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Abstract. In this paper the theoretical and practical feasibility of self-calibration in the presence of varying intrinsic

camera parameters is under investigation. The paper’s main contribution is to propose a self-calibration method

which efficiently deals with all kinds of constraints on the intrinsic camera parameters. Within this framework

a practical method is proposed which can retrieve metric reconstruction from image sequences obtained with

uncalibrated zooming/focusing cameras. The feasibility of the approach is illustrated on real and synthetic examples.

Besides this a theoretical proof is given which shows that the absence of skew in the image plane is sufficient to

allow for self-calibration. A counting argument is developed which—depending on the set of constraints—gives

the minimum sequence length for self-calibration and a method to detect critical motion sequences is proposed.
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1. Introduction

In recent years, researchers have been studying self-

calibration methods for cameras. Mostly completely

unknown but constant intrinsic camera parameters

were assumed. This has the disadvantage that the zoom

can not be used and even focusing is prohibited. On

the other hand, the proposed perspective model is often

too general compared to the range of existing cameras.

Mostly the image axes can be assumed orthogonal and

often the aspect ratio is known. Therefore a tradeoff

can be made and by assuming these parameters to be

known, one can allow (some of) the other parameters

to vary throughout the image sequence.

Since it became clear that projective reconstruc-

tions could be obtained from image sequences alone

(Faugeras, 1992; Hartley, 1992), researchers tried to

find ways to upgrade these reconstructions to metric

(i.e., Euclidean up to unknown scale). Many meth-

ods were developed which assumed constant intrinsic

camera parameters. Most of these methods are based on

the absolute conic which is the only conic which stays

fixed under all Euclidean transformations (Semple and

Kneebone, 1995). This conic lies in the plane at in-

finity and its image is directly related to the intrin-

sic camera parameters, hence the advantage for self-

calibration.

Faugeras et al. (1992), see also (Luong and Faugeras,

1997), proposed to use the Kruppa equations which

enforce that the planes through two camera centers,

which are tangent to the absolute conic, should also

be tangent to both of its images. Later on Zeller and

Faugeras (1996) proposed a more robust version of this

method.

Heyden and Åström (1996), Triggs (1997) and

Pollefeys and Van Gool (1997b) use explicit constraints

which relate the absolute conic to its images. These

formulations are especially interesting since they can

easily be extended to deal with varying intrinsic camera

parameters.

Pollefeys and Van Gool (1997a) also proposed a

stratified approach which consists of first locating the
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plane at infinity using the modulus constraint (i.e., for

constant intrinsic camera parameters the infinity ho-

mography should be conjugated to a rotation matrix)

and then calculating the absolute conic. Hartley (1994)

proposed another approach based on the minimization

of the difference between the intrinsic camera param-

eters for the different views.

So far not much work has been done on varying in-

trinsic camera parameters. Pollefeys et al. (1996) also

proposed a stratified approach for the case of a varying

focal length, but this method required a pure transla-

tion as initialization, along the lines of Armstrong et al.

(1994) earlier account for fixed intrinsic camera param-

eters. Recently Heyden and Åström (1997) proved that

self-calibration was possible when the aspect ratio was

known and no skew was present. The self-calibration

method proposed in their paper is based on bundle ad-

justment which requires non-linear minimization over

all reconstructed points and cameras simultaneously.

No method was proposed to obtain a suitable initial-

ization.

In this paper their proof is extended. It will be shown

that the absence of skew alone is enough to allow self-

calibration. A versatile self-calibration method is pro-

posed which can deal with varying types of constraints.

This will then be specialized towards the case where the

focal length varies, possibly also the principal point.

Section 2 of this paper introduces notations and some

basic principles, Section 3 gives a counting argument

for self-calibration and finally shows that imposing the

absence of skew is sufficient to restrict the projective

ambiguity to the group of similarities (i.e., metric self-

calibration). In Section 4 the actual method is devel-

oped. A simplified linear version is also given which

can be used for initialization. Section 5 summarizes

the complete procedure for metric reconstruction of

arbitrarily shaped, rigid objects from an uncalibrated

image sequence alone. The method is then validated

through the experiments of Section 6, in Section 7 some

more results illustrate the flexibility of our approach.

