Kearns [10]. After that we give an explicit
self bounding algorithm for learning algorithms that are based on local search.

1 INTRODUCTION

Most of the work on the sample complexity of learning is based on uniform conver-
gence theory and attempts to give uniform a-priori bounds. A uniform a-priori bound
is a guarantee that, with high probability over the training set, the difference between
the training error and the test error is uniformly small for all hypotheses in a given
class. Such bounds are attractive because they allow us to argue about any algorithm
that can find a hypothesis with a small training error. However, the bounds that this
theory yields are almost always much too pessimistic. The gap between training error
and test error of learning algorithms that are used in practice is usually much smaller
than predicted by this theory.

In this work we propose a way by which one can derive better bounds on the gen-
eralization error in specific situations. The bounds depend on everything: the input
distribution, the relation between the input and the output and the learning algorithm.
In this sense the bounds are weaker than those of uniform convergence theory. On the
other hand,the bounds that we derive are in some cases tighter. We give an algorithm

1

for calculating the bound as a function of the training data. We call an algorithm that
combines the learning algorithm with this bound calculating algorithm a self-bounding
learning algorithm. We are thus replacing the a-priori guarantees of the uniform con-
vergence theory with a-posteriori guarantees which provide a constructive way of cal-
culating a reliable bound on the generalization error.

To see how this idea might be used consider the problem of bounding the gener-
alization error of a decision tree generated by one of the practical learning algorithms
for decision trees, such as C4.5 [13] or CART [5]. Bounds of this type can be used as
part of a formally justified pruning method. If we base our analysis on structural risk
minimization (see, for example, Mansour [11]), then we use the a-priori bound which
is based on the number of all possible decision trees with a given number of nodes.
However, if we take into account that we used the algorithm C4.5 to generate the tree
we realize that taking into account all possible trees might sometimes be a gross over-
estimate. C4.5 proceed by repeatedly splitting the leaves of the decision tree. At each
step choosing the split that seems best according to some measure of quality. Suppose
now that the training data is such that at each step, one split is significantly better than
the rest. In this case it is very unlikely that a different training set will change the tree,
which means that in our calculations of the bound we really should be considering only
a single tree! In this paper we formalize what we mean when we say that one of the
splits is significantly better than the rest and bound the size of the sample that is needed
to achieve such significance.

In the first part of the paper we explore the idea of self-bounding learning algo-
rithms in the general context of the statistical query (SQ) learning model of Kearns [10].
We describe a general transformation of deterministic SQ learning algorithms into self-
bounding algorithms. However, self bounding algorithms generated by this transfor-
mation would, in general, require exponentially more time and space than the original
learning algorithm.

In the second part of the paper we restrict our attention to one important subset
of SQ learning algorithms. This is the family of local search algorithm. This fam-
ily includes gradient-descent algorithms such as “BackProp” [14] and algorithms that
work by iteratively altering their model, such as the work of Heckerman et. al. [8] on
learning graphical models by repeated local changes. We describe a transformation
of local-search learning algorithms into self-bounding algorithms. This transforma-
tion produces a self bounding learning algorithm whose computational complexity is
similar to the computational complexity of the learning algorithm on which it is based.

1.1 RELATION TO OTHER WORK

A-posteriori error bounds of the type we consider here were previously considered
by Shaw-Taylor et. al. [15]. In their work they expand Vapnik’s SRM framework to
allow for structures that depend on the training data. Their analysis yields bounds on
the difference between the training error and the true error that can be quantified only
after the data has been observed. An important application of their method are the a-
posteriori bounds that they derive on Vapnik’s support vector machines. The difference

2

between this work and theirs is that our starting point is a given learning algorithm
while theirs is a so-called “luckiness function”, which is, in the case of support vector
machines, the size of the margin. Other research that considers a-posteriori bounds
include Shawe-Taylor and Williamson [16] and McAllester [12]. These analysis use as
a starting point a prior distribution over the concept space.

Learning for specific distributions has been studied quite extensively, for examples
see Benedeck and Itai [2] and Haussler et. al [7]. However, these works derive bounds
that depend explicitly on the input distribution. This makes them useless for problems
of model selection, because the input distribution is not known and estimating it is
usually a harder problem than approximating the input-output relationship.

Another approach to estimating the test error of a hypothesis is cross validation.
In this approach some of the training data is left outside the reach of the learning
algorithm and is later used to estimate the generalization error of the final hypothesis.
The advantage of our approach over cross validation is that the learning algorithm can
use all of the training data.

2 ERROR BOUNDS FOR SQ ALGORITHMS

Kearns [10] introduced the statistical query (SQ) model of learning. This model is a
restriction of the PAC learning model. Most of the known concept learning algorithms
can be analyzed within this framework. One of the advantages of this model is that it
provides a general way of transforming any learning algorithm into a version that can
learn in the presence of classification noise. For our needs here we define a slightly
different class of learning algorithms, which we call Encapsulated Statistical Query
learning algorithm or ESQ for short.

�
An encapsulated learning algorithm A consists of two parts, the first is an SQ al-

gorithm, denoted A ��� ; the second is the statistical oracle, denoted STAT. The oracle
serves as an intermediary between the SQ learning algorithm and the training data. In
order to be precise, we define the following setup. We assume that examples are items
of the form �����
	����������������� and are randomly generated according to some fixed
but unknown distribution � . The goal of learning is to find a function, also called the
hypothesis, ������� ��������� , chosen from a hypothesis class ! , which minimizes the
generalization error:

err ���"��#$&%('*)�+ ,.-0/2143 �5�6�7��8$:9 #
In this paper we restrict ourselves to the case where ! is a finite set. The ESQ learning
algorithm receives as input a training set, which is a set of examples; $ �<��� � �=	 � �>� #.#�# �.�6��?(�=	�?@�
� , drawn independently at random according to � . The
training set is accessible only to the oracle, not to the SQ algorithm. The SQ algorithm
communicates with the oracle by making statistical queries. A statistical query is aA

Our definition is essentially identical to the standard simulation of a PAC learning algorithm using an
SQ algorithm as described in Kearns [10] and Aslam and Decatur [1]. However, as our emphasis here is on
a different set of questions, we find it better to establish a slightly different terminology.

3

description of a binary predicate � which is an element of the query class � . Again, in
this paper, we consider only finite query classes. The binary predicate maps instance
and label pairs �6�5�
	�� � � � � �.�:� into � � �.�:� . The answer provided by STAT to
the statistical query is a a real number �������� � � which is an approximation of the
expected value of the predicate:� � $
	 '*)�+ ,.-0/21�3 � �6�5�
	�� 9 #
We say that the approximation is � -accurate if � �� �� � � ����� for some ��� � . The
oracle STAT generates its answers, given the sample

;
, as follows:

�� � $ STAT � ; ��� � ; � $ �� ?� � � � � ���
�
�
	
�
� # (1)

Note that the same sample is used for answering all of the queries. As the sample size
is � the answers of the oracle are always of the form ��� � for some integer �������� . We require that the SQ learning algorithm is a deterministic algorithm (given the
answers to its queries), and that it always halts after a finite amount of time and outputs
a hypothesis ��� in ! .

In this paper our goal is not to characterize hypotheses classes which are “learn-
able”, i.e. for which there exist an ESQ algorithm that can efficiently generate an
hypothesis whose generalization error is small. Instead, our goal here is to give better
bounds on the generalization error of � � for a given algorithm A and a fixed distribution
� .

A natural estimator of err �6����� is the number of mistakes it makes on the training
set: !

err �6� � � $ �� � ���"�#�$� � such that �����
�
� 8$ 	

�
�%� #

This estimator has non-zero bias and variance. We would like to have some reliable
bound on its accuracy. More precisely, we are seeking a procedure that, given a reli-
ability parameter &'� � , generates a real number ()� � such that the probability of a
training sample

;
of size � for which err ��� ���*� !

err �����.��+,(is smaller than & .
Before we describe our method for generating such bounds. We consider two exist-

ing approaches for generating a-priori bounds. In the standard analysis, the difference
between the estimated error and the true error is bounded using uniform convergence
arguments. Most of these bounds depend only on the complexity of the hypothesis
class ! . As we restrict ourselves here to finite hypotheses classes, we can use the sim-
ple application of Hoeffding’s bounds [9] (see for instance Blumer et. al [3]) and get
that % � / 1.- 3 err ��� � � !

err �6� � �.�#(9/�0� !,� 132�4 ?6587 # (2)

A different approach is used by Kearns in [10]. There the assumption is made that
if the answers to all the statistical queries are � -accurate then the generalization error
of the hypothesis output by the SQ learning algorithm is guaranteed to be smaller than

4

(���� � . An argument similar to the one used for Equation 2 can be applied to show that

% � /21.- 3 err �6� � �*�#(���� �69
� % � /21.-���� � ��� � �� � � � � �#���
� � � ��� 1 2 4 ?�� 7 # (3)

The advantage of the bounds given in Equations (2) and (3) is that the probability
of failure can be calculated before the sample is observed and without making any
assumption about the distribution � . On the other hand, this same property is also the
reason for a main disadvantage of these bounds, which is that they are usually overly
pessimistic. The reason is that for any particular distribution � there might exist a
much better bound on the error. While the information that we get about � from the
sample

;
is very partial it might still be used to improve the bound. In the rest of this

section we show how this can be done for general deterministic ESQ algorithms.
Let A be an ESQ learning algorithm. Consider the set of states of A in which it

either makes a statistical query or outputs a hypothesis and stops, we call such states
query-states and output-states respectively. We use 	 to denote a particular state, � �
	��
to denote the query associated with a query state and ���
	�� to denote the hypothesis
associated with an output state. We now define the query-tree � A � � � � � . The query
tree is a structure that represents the possible ways that the ESQ algorithm A might
run for a given distribution � and accuracy � � � . The internal nodes of this tree are
associated with query-states and the leaves are associated with output-states. The root
of the tree corresponds to the first query made by the algorithm. Given a query � the
desired accuracy � and the distribution � we define the following finite set of rational
fractions as the set of “legal answers”:� � � � � � #$ � �� � $ ��� � such that � �8� � � � � �#� � #
The children of a query state 	 in which the query � is made consist of query states
or output states that immediately follow the state 	 if ���� � � � �
	��>� � � . A recursive
procedure that calculates � A � � � � � is given in Figure 1.

We call the set of queries in � A � � � � � the query span of A and denote it by
Q �� A � � � � � � . 4 Similarly, we call the set of final hypotheses in � A � � � � � the hy-
pothesis span and denote it by H �� A � � � � � � . Using these definitions we can get the
following improved bound on the generalization error of any ESQ learning algorithm.

Theorem 1 Let A be an ESQ learning algorithm that receives a training sample
;

and outputs a final hypothesis � � . Assume that
;

consists of � examples, drawn inde-
pendently at random from the distribution � over ������������� .

Then ����� ������(� � , the generalization error of the final hypothesis is bounded
by

% � /21.- 3 err �6� � � !
err ��� � �.�#(9�

Note that it is quite possible that the same query appears in several places in the tree, in which case the
size of the query span will be smaller than the number of internal nodes in the query tree.

5

Input:
A: An ESQ learning algorithm
� : A distribution over the space of labeled examples.� : The size of the training set� : A reliability parameter.

Output:
The query tree � A � � � � � , of A, when started in state 	 .
Procedure GenerateTree � A � � � 	�� � � � �

1. If 	 is an output state, return the leaf node 	 .
2. Otherwise, let 	 be the root of a tree.

3. Let
���

be the “correct” answer to the query � �
	�� :��� � $ 	 ')�+ ,�- /2143 � �6�5�
	�� 9 #
4. For each integer

�
such that� � � � � � � � � � + � do:

(a) Let 	�� $ NEXT � A � 	�� � � � �
(b) If 	�� is equal to one of the existing children of 	 , skip to the next loop

iteration.

(c) Add the tree GenerateTree � A � � � 	��6� � � � � as a child of 	 .
5. Return the tree rooted at 	 .

Figure 1: A recursive definition of the query tree rooted at the state 	 of an ESQ
learning algorithm A. The tree � A � � � � � is calculated by a call to GenerateTree with
the first query state of A as input. The notation NEXT � A � 	 ����� represents the state
which A reaches following 	 if the answer for the query � �
	�� it issues in state 	 is
�(3 � �.� 9 .

6

� ���Q ��� A � � � � � � � 1 2 4 ? � 7 + �H ��� A � � � � � � � 132�4 ?6587 #
Proof: From Hoeffding’s bound we get that

% � / 1 - � � �� Q �� A � � � � � � � � ���� ��� � � ���
� ���Q ��� A � � � � � � � 1 2�4 ? � 7 #

This gives the first term in the bound. On the complement event all the estimates for
all queries in Q �� A � � � � � � are in

� � � � � � . In this case, by definition, all the queries
made by the algorithm are in � A � � � � � and ��� H �� A � � � � � � . Using Hoeffding’s
bound a second time we get that the probability that err �6� �.� !

err �6� ���"�0(given that���� � � � � � � for all the queries asked is at most

�H ��� A � � � � � � � 1 2 4 ?6587
which gives the second term in the bound, completing the proof of the theorem.