Section 8 concludes this paper and gives some direc-

tions for further research.

2. Notations and Basic Principles

In this section the basic principles and notations used

in this paper are introduced. Projective geometry and

homogeneous coordinates are used. Metric entities are

indicated with a subscript M.

2.1. Cameras

The following equation is used to describe the perspec-

tive projection of the scene onto the images

m ∝ PM (1)

where P is a 3 × 4 projection matrix describing the

perspective projection process, M = [XY Z1]⊤ and

m = [x y 1]⊤ are vectors containing the homogeneous

coordinates of the world points respectively image

points. Notice that ∝ will be used throughout this paper

to indicate equality up to a non-zero scale factor.

In the metric case the camera projection matrix fac-

torizes as follows:

PM = K[R | −Rt] (2)

Here (R, t) denotes a rigid transformation (i.e., R is a

rotation matrix and t is a translation vector) which in-

dicate the position and orientation of the camera, while

the upper triangular calibration matrix K encodes the

intrinsic parameters of the camera:

K =







fx s ux

fy u y

1






(3)

where fx and fy represent the focal length divided by

the pixel width resp. height, (ux , u y) represents the

principal point and s is a factor which is zero in the

absence of skew.

2.2. Conics and Quadrics

In this paper a specific conic and quadric play an

important role. Therefore some related notations are

introduced here. A conic is represented by a 3 × 3 sym-

metric matrix C, a quadric by a 4×4 symmetric matrix

Q. A point m on the conic satisfies m⊤Cm = 0 and

a point M on the quadric satisfies M⊤QM = 0. A

dual (or line) conic is represented by a 3 × 3 matrix

C∗, while a dual (or plane) quadric is represented by

a 4 × 4 matrix Q∗. A line l tangent to the conic C

satisfies l⊤C∗l = 0. A plane L tangent to the quadric

Q satisfies L⊤Q∗L = 0. Provided C resp. Q are full

rank C∗ = C−1 and Q∗ = Q−1. It can be shown that

(Karl et al., 1994),

C∗ ∝ PQ∗P⊤. (4)
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This equation describes the projection of the outline of

a dual quadric onto a dual image conic.

2.3. Transformations

A projective transformation of 3D space is described

by a 4 × 4 matrix T. In the case of a similarity trans-

formation TM takes on the following form:

TM =

[

σR t

0 1

]

(5)

with σ a global scale factor (σ = 1 yields a Euclidean

transformation).

Points, planes and projection matrices are trans-

formed as follows:

M → TM, L → T−⊤L and P → PT−1. (6)

On quadrics and dual quadrics the effect of a projective

transformation is as follows:

Q → T−⊤QT−1 and Q∗ → TQ∗T⊤. (7)

3. Some Theory

Before developing a practical self-calibration algo-

rithm some theoretical aspects of the problem are stud-

ied in this section. First a counting argument is given

which states the minimal sequence length that allows

self-calibration from a specific set of constraints. Then

a proof is given that self-calibration is possible for the

minimal case where the only available constraint is the

absence of skew.

3.1. A Counting Argument

To restrict the projective ambiguity (15 degrees of free-

dom) to a metric one (3 degrees of freedom for rotation,

3 for translation and 1 for scale), at least 8 constraints

are needed. This, thus determines the minimum length

of a sequence from which self-calibration can be ob-

tained, depending on the type of constraints which are

available for each view. Knowing an intrinsic camera

parameter for n views gives n constraints, fixing one

yields only n − 1 constraints.

n × (#known) + (n − 1) × (#fixed) ≥ 8

Table 1. A few examples of minimum sequence length required

to allow self-calibration.

Min no.

Constraints Known Fixed of images

No skew s 8

Fixed aspect ratio s
fy

fx
5

and absence of skew

Known aspect ratio s,
fy

fx
4

and absence of skew

Only focal length s,
fy

fx
, ux , uy 2

is unknown

Standard self-calibration fx , fy , ux , uy, s 3

problem

Of course this counting argument is only valid for non-

critical motion sequences (see Section 4.3).

Therefore, the absence of skew (1 additional con-

straint per view) should in general be enough to allow

self-calibration on a sequence of 8 or more images. In

Section 3.2 it will be shown that this simple constraint

is not bound to be degenerate. If in addition the aspect

ratio is known (e.g., fx = fy) then four views should

be sufficient. When also the principal point is known,

a pair of images is enough. A few more examples are

given in Table 1.

3.2. Self-Calibration Using Only the Absence

of Skew

In this paragraph it is shown that the absence of skew

can be sufficient to yield a metric reconstruction. This

is an extension of the theorem proposed by Heyden

and Åström (1997) which besides orthogonality also

requires the aspect ratio to be known.

Theorem 1. The class of transformations which pre-

serves the absence of skew is the group of similarity

transformations.

The proof is given in the appendix. If a sequence is

general enough (in its motion) it follows from this theo-

rem that only a projective representation of the cameras

which can be related to the original ones through a simi-

larity transformation (possibly including a mirroring)

would satisfy the orthogonality of rows and columns for

all views. Using oriented projective geometry (Laveau

and Faugeras, 1996) the mirroring ambiguity can eas-

ily be eliminated. Therefore self-calibration and metric
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reconstruction is possible using this orthogonality con-

straint only.

Of course adding more constraints will yield more

robust results and will diminish the probability of en-

countering critical motion sequences.

4. Self-Calibration

It is a well-known result that from image correspon-

dences alone the camera projection matrices and the

reconstruction of the scene points can be retrieved up to

a projective transformation (Faugeras, 1992; Hartley,

1992). Note that without additional constraints noth-

ing more can be achieved. This can be seen from the

following equation.

m ∝ PM = (PT−1)(TM) = P′M ′

with T an arbitrary projective transformation. There-

fore (P′, M ′) is also a valid reconstruction from the

image points m.

In general, however, some additional constraints are

available. Some intrinsic parameters are known or can

be assumed constant. This yields constraints which

should be verified when P is factorized as in Eq. (2).

It was shown that when no skew is present, the am-

biguity of the reconstruction can be restricted to metric

(see Section 3.2). Although this is theoretically suf-

ficient, under practical circumstances often more con-

straints are available and should be used.

In Euclidean space two entities are invariant—

setwise, not pointwise—under rigid transformations.

The first one is the plane at infinity 5∞ which allows

to compute affine measurements. The second entity is

the absolute conic ω which is embedded in the plane at

infinity. If besides the plane at infinity 5∞ the absolute

conic ω has also been localized, metric measurements

are possible.

When looking at a static scene from different view-

points the relative position of the camera towards 5∞
and ω is invariant. If the motion is general enough,

only one conic in one specific plane will satisfy this

condition. The absolute conic can therefore be used as

a virtual calibration pattern which is always present in

the scene.

A practical way to encode both the absolute conic ω

and the plane at infinity 5∞ is through the use of the

absolute quadric Ä∗ (Semple and Kneebone, 1952) (in-

troduced in computer vision by Triggs (1997), see also

Heyden and Åström (1996), Pollefeys and Van Gool

Figure 1. The absolute quadric Ä∗ which encodes both the plane at

infinity 5∞ (affine reference entity) and the absolute conic ω (metric

reference entity), projects to the dual image of the absolute conic

ωi = Ki K
⊤
i . The projection equation allows to translate constraints

on the intrinsic parameters to constraints on Ä∗.

(1997b). This dual quadric consists of planes tangent

to the absolute conic. Its null-space is the plane at in-

finity. In a metric frame it is represented by a 4 × 4

symmetric rank 3 matrix Ä∗
M

= [I 0
0 0]. Using (5) and

(7) it can be verified that for a similarity transforma-

tion TMÄ∗
M

T⊤
M

∝ Ä∗
M

. Similar to (4) the projection

of the absolute quadric in the image yields the dual

image absolute conic:

ω∗
i = Ki K

⊤
i ∝ PiÄ

∗P⊤
i (8)

independent of the chosen projective basis. Using

Eq. (2) this can be verified for a metric basis. Through

Eqs. (6) and (7), Eq. (8) can then be verified for any

projective basis. Some of these concepts are illustrated

in Fig. 1.