Comparing this bound to the bound given in Equations (2) and (3) we find that if
H �� A � � � � � � is much smaller than � and if Q �8� � is not too large we get a much smaller
probability of failure. Equivalently, if we fix the probability of failure, then under the
same conditions, Theorem 1 guarantees a smaller value of (than Equation (2).

We return to the example discussed in the introduction regarding generalization
bounds for C4.5. Let us assume, for the sake of simplicity, that the input consists of
� binary features and that the depth of the tree is

�
. Assume also that if two splits

have the same quality then the algorithm has some fixed rule for choosing one of the
splits over the other. In most practical decision tree algorithms, such as CART and
C4.5, the quality of a split can be calculated as a continuous function of the answers
to a small number of statistical queries. The queries are of the form: “What is the
probability of a positive/negative/any example reaching leaf X?”. More formally, the
predicates for these queries are conjunctions of at most

�
out of the � binary features

or their negation, together with a possible condition on the label, thus the number of
possible queries in � is � � ��� ��� � . Let us call the “ideal” decision tree the tree that is
generated if � $ � i.e., if ��/� $ �/�

for all the queries. As the quality measures are
continuous functions of the answers to the queries, there must exist some sufficiently
small ��? �&� which guarantees that the algorithm generates the ideal tree. In this case�H ��� A � � � � ? � � � $ � . If we use the bound Q ��� A � � � � ? � ����� we get the following
bound on the probability of failure:

1 2 4 ?�5 7 +	� � � � � � � 1 2 4 ? � 7 - #
But we can do even better, as the number of queries involved in generating one partic-
ular decision tree is � � ��� � � the bound can be improved to

132�4 ?�5�7 +
� �
� � � � 1 2 4 ? � 7 - # (4)

7

Compare this bound to the bound that we get by using Equation (2). The number
of decision trees of depth

�
over � binary features is � � � ' 4 � - � , thus we get that the

probability of failure is at most:

� ' 4 � - 132�4 ?�5�7 # (5)

Of course, whether the bound in (4) is better or worse than the bound in (5) depends
on the value of � ? and the value of ��? depends on the distribution of the data. If the
decisions made while growing the tree are close to deterministic then the value of � ?
is large and we get a superior bound. In practice, we would like to choose � and (to
balance the two terms in Theorem 1.

How can we use the bound given in Theorem 1 in practice? Even if we have direct
access to the learning algorithm A it seems that we need to identify the distribution �
before we can calculate Q �� A � � � � ? � � and apply the theorem. It thus seems we have
ended up with a problem that is harder than the original learning problem, which was
to approximate the input-output relationship!

However, while in most cases, calculating � A � � � � � exactly is hard, it is not as
hard, in principle, to calculate a superset of � A � � � � � . Similarly to the definition of� � � � � � , let �� � � � � � be the segment 3 ���� � � ���� + � 9 which can be calculated using
only the training set

;
. Let us denote by

�� A � ; � � � the tree expansion of the algorithm
where the answer to each query is any number in �� � � � � � rather than

� � � � � � . This
tree can be computed by a procedure very similar to GenerateTree � A � � � 	 � � � � � ,
described in Figure 1, where the distribution � is replaced with the sample

;
and the

exact answer
���

is replaced by the approximate answer ���� $ STAT � ; ��� � as defined
in Equation (1). The following lemma describes the sense in which

�� A � ; � � � � is an
approximation of � A � � � � � . We say that the tree � � is a pruning of the tree � 4 if both
trees have the same root and the nodes of � � are a subset of the nodes of � 4 . Clearly, if� � is a pruning of � 4 , then H ��� � � � H ��� 4 � and Q ��� � � � Q ��� 4 �
Lemma 2 For any ESQ algorithm A, any distribution � and any � � � , if for all	 � A � � � � � ���� � � � � � � , then � A � � � � � is a pruning of

�� A � ; � � � �
Proof: Consider the roots of the query trees � A � � � � � and

�� A � ; � � � � . Both roots
correspond to the initial state 	�� . From the assumptions we get that the answer to the
query � � 	��.� satisfies ���� � � � � 	���� � � � . Thus ���� � � � ��� + � � � $ ��� � and���� + � � � ��� � + � � $ ��� + � . Thus �� � � � � ��� � � � � � � . As a result the children
of 	�� in � A � � � � � are a subset of the children of 		� in

�� A � ; � � � � .
Applying the same argument now to the children of 	
� in � A � � � � � and continuing

inductively completes the proof.
As � A � � � � � � �� A � ; � � � � , the hypothesis and query spans of

�� A � ; � � � � are su-
persets of the corresponding spans for � A � � � � � and we can use them to calculate a
bound similar to the one given in Theorem 1.

In Figure 2 we describes SB-ESQ - a general self-bounding algorithm for ESQ
learning algorithms. SB-ESQ starts by calling A with the sample

;
to calculate the

8

Input:
A � An ESQ learning algorithm; $ ���6� � �=	 � � � #�#�# ����� ? �
	�?@�
�@� a training set�
� � An upper bound on the size of the query space � � � .& $ A reliability parameter.

Output:
� � = a hypothesis.
error-bound = an upper bound on err �6� ��� .
Globally defined objects: The sets H and Q.

Main Algorithm:

1. Call A with sample
;

to generate the final hypothesis
��� .

2. Calculate �err �6���.� using the sample
;
.

3. Set

� � $ � �� ������� � �& #
4. For � $ � �
	 � #�#�# until �

�
$ �

�
2 �

(a) Calculate
�� A � ; � � �

�
2 � �

(b) Set

�
�
$�� �� ����� � �Q �

�� A � ; � � �
�
2 � � �& #

5. Output the error bound:

�err ��� � � + � �� � ��� ���H � �� A � ; � � �
�
� �&

Figure 2: the self bounding learning algorithm SB-ESQ.

9

final hypothesis ��� , it then calculates the training error of that hypothesis. The remain-
der of the algorithm is devoted to calculating a bound on the difference between the
training error and the generalization error. In order to calculate the bound the algo-
rithm needs to receive, as input, an upper bound

�
� on the size of the set of possible

queries. In the lack of any additional information we use the size of the query space
i.e. set

�
� $ � ��� . Given

�
� the algorithm iteratively calculates bounds � � � � 4 � #�#.# on

the errors of the answers to the algorithm’s queries. Eventually the bounds converge
and the loop is exited, as is proven in the following lemma

Lemma 3 For any setting of the inputs of SB-ESQ, and for each � � � �
���
� �#�

�
and�� A � ; � �

���
� � is a pruning of

�� A � ; � �
�
� . In addition there exists a finite value of � for

which �
�
$ �

�
2 � .