Therefore, constraints on the intrinsic camera para-

meters in Ki can be translated to constraints on the ab-

solute quadric. If enough constraints are at hand only

one quadric will satisfy them all, i.e., the absolute

quadric. At that point the scene can be transformed

to a metric frame (which brings Ä∗ to its canonical

form).

4.1. Non-Linear Approach

Equation (8) can be used to obtain the metric calibra-

tion from the projective one. The dual image absolute

conics ω∗
i should be parameterized in such a way that

they enforce the constraints on the calibration param-

eters. For the absolute quadric Ω
∗ a minimum param-

eterization (8 parameters) should be used. This can be
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done by putting Ä∗
33 = 1 and by calculating Ä∗

44 from

the rank 3 constraint. The following parametrization

satisfies these requirements:

Ä∗ =
[

KK⊤ −KK⊤a

−a⊤KK⊤ a⊤KK⊤a

]

. (9)

Here a defines the position of the plane at infinity

5∞ = [ a⊤ 1]⊤. In this case the transformation from

projective to metric is particularly simple:

TP→M =
[

K−1 0

a⊤ 1

]

(10)

An approximate solution to these equations can be ob-

tained through non-linear least squares. The following

criterion should be minimized:

min
n

∑

i=1

∥

∥

∥

∥

∥

Ki K
⊤
i

∥

∥Ki K
⊤
i

∥

∥

F

−
PiÄ

∗P⊤
i

∥

∥PiÄ∗P⊤
i

∥

∥

F

∥

∥

∥

∥

∥

2

F

. (11)

Remark that to obtain meaningful results Ki K
⊤
i and

PiÄ
∗P⊤

i should both be normalized to have Frobenius

norms equal to one.

If one chooses P1 = [I | 0], Eq. (8) can be rewritten

as follows:

Ki K
⊤
i ∝ Pi

[

K1K⊤
1 −K1K⊤

1 a⊤

−aK1K⊤
1 aK1K⊤

1 a⊤

]

P⊤
i (12)

In this way 5 of the 8 parameters of the absolute conic

are eliminated at once, which simplifies convergence

issues. On the other hand this formulation implies a

bias towards the first view since using this parameter-

ization the equations for the first view are perfectly

satisfied, whereas the noise has to be spread over the

equations for the other views. In the experiments it will

be seen that this is not suitable for longer sequences

where in this case the present redundancy can not be

used optimally. Therefore it is proposed to first use

the simplified version of Eq. (12) and then to refine the

results with the unbiased parameterization.

To apply this self-calibration method to standard

zooming/focusing cameras, some assumptions should

be made. Often it can be assumed that there is no skew

and that the aspect ratio is tuned to one. If necessary

(e.g., when only a short image sequence is at hand,

when the projective calibration is not accurate enough

or when the motion sequence is close to critical with-

out additional constraints), it can also be used that the

principal point is close to the center of the image. This

leads to the following parameterizations for Ki (trans-

form the images to have (0, 0) in the middle):

Ki =







f 0 u

f v

1






or Ki =







f 0 0

f 0

1






. (13)

These parameterizations can be used in (11). It will be

seen in the experiments of Section 6 that this method

gives good results on synthetic data as well as on real

data.