Proof:
From the assumption that

�
�

� � � � we get that�Q � �� A � ; � � � � � �6� �
� and thus that � 4 � � � . It is easy to verify that this implies

that
�� A � ; � � 4 � is a pruning of

�� A � ; � � � � . Thus �Q � �� A � ; � � 4 � � �6� �Q � �� A � ; � � � � � �
and thus ��� � � 4 . We can continue this argument by induction to prove the first part
of the lemma.

For the second part, note that �Q � �� A � ; � �
�
� � � is a non-negative integer and a non-

increasing sequence of non-negative integers must converge in a finite amount of time.
Thus for some finite � �Q � �� A � ; � �

�
2 � �
� � $ �Q � �� A � ; � �

�
�=� � and �

�
$ �

���
� .

Given the final bound �
�

and the corresponding tree�� A � ; � � �
�
� , SB-ESQ calculates H, which is, with high probability, a superset of the

set of hypothesis from which � � is likely to be chosen. Given the size of H, SB-ESQ
calculates the bound on the generalization error of � � .

From Lemma 3 we know that the query tree that is generated by SB-ESQ on itera-
tion ��+&� is a pruning of the tree generated on iteration � . This implies that if the loop
on command 4 is stopped before convergence is reached the result is a larger query
tree, a larger hypothesis set H and thus an inferior bound. However, if the computation
time is limited, then it might be worthwhile to stop the loop before convergence and
use the inferior bound.

In what sense can we say that the bound that is output by the algorithm is reliable?
We say that a self bounding learning algorithm is sound if the probability of training
samples on which the bound that is output by the algorithm is incorrect can be made
arbitrarily small. Formally, we use the following definition:

Definition 4 A self bounding learning algorithm
�

is called sound if for any distribu-
tion � over labeled examples, for any sample size � and for any &�� � the following
event has probability at most & over the random draws of the training set

;
.

The event is: “The algorithm
�

, given the training set
;

, outputs a hypothesis ���
and a bound � such that ��� err ��� �.� ”

We now state and prove the main theorem of the paper

Theorem 5 The self-bounding learning algorithm SB-ESQ is sound.

10

To prove the theorem we need to first define the value � � . The value of � � is closely
related to the values of the random variables � � � � 4 � #�#.# . However, it is defined in terms
of the actual distribution � and not the sample

;
, and is thus not a random variable in

the context of Theorem 5. This is the critical technical property of � � that we use in the
proof of the theorem. The following Lemma defines � � and proves its existence.

Lemma 6 For any ESQ learning algorithm Awhich receives as inputs any constants� and & , and any distribution of examples � there exists a real number ����� � � �
such that � � $ � �� � ��� � � �Q ��� A � � ��� � � � �& � #
Proof: We define a sequence of positive reals as follows

� � $ � �� � ��� � � � � �& � #
Given the value of � � for some � � � we define � ��� � as follows:

� ��� � $ � �� � ��� � � �Q �� A � � ���
�
� � �& � #

Replacing �
�

by � � in the proof of Lemma 3 we find that this is a non-increasing
sequence that converges after a finite amount of steps. Thus � � $ � � � � for some finite
value of � . Setting � � $ �

���
� we get the statement of the lemma.

Note that � �Q �� A � � ��� � � � � 1 2 4 ?�� 7 � $ & � � #
We now prove that, with high probability, the estimates �

�
generated by SB-ESQ

are all lower bounded by � � .
Lemma 7 If the training set

;
is such that for all� Q ��� A � � ��� � �
� , � ���� ��� �%�	� �

then for all � � � , �
�
� ; � � � � and � A � � ��� � � � is a pruning of

�� A � ; � � �
�
� ; � �=�

Proof: We prove the lemma by induction over � , similar to the one used to analyze the
sequence � � in the proof of Lemma 6. We use the notation � � defined in that proof. We
denote by �

�
� ; � the value of �

�
that is generated by SB-ESQ when its input is

;
.

Recall the definitions of � � � ; � and � � :
� � $ � �� � ��� � � � � �& � �

and

� � � ; � $ � �� � ��� � � � �& � �
11

As
�
�
� � � � we get that � � � ; � � � � � � � .

Assuming that �
�
� ; � � � � we show that � A � � ��� � � is a pruning of

�� A � ; � � �
�
� ; � �

and that �
���
� � ; � � � � .

From the assumption that for all � Q �� A � � ��� � � � , � ���� ��� ��� � � , combined

with Lemma 2 it follows that � A � � ��� � � is a pruning of
�� A � ; � � � � � . On the other hand,

from the induction assumption we have that �
�
� ; � � � � which implies that

�� A � ; � � � � �
is a pruning of

�� A � ; � � �
�
� ; � � . Thus � A � � ��� � � is a pruning of

�� A � ; � � �
�
� ; � � which

implies that �Q � �� A � ; ��� � � � �%� �Q � �� A � ; � � �
�
� ; � �
� � .

Combining the last inequality with the definitions of � � and �
���
� � ; � :

� � $ � �� � ��� � � �Q ��� A � � ��� � � � �& � �
and

�
���
� � ; � $ � �� � ��� � �Q � �� A � ; � � �

�
� ; � �>� �& �

we get that �
���
� � ; � � � � thus proving the next step of the induction and completing

the proof of the lemma.
We now have all the ingredients we need in order to prove the main theorem of this

section:
Proof of Theorem 5: We bound the probability that the error bound generated by
SB-ESQ , denoted � is incorrect by separating this event into two as follows:

% � /21.- 3 �"� err ��� � �69 (6)

� % � /21.-���� � Q �� A � � ��� � � � s.t. � �� � � � � � � � �+ % � /21.- � � � err ��� � � � � � Q ��� A � � ��� � � � � � ���� ��� � � � � �
We first bound the probability of the first term. Using Hoeffding’s bound we get that
this probability is bounded by

% � /21.- ��� � Q ��� A � � ��� � � � ��� � �� � � � � � � � �� � �Q ��� A � � ��� � � � � 1 2 4 ? � 7 � $ & � � # (7)

Next we bound the second term. From the definition of � A � � ��� � � together with
the assumption that � �� Q ��� A � � ��� � � � � ���� ��� � � � � we get, by using Hoeffding’s
bound a second time that for any (� �

% � /21 - 3 err ��� � � � !
err ��� � � + (9 (8)� % � /21.-�� � � H ��� A � � ��� � � � s.t. err ���"�.� !

err �6�7� + (��
� �H ��� A � � ��� � � � � 132�4 ?�5�7

12

On the other hand, from the assumption that� � Q �� A � � ��� � � �$� ���� ��� � � � � together with Lemma 7 we get that �H � �� A � ; � � �
�
�=� � �

�H ��� A � � ��� � � � � . If we set (in Equation (8) to � � � � � � � ��� �
���H � �� A � ; � � �
�
� � � � &�� we

get that

% � /21.- 3 err �6� � � � !
err ��� � � + (9 (9)

� �H ��� A � � ��� � � � � &
� �H � �� A � ; � � �

�
� � � � & � � #

We have thus bound both terms of the RHS of Equation (6) by & � � , which completes
the proof of the theorem.

2.1 DISCUSSION

How good is the bound generated by SB-ESQ? It is easy to see that as H � �� A � ; � � �
�
� � �

! the bound that is generated by the SB-ESQ is at least as good as the bound that can
be calculated by Equation (2) if the reliability & is replaced by & � � . Thus by losing a
factor of 2 in the worst-case reliability we gain the potential to find much better bounds.

When are these new bounds likely to be better? We know that they cannot be
better in general if the task is to learn any concept from a given finite concept class �
when the distribution of the inputs is arbitrary. However, it is instructive to consider the
performance of SB-ESQ on a generic learning algorithm Gen which finds a hypothesis
� ! by minimizing the training error. More precisely, assume that Gen, given
the training sample

;
, first calculates the training error of each hypothesis in � !

and then outputs a hypothesis which has the smallest training error. Consider first the
query span Q ��� Gen � � ���<� � of Gen. As Gen always calculates the errors of all of the
concepts in ! the size of its query span is � !,� independent of the distribution � and
of � . Next consider the hypothesis span of Gen. Unlike the query span, the hypothesis
span depends on the distribution � . Let � � be the set of concepts whose expected
error is within � of the minimal expected error over all the hypothesis in ! . In this
case it is easy to see that H ��� A � � ���<� � $ � � , which indicates that a tighter bound than
the one given in Equation (2) might be possible. Assume that the sample size � is
sufficiently large that � � , as calculated by SB-ESQ is smaller than � � � . In this case
the calculated hypothesis span H � �� Gen � ; � � � � � � will be a subset of � � and thus the
bound that SB-ESQ outputs is:!

err �6� � �/+ � �� � ��� � � � � �& #
If � � � � ��� � � � then this bound is better than the one that is calculated a-priori using
Equation 2. We believe that in many real-world cases � � � ��� � � � for reasonably large
values of � . The analysis here is closely related to the distribution-specific analysis
of Haussler et. al [7]. It extends their work in that it considers the bound that can be
calculated when the distribution is unknown and only a sample from it is available.

13

Clearly, in learning algorithms that are more sophisticated than Gen the query-span
will depend on the distribution � and, as a result, improved bounds might be possible.
The case for C4.5 was sketched earlier in this section. In this case it seems that the exact
description of the distributions on which the bounds will be improved is as complex as
the learning algorithm itself and thus is of little use. On the other hand, we believe that
algorithms such as C4.5 that use the answers they get for their initial statistical queries
in order to choose which queries to make later on are more likely to enjoy improved
bounds than algorithms which always make the same sequence of queries, such as Gen.

Even when the bounds generated by SB-ESQ are much better than the a-priori
bounds, it is clear that their calculation, while doable in principle, is in most cases
computationally infeasible. This is because in most cases many nodes in the query tree
will have more than one child and thus the size of the query tree would be exponential
in the number of queries made by the ESQ learning algorithm. This implies that each
iteration of the loop in command 4 of SB-ESQ takes exponentially more time than
running the learning algorithm itself!

It is thus desirable to find cases in which the computation of query span and hypoth-
esis span can be done in time that is comparable to the running time of the algorithm.
One such case is described in the next section.

3 ERROR BOUNDS FOR LOCAL SEARCH

In this section we describe a self bounding learning algorithm which is constructed
specifically for algorithms based on local search, this specialized algorithm is much
more efficient than SB-ESQ but the bounds it yields are weaker. A local search learn-
ing algorithm is a learning algorithm which searches for the best hypothesis by fol-
lowing a neighborhood structure that connects similar hypotheses. In this section we
consider two types of local search algorithms, steepest descent and beam search. A
steepest descent learning algorithm starts with some hypothesis � � and, on each itera-
tion, makes statistical queries to estimate the errors of some “neighboring” hypotheses.
It then replaces its hypothesis with the neighboring hypothesis that has the smallest
estimated error and moves on to explore the neighbors of the new hypothesis. The
popular “BackProp” learning algorithm for neural networks (see e.g. [14]), when run
in batch mode, is a special case of this algorithm. In this case the local neighborhood is
a small ball around the hypothesis in parameter space (weight space). Here we assume
that the space of hypotheses is discretized. For example, if the model is described by
real valued parameters (such as the weights in a neural network) then we can discretize
it by restricting the accuracy of the parameters.

A beam search algorithm is local search algorithm which is a generalization of
steepest descent. A beam search algorithm maintains a set of prospective hypotheses
and explores the neighborhoods of all of these hypotheses in parallel.

Formally, we define the beam search learning algorithm Beam as follows. Let �
be an undirected graph where each node corresponds to a hypothesis denoted by �

�
.

An edge between � � and � 4 embodies the prior assumption that � err ��� � � err ��� 4 � � is
14

likely to be small. The graph � has a designated initial node � � . We denote the set of
nodes which are connected to � � by a path of length at most � by ��� . Beam operates
on a set of nodes which we call the “pool”. We denote the pool on the � th iteration by�� � . The initial pool is

��
� $ ��� � � . The minimal estimated error of the hypotheses in�� � is denoted �minerr � �� � � . The subset of

�� � whose estimated errors are within some
small constant � �&� from �minerr � �� � � are placed in the “live” pool

����� . The algorithm
proceeds by iteratively expanding the live pool and identifying the best hypothesis in
the expanded pool. After � such iterations the algorithm outputs a hypothesis with the
smallest estimated error in

����
, denoted ��� . A detailed description of Beam is given

in Figure 3. Note that Beam is an ESQ algorithm. The queries that are made by this
algorithm are all requests to estimate the error of a specific hypothesis.

The only knowledge about the identity of the final hypothesis that we have before
receiving the training set is that � will be a node in � � . The best a-priori upper bound
on the number of queries in � is also � � � � . The a-priori bound that we get using this
prior knowledge and Equation (2) is

% � /	��- 3 err ��� � � !
err �6� � �.�#(9/��� � � � 132�4 ?�5�7 # (10)

The parameter � of the beam search algorithm is the “search tolerance” of the algo-
rithm. The case � $ � corresponds to steepest descent. Setting � � � can sometimes
help avoid local minima in the path of steepest descent. The cost of increasing � is
an increase in the size of the search pool and thus the time and space complexity of
the algorithm. We shall now show that increasing � can serve an additional purpose -
calculating an improved upper bound on the generalization error err �6�/�.� .