4.2. Linear Approach

In the case where, besides the skew (s = 0), both prin-

cipal point and aspect ratio are (approximately) known,

a linear algorithm can be obtained by transforming

the principal point (u, v)→ (0, 0) and the aspect ra-

tio
fy

fx
→ 1. These assumptions simplify (12) as fol-

lows:

λ







f 2
i 0 0

0 f 2
i 0

0 0 1






= Pi











b1 0 0 b2

0 b1 0 b3

0 0 1 b4

b2 b3 b4 b5











P⊤
i (14)

with b1 = f 2
1 , b2 = − f 2

1 a1, b3 = − f 2
1 a2, b4 = −a3

and b5 = f 4
1 (a2

1 + a2
2) + a2

3 . From the left-hand side

of Eq. (14) it can be seen that the following equations

have to be satisfied:

ω∗
11 = ω∗

22, (15)

ω∗
12 = ω∗

13 = ω∗
23 = 0 (16)

ω∗
21 = ω∗

31 = ω∗
32 = 0. (17)

Note that due to symmetry (16) and (17) result in iden-

tical equations. These constraints can thus be imposed

on the right-hand side, yielding 4(n − 1) independent

linear equations in b1, b2, b3, b4 and b5:

P
(1)

i Ä∗ P
(1)

i

⊤
= P

(2)

i Ä∗ P
(2)

i

⊤

2P
(1)

i Ä∗ P
(2)

i

⊤
= 0

2P
(1)

i Ä∗ P
(3)

i

⊤
= 0

2P
(2)

i Ä∗ P
(3)

i

⊤
= 0
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with P
( j)

i representing row j of Pi and Ä∗ parametri-

zed as in (14). The rank 3 constraint can be imposed

by taking the closest rank 3 approximation (using SVD

for example).

When only two views are available the solution is

only determined up to a one parameter family of solu-

tions Äa +γÄb. Imposing the rank 3 constraint in this

case should be done through the determinant:

det(Äa + γÄb) = 0. (18)

This results in up to 4 possible solutions. The constraint

b1 > 0, see Eq. (14), can be used to eliminate some

of these solutions. If more than one solution subsists

additional constraints should be used. These can come

from knowledge about the camera (e.g., constant focal

length) or about the scene (e.g., known angle).

4.3. Detecting Critical Motion Sequences

It is outside the scope of this paper to give a complete

analysis of all possible critical motions which can oc-

cur for self-calibration. For the case where all intrinsic

camera parameters are fixed, such an analysis was car-

ried out by Sturm (1997).

Here a more practical approach is taken. Given an

image sequence, a method is given to analyze if that

particular sequence is suited for self-calibration. The

method can deal with all different combinations of

constraints. It is based on a sensitivity analysis to-

wards the constraints. An important advantage of the

technique is that it also indicates quasi-critical motion

sequences. It can be used on a synthetic motion se-

quence as well as on a real image sequence from which

the rigid motion sequence was obtained through self-

calibration.

Without loss of generality the calibration matrix can

be chosen to be K = I (and thus ω∗
i = I). In the case

of real image sequences this implies that the images

should first be transformed with K−1. In this case it

can be verified that df x = 1
2
dω∗

i 11
, df y = 1

2
dω∗

i 22
,

du = dω∗
i 13

= dω∗
i 31

, dv = dω∗
i 23

= dω∗
i 32

and ds =
dω∗

i 12
= dω∗

i 21
. Now the typical constraints which are

used for self-calibration can all be formulated as linear

equations in the coefficients of K. As an example of

such a system of equations, consider the case s = 0,
fy

fx
= 1 and fx = constant. By linearizing around ω∗ =

I this yields dω∗
i 12

= 0, dω∗
i 11

= dω∗
i 22

, dω∗
i 11

=

dω∗
111. Which can be rewritten as







0 0 1 · · · 0 · · ·
1 0 0 · · · −1 · · ·
1 −1 0 · · · 0 · · ·































dω∗
111

dω∗
122

dω∗
112

...

dω∗
211

...

























= 0. (19)

More in general the linearized self-calibration equa-

tions can be written as follows:

Cdω∗ = 0 (20)

with dω∗ a column vector containing the differentials

of the coefficients of the dual image absolute conic ω∗
i

for all views. The matrix C encodes the imposed set of

constraints. Since these equations are satisfied for the

exact solution, this solution will be an isolated solution

of this system of equations if and only if any arbitrary

small change to the solution violates at least one of the

conditions of Eq. (20). Using (8) a small change can

be modeled as follows:

Cdω∗ = C

[

dω∗

dÄ∗

]

dÄ∗ = C′dÄ∗ (21)

with Ä∗ = [Ä∗
11Ä

∗
22Ä

∗
12Ä

∗
31Ä

∗
32Ä

∗
14Ä

∗
24Ä

∗
34]⊤ and the

Jacobian [ dω∗

dÄ∗ ] evaluated at the solution. To have the

expression of Eq. (21) different from zero for every

possible dÄ∗, means that the matrix C′ should be of

rank 8 (C′ should have a right null space of dimen-

sion 0). In practice this means that all singular values

of C′ should significantly differ from zero, else a small

change of the absolute quadric proportional to right

singular vectors associated with small singular values

will almost not violate the self-calibration constraints.

To use this method on results calculated from a real

sequence the camera matrices P should first be adjusted

to have the calculated solution become an exact solu-

tion of the self-calibration equations.

5. The Metric Reconstruction Algorithm

The proposed self-calibration method is embedded in a

system to automatically model metric reconstructions

of rigid 3D objects from uncalibrated image sequences.

The complete procedure for metric 3D reconstruction
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Figure 2. Overview of the different steps in the 3D reconstruction system.

is summarized here. In Fig. 2 the different steps of the

3D reconstruction system are shown.

5.1. Retrieving the Projective Framework

Our approach follows the procedure proposed by

Beardsley et al. (1996). The first correspondences are

found by extracting points of interest using the Harris

corner detector (Harris and Stephens, 1988) in the dif-

ferent images and matching them using a robust track-

ing algorithm. In conjunction with the matching of the

interest points the projective calibration of the setup is

calculated in a robust way ( ). This allows to eliminate

matches which are inconsistent with the calibration.

Using the projective calibration more matches can eas-

ily be found and used to refine this calibration. This

can be seen in Fig. 3.

At first corresponding corners in two images are

matched. This defines a projective framework in which

the projection matrices of the other views are retrieved

one by one. We therefore obtain projection matrices of

the following form:

P1 = [I | 0] and Pi = [H1i | e1i ] (22)

with H1i the homography for some reference plane

from view 1 to view i and e1i the corresponding epipole

(i.e., the projection of the first camera position in

view i).

5.2. Retrieving the Metric Framework

Such a projective calibration is certainly not satisfac-

tory for the purpose of 3D modeling. A reconstruction

obtained up to a projective transformation can differ

very much from the original scene according to human

Figure 3. (a) A priori search region, (b) search region based on

initial projective geometry, (c) search region after projective recon-

struction (used for refinement).

perception; orthogonality and parallelism are in gen-

eral not preserved, part of the scene can be warped to

infinity, etc. Therefore a metric framework should be

retrieved. This should be achieved by following the

methods described in Section 4. Once the calibration

is retrieved it can be used to upgrade the projective

reconstruction to a metric one.

5.3. Dense Correspondences

At this point we dispose of a sparse metric recon-

struction. Only a restricted number of points are re-

constructed. Obtaining a dense reconstruction could be

achieved by interpolation, but in practice this does not

yield satisfactory results. Often some salient features

are missed during the interest point matching and will,

therefore, not appear in the reconstruction.

These problems can be avoided by using algorithms

which estimate correspondences for almost every point

in the images. At this point algorithms can be used

which were developed for calibrated 3D systems like

stereo rigs. Since we have computed the projective cali-

bration between successive image pairs we can exploit

the epipolar constraint that restricts the correspondence

search to a 1D search range. In particular it is possible

to remap the image pair to standard geometry where the

epipolar lines coincide with the image scan lines (Koch,

1996). The correspondence search is then reduced to a

matching of the image points along each image scan-

line. In addition to the epipolar geometry other con-

straints like preserving the order of neighboring pixels,

bidirectional uniqueness of the match, and detection of

occlusions can be exploited. These constraints are used

to guide the correspondence towards the most probable

scanline match using a dynamic programming scheme

(Falkenhagen, 1997). The most recent algorithm (Koch

et al., 1998) improves the accuracy by using a multi-

baseline approach.