We now describe a transformation of Beam into a self-bounding algorithm which
we call the inner-outer algorithm and denote InOut. The bounds on the generalization
error that InOut yields are inferior to the bounds that we can get by applying SB-ESQ
to Beam. On the other hand, InOut is much more efficient.

Let � � be the value defined in Lemma 6 for the algorithm Beam and the distribution
� . Consider the sets of nodes that can be reached in the graph when all of the error
estimates are within � � of their correct value. More precisely, let
�� be the set of pools
that correspond to a state of Beam after � iterations which is in � Beam � � ��� � � . We
denote by � � (the inner set) the intersection of all pools in
 � and by � � (the outer set)
the union of all of these pools.

Intuitively, � � is the subset of � that is reached by Beam for a significant fraction
of training sets and � � ��� � is the subset of � that is reached by Beam for most training
sets. A more precise statement is given in the following lemma:

Lemma 8 Assume that a training sample of size � is used to estimate the errors of hy-
potheses of the beam search algorithm. Then with probabilityat least � � � � � � � � � 1 2�4 ?�� 7�

� � �
�� � � � � � � �� ���

Proof: It follows directly from the definitions that for all � ������� , ��� � ��� , ��� 2 � ����� ,
and ��� 2 � � ��� . Thus all the sets � � � #�#.# ���

�
and � � � #�#.# � �

� 2 � are subsets of � � . This

15

Input: a binary labeled training set: ���6� � �
	 � � � #�#�# ����� ? �
	 ? � �
A search graph � with an initial node � �
A search tolerance � � �
Number of iterations �

1. Initialize the first pool
��
� $ ��� �:� , �� �

� $ ��
� .

2. Repeat for � $ ��� ��� #.#�# � �
(a) Let

�� � be the union of
�� � 2 � and the set of

neighbors of the nodes in
����� 2 � .

(b) Estimate the error of the nodes in
�� � � �� � 2 � using

the training set.

(c) Calculate the best estimated error: �minerr � �� � � $
��� ����� �	�
 �err ���"� .

(d) Let
�� �� include all � �� � such that�err ���"�.� �minerr � �� � � +�� .

3. Output a hypothesis � � ����
for which�err ������� $ �minerr � ���� � .

Figure 3: the beam search learning algorithm Beam.

16

implies that � � $ Q �� Beam � � ��� � � � . Applying Hoeffding’s bound we get that with
the probability stated in the lemma all the estimates

!
err ���"� that Beam receives are

within � � from the expected value err �6�7� . The statement of the lemma follows from
this and from the definitions of � � and ��� .

The self bounding beam search algorithm InOut computes a superset of � � . To do
this it iteratively updates two pools, similar to the one pool used in Beam. The inner
pool,

�
�
�
+ � and the outer pool

�
�

�
+ � which are approximations of the sets � � and � � respec-

tively. The algorithm is described in Figure 4. Similarly to SB-ESQ, InOut receives as
input an upper bound

�
� on the size of � � and iteratively computes improved bounds

until convergence is reached. Also, similarly to SB-ESQ, the loop of command 3 in
InOutcan be stopped before convergence and the only effect of this is an increase in
the generated error bound.

Note that the number of pools generated by a direct application of SB-ESQ to
Beam is exponential in the iteration number � . On the other hand, InOut maintains
only two pools. This is why we claim that InOut is more efficient. The cost of this
efficiency is that the outer pool is a rougher approximation of the query span of Beam
than the approximation one gets from applying SB-ESQ to Beam.

Theorem 9 The algorithm InOut is sound.

The proof of soundness for the inner-outer algorithm is similar to the proof of
Theorem 5 and consists of two parts. First we show that if all of the error estimates for
� � � are within � � of their correct value, then the pools that are generated by InOut
have some desirable properties. In the second part we show that when the desirable
properties hold, then, with high probability, the error bound that the algorithm outputs
for its final hypothesis is correct.

The first part of the proof is contained in the following lemma. We denote by Imin �
and Omin � the minimal (true) error among the elements of � � and ��� respectively. With
a slight abuse of notation we use

�����
 � to denote the fact that
����� is the live subset

of some reachable pool
�� � �
 � . We use this notation to define inner and outer live

sets as follows:
� � ��#$�� �

�� �� � �
� � #$�� �

�� �� #
We first prove a claim that holds for each iteration of the internal loop of command

3(c).

Lemma 10 If �
�
� � � and � err ���"� !

err �6�7� ��� � � for all � � � $ Q ��� A � � ��� � � � .
Then the following claims hold for all � ��� � #�#�# � � �

1.
�
�
�
+ � �����

2. ��� �
�
�

�
+ �

3.

Omin � � �minerr � ��
�
+ � � � �

17

Input:; $ ���6� � �=	 � � � #�#�# ����� ? �
	�?@�
� : A training set.
� : The search graph.
� � � : A search tolerance.
� : Number of iterations& : A reliability parameter�
� An upper bound on the number of nodes in � �

1. Run Beam with inputs
; � � ��� and � to generate � �

2. Compute �err �6���.� .
3. Repeat for � $ � � � � #�#�# until �

�
$ �

�
2 � .

(a) Set

�
�
$
� �� � ����� � �

�
2 � �&

(b) Initialize
�
�
�
+ � and

�
�

�
+ � to � � ��� .

(c) Repeat for � $ � � � � #�#.# � �
i. Let

�
�
�
+ � be the union of

�
�
�
+ � 2 � and the set of

neighbors of all the nodes in
�
� �
�
+ � 2 � . Similarly

compute
�
�

�
+ � from �

�

�
+ � 2 � � �� �

�
+ � 2 � .

ii. Estimate the error of the (new) nodes in
�
�
�
+ �

and
�
�

�
+ � from ; .

iii. �minerr � ��
�
+ � � $ ��� ����

���� �
 �err ���"��� �minerr � ��
�
+ � � $ ��� ����

�� � �
 �err �6�7� #
iv.

�
� �
�
+ � $�� � ��

�
+ � � �err �6�7�6� �minerr � ��

�
+ � �/+� � �

�
	
#

�
� �
�
+ � $�� � �

�

�
+ � � �err ���"�.� �minerr � ��

�
+ � � +� +�� �

�
	
#

(d) Set
� � $ � ��

�
+ � �

4. let �!�� $� � �
�

�
+ � � �err ���"� � �minerr � ��

�
+ � � + � �

�
	
#

5. Output the error bound: �err ��� � � + � �� � � � ��� �!�� �&
Figure 4: The self bounding beam search algorithm InOut

18

and
Imin �.� �minerr � ��

�
+ � � + � �

4.
�
� �
�
+ � � � � � and

�
�
�
�
+ ��� � � �

Proof: For a set of nodes
�

we denote by 3 � 9 the union of
�

with the immediate
neighbors of the nodes in

�
. We use � �
 �� � and � �
 �� � to indicate the union and

intersection of all pools on iteration � which can be generated are all within the allowed
tolerance of � � .

The proof consists of an induction over � within an induction over � .
We fix any � � � and prove the lemma by induction over � . The base case, � $ � is

trivial. We prove the claims for �/+ � one by one.

1. Claim 1 for � + � follows from claims 1 and 4 for � as follows:
�
�
�
+ �
�
� $ �

�
�
+ ��� 3 �� �� + � 9 ��� ��� 3 � � � 9

$ � �

�� ��� � � �

�� ��
	 � � �
 �� ��� � �
 3 �� �� 9
� � �

� �� ��� 3 �� �� 9�� $ � �
 �� �
�
� $ � �

�
�

2. Claim 2 for � + � follows from claims 2 and 4 for � as follows:
�
�

�
+ �
�
� $ �

�

�
+ ��� 3 �� �� + � 9 � � � + ��� 3 � � � + � 9

$ � �

�� ��� � � �

�� �� 	�� � �
 �� ��� � �
 3 �� �� 9
$ � �

� �� � � 3 �� �� 9�� $ � �
 �� �
�
� $ �

�
+ �
�
�

3. Claim 3 for � + � follows from claims 1 and 2 for � + � as follows. As
�
�
�
+ �
�
� �

� �
�
� the node ��� which minimizes

!
err ���"� in

�
�
�
+ �
�
� is also an element in � �

�
� ,

from the assumptions err ��� �.�.� !
err ������� + � � . Combining these two observations

we get Imin�
�
� � �minerr � ��

�
+ � �/+ � � . The other inequality is proved in a similar

way.

4. Claim 4 for � + � follows from claims 1,2 and 3 for � + � as follows. Fix
�
�

�
+ �
�
�

and
�
�
�
+ �
�
� and let

�� �
�
� be any pool in
 �

�
� . As � �

�
+ � #$ � �
 ����� , we have to

show that
�
� �
�
+ �
�
� , as defined in statement 3(c)[iv], is a subset of

�����
�
� for all�����

�
�
 �

�
� .

19

From the definition of � �
�
� we know that

�� �
�
� � ���

�
� and thus �minerr � �� �

�
� � �

Omin �
�
� � � .

From claim 3 we know that Omin �
�
� � �minerr � ��

�
+ �
�
� � � � .

Combining the inequalities we get that�minerr � �� �
�
� �/+� � �minerr � ��

�
+ �
�
� � + � � � � . From the assumption that �

�
�� � we get that the threshold used for calculating

�
� �
�
+ �
�
� is at most the threshold

used for defining
�� ��
�
� for all

�� �
�
�
 �

�
� . On the other hand, from claim

1
�
�
�
+ �
�
� � � �

�
� and combining this with the definition of � �

�
� we get that�

�
�
+ �
�
� � �� �

�
� for all

�� �
�
� �
 �

�
� . Finally, combining these two arguments

we get that
�
� �
�
+ �
�
� � �����

�
� for all

�����
�
�
 and thus

�
� �
�
+ �
�
� � � � �

�
� . The other

inclusion is proved in a similar way.

Given Lemma 10, we can now prove, under the same assumption, a lower bound
on �

�
:

Lemma 11 If � err ���"� !
err �6�7� � � � � for all �4 � � $ Q �� A � � ��� � � � , then �

�
� � �

for all � � � .
Proof: We prove the claim by induction over � . Recall that

� � $ � �� � � � � �Q ��� A � � ��� � � � �& �
and that Q ��� A � � ��� � � � $ � � . Recall also that

�
�
$
� �� � ��� � � �

�
2 � �& �

Thus if
� � 2 � � �Q �� A � � ��� � � � � then �

�
� � � as required. As

�
�
� � � � � the bound

holds for � � .
Assuming that �

�
� � � we get from claim 2 of Lemma 10 for � $ � that � � ��

�

�
+ � . As

� � $ � ��
�
+ � � we get that

� � � � � and thus �
���
� � � � .

Combining the claims of Lemmas 10 and 11 we get that, under the same assump-
tions, the three claims of Lemmas 10 hold for all � . Using these properties we can prove
that InOut is sound.
proof of Theorem 9: There are two modes of failure and we bound the probability of
each one of them by & � � .

As in the proof of Theorem 5, we have that with probability at least � & � � ,� err �6�7� !
err ���"� � � � � for all � � � .

We now assume that � err ���"� !
err �6�7� ��� � � for all � � � . From the definitions

of � � and Imin
�

we get that under this assumption
�� � � � � (11)

20

and �minerr � �� � �.� Imin
� + � � # (12)

As

!
err �6���.� $ �minerr � ���� � and � err �6���.� !

err �6� ��� �%�	� � , we find that ��� is in the set� � $ � � � � � err �6�7�.� Imin
� +�� � � �

Using Hoeffding bound we get that the probability that� err �6���.� !
err �6� ��� � � (is at most

��� � � 1 2 4 ?�5 7 (13)

We now show that, under the same assumption
�

is a subset of the set �! � which
is calculated on line 5 of Figure 4. From Lemma 10 we know that

� � �
�
�

�
+ � (14)

and that
Imin

� � �minerr � ��
�
+ � � + � � # (15)

Assume that � � , then � � � which implies that � �
�

�
+ � . On the other hand � �

implies that err �6�7�6� Imin
� + � � � which implies that

!
err ���"�.� �minerr � ��

�
+ � � + � � � .Combining the two implied conditions we get the definition of �!�� and thus
� � �!�� .

Finally, if we plug the choice of (made by the algorithm into Equation 13, we get

that the probability that err ��� �.� � !
err �������/+ � �4 ? � � 4�� !��� �� is at most

� � � 132�4 ?65 7 $ � � ���	��
 � � � �� � ��� � � �!����& $ � � �� �!���� &� � &�
which completes the proof.

The same argument that we made about SB-ESQ can be used here to show that
the upper bound generated by InOut with reliability � & are at least as good as the
a-priori bounds that are generated using Equation 2 with reliability � & � � .

Once again, the interesting question is when would these new a-posteriori bound be
significantly better? Clearly, a necessary condition is that � � is much smaller than � � .
However, it is not hard to construct cases in which � � is small but

�
� � is, with high

probability, equal to � � . In this case there exists a very good bound on the error but
the bound given by the self bounding algorithm is not better than the a-priori uniform
bound.

On the other hand, note that the the updates of the inner and outer pools
�
� � and�

��� differ from the updates to
�� � only in the way that the live pools are calculated in

statement 3(d). Thus if � is sufficiently small, the inner and outer pools remain similar
to

�� � for many iterations, in which case
�
��� is a good approximation of � � and the

bounds that the algorithm yields are almost as good as the bounds that can be achieved
knowing ��� .

21

We cannot, at this time, give a formal characterization of the cases in which the
inner-outer algorithm is guaranteed to yield good bounds. However, to justify our
belief that such cases are likely to occur in practice , we sketch a simple example.

Let us assume that the search graph � is a grid in � � in which neighbors are nodes
that differ from each other by at most (� � in each coordinate (this can be used as
an approximation of gradient descent search on hypothesis described by

�
real valued

parameters, such as a neural network with
�

weights). Consider the true expected errors
of the nodes in the search graph. Assume that there is only a single path of steepest
descent and that each node � along this path has the following two properties. (1) there
is only one neighbor of � which has a smaller error that that of � and (2) the errors
of the other neighbors of � are all larger than the error of � by at least some constant
� �&� . Clearly, if we have access to the true errors of the nodes then a steepest descent
algorithm could follow the path, as we are only given estimated errors, we have to use
a beam search algorithm with � � � to avoid possible local minima in the estimated
errors along the path. Suppose that the error estimates are all within � ��� from their true
value, then it is easy to verify that running the beam search algorithm with � $ � � �will proceed along the path of steepest descent and after � iterations, reach some node
� � along that path. Consider now what bounds we can give on the true error of �/� . An
a-priori bound will depend on the size of the reachable graph � � . As the graph is a
grid in � � then � � � � $ � � � ��� and the bound that we get on err �6����� !

err ������� is
� $

� �� � ��� � � � �& $ �
� �� ��� � & � � # (16)

On the other hand, if � �� ����� � � � � �& � � � � �
then running InOut would result in an outer pool

�
� � + � that includes only nodes along

the path of steepest descent and thus � � � + � � � � and the bound the algorithm outputs
is � �� � � � � �& (17)

i.e. an improvement by a factor of
� �

over the bound given in Equation (16). While
it is clear that this examples can be generalized in various ways, it is unclear whether
there exists a simple general characterization of the situations in which InOut generates
superior upper bounds.

4 CONCLUSIONS AND SUGGESTED FUTURE DI-
RECTIONS

This work represents an initial attempt to define and analyze self-bounding learning
algorithms. We believe that self bounding algorithms can give superior bounds on the

22

generalization error of practical algorithms. As the bounds depend on the distribu-
tion, it is hard to give a simple characterization of the situations in which the bounds
achieved will be better than the a-priori ones. Also, it is not clear whether there is a
notion of an “optimal” self bounding algorithm. Experiments with self bounding al-
gorithms are needed in order to determine whether its potential for yielding improved
bounds is realized in practice.

The analysis given in this paper is restricted to deterministic ESQ learning algo-
rithms which use a finite class of queries and output a binary hypothesis from a finite
class. It is desirable to extend the analysis to more general learning algorithms and to
more general learning problems. A related issue is to use more refined measures of
complexity for the query span and for the hypothesis span. It might be, for instance,
that the algorithm might generate many different hypotheses, but that all of these hy-
potheses make very similar predictions on most of the training set. In this case we
would like to use a better characterization of the complexity of the hypothesis span
than its size.

A different issue is how to make the self bounding algorithm more efficient. One
method that seems attractive is to use sampling to estimate the size of H �� A � � � �

�
� � .

It is desirable to find conditions under which sampling would give good estimates.
Ideally, one would like to be able to test these conditions using only the training set.

Estimates of the generalization error of a hypothesis are often used within learn-
ing algorithms. Principled approaches such as MDL and SRM yield bounds that are
used in order to select the best balance between training error and complexity. The
self bounding analysis suggests a different principled approach for selecting the right
complexity. The advantage of this approach is that it allows the algorithm to choose
a very complex hypotheses when such a choice is justified for the specific distribution
being learned, even when a-priori bounds, which consider the worst-case distribution,
would suggest avoiding such high complexity.

The learning algorithm might use approximations of the query tree in order to re-
duce its generalization error. For example, it seems likely that taking the majority vote
over the hypotheses span of an algorithm can reduce the generalization error because
it decreases the differences between the hypotheses in the span. This might provide
a new way for analyzing ensemble methods such as Bagging C4.5 [4] and Random-
ized C4.5 [6] which can be seen as taking the majority vote over samples from the
hypothesis span of C4.5.

ACKNOWLEDGEMENTS

Special thanks to David McAllester for inspiring discussions that led to this work. I
thank Fernando Pereira and Rob Schapire for helpful comments and suggestions.

23

References

[1] Javed A. Aslam and Scott E. Decatur. On the sample complexity of noise-tolerant
learning. Information Processing Letters, 57(4):189–195, 26 February 1996.

[2] Gyora M. Benedek and Alon Itai. Learnability with respect to fixed distributions.
Theoretical Computer Science, 86(2):377–389, September 1991.

[3] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. War-
muth. Occam’s razor. Information Processing Letters, 24(6):377–380, April
1987.

[4] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[5] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone.
Classification and Regression Trees. Wadsworth International Group, 1984.

[6] Thomas G. Dietterich. An experimental comparison of three methods for con-
structing ensembles of decision trees: Bagging, boosting, and randomization.
Unpublished manuscript, 1998.

[7] David Haussler, Michael Kearns, H. Sebastian Seung, and Naftali Tishby. Rig-
orous learning curve bounds from statistical mechanics. Machine Learning,
25:195–236, 1996.

[8] D. Heckerman, D. Geiger, and D.M. Chickering. Learning bayesian networks:
The combination of knowledge and statistical data. Machine Learning, 20:197–
243, 1995.

[9] Wassily Hoeffding. Probability inequalities for sums of bounded random vari-
ables. Journal of the American Statistical Association, 58(301):13–30, March
1963.

[10] Michael Kearns. Efficient noise-tolerant learning from statistical queries. In Pro-
ceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of Comput-
ing, pages 392–401, 1993.

[11] Yishay Mansour. Pessimistic decision tree pruning based on tree size. In Machine
Learning: Proceedings of the Fourteenth International Conference, pages 195–
201, 1997.

[12] David A. McAllester. Some pac-bayesian theorems. In Proceedings of the
Eleventh Annual Conference on Computational Learning Theory, 1998.

[13] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[14] David E. Rumelhart and James L. McClelland, editors. Parallel Distributed Pro-
cessing. MIT Press, 1986.

24

[15] John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson, and Martin Anthony.
A framework for structural risk minimisation. In Proceedings of the Ninth Annual
Conference on Computational Learning Theory, pages 68–76, 1996.

[16] John Shawe-Taylor and Robert C. Williamson. A pac analysis of a bayesian
estimator. In Proceedings of the Tenth Annual Conference on Computational
Learning Theory, pages 2–9, 1997.

25

26