5.4. Building the Model

Once a dense correspondence map and the metric cam-

era parameters have been estimated, dense surface
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depth maps are computed using depth triangulation.

The 3D model surface is constructed as triangular sur-

face patches with the vertices storing the surface geo-

metry and the faces holding the projected image color

in texture maps. The texture maps add very much to the

visual appearance of the models and augment missing

surface detail.

The model building process is at present restricted

to partial models computed from single viewpoints and

work remains to be done to fuse different viewpoints.

Since all the views are registered into one metric frame-

work it is possible to fuse the depth estimate into one

consistent model surface (Koch, 1996).

Sometimes it is not possible to obtain a single met-

ric framework for large objects like buildings since one

may not be able to record images continuously around

it. In that case the different frameworks have to be reg-

istered to each other. This will be done using avail-

able surface registration schemes (Chen and Medioni,

1991).

6. Experiments

In this section some experiments are described. First

synthetic image sequences were used to assess the qual-

ity of the algorithm under simulated circumstances.

Both the amount of noise and the length of the se-

quences were varied. Then results are given for two

outdoor video sequences. Both sequences were taken

with a standard semi-professional camcorder that was

moved freely around the objects. Sequence 1 was

filmed with constant camera parameters—like most al-

gorithms require. The new algorithm—which doesn’t

impose this—could therefore be tested on this. A

second sequence was recorded with varying intrinsic

parameters. A zoom factor (2×) was applied while

filming.

6.1. Simulations

The simulations were carried out on sequences of views

of a synthetic scene. The scene consisted of 50 points

uniformly distributed in a unit sphere with its center at

the origin. The intrinsic camera parameters were cho-

sen as follows. The focal length was different for each

view, randomly chosen with an expected value of 2.0

and a standard deviation of 0.5. The principal point had

an expected value of (0, 0) and a standard deviation of

0.1
√

2. In addition the synthetic camera had an aspect

Figure 4. Example of sequence used for simulations (the views are

represented by the optical axis and the image axes of the camera in

the different positions).

ratio of one and no skew. The views were taken from

all around the sphere and were all more or less pointing

towards the origin. An example of such a sequence can

be seen in Fig. 4.

The scene points were projected into the images.

Gaussian white noise with a known standard devia-

tion was added to these projections. Finally, the self-

calibration method proposed in this paper was carried

out on the sequence. For the different algorithms the

metric error was computed. This is the mean devia-

tion between the scene points and their reconstruction

after alignment. The scene and its reconstruction are

aligned by applying the metric transformation which

minimizes the difference between both. For compari-

son the same error was also calculated after alignment

with a projective transformation. By default the noise

had an equivalent standard deviation of 1.0 pixel for a

500 × 500 image. To obtain significant results every

experiment was carried out 10 times and the mean was

calculated.

To analyze the influence of noise on the algorithms,

noise values of 0, 0.1, 0.2, 0.5, 1, 1.5 and 2 pixels were

used on sequences of 6 views. The results can be seen

in Fig. 5. It can be seen that for small amounts of noise

the more complex models should be preferred. If more

noise is added, the simple model gives the best results.

This is due to the low redundancy of the system of

equations for the models which, beside the focal length,

also try to estimate the position of the principal point.

Another experiment was carried out to evaluate

the performance of the algorithm for different se-

quence lengths. Sequences ranging from 4 to 40 views

were used. A noise level of one pixel was used. The re-

sults are shown in Fig. 6. For short image sequences the

results are better when the principal point is assumed

in the middle of the image, even though this is not ex-

actly true. For longer image sequences the constraints
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Figure 5. Relative 3D error in function of noise.

Figure 6. Relative 3D error for sequences of different lengths.

on the aspect ratio and the image skew are sufficient to

allow an accurate estimation of the metric structure of

the scene. In this case fixing the principal point will

degrade the results by introducing a bias.

Figure 7. Some of the images of the Arenberg castle which were used for the reconstruction.

6.2. Real Sequence 1

The first sequence showing part of an old castle was

filmed with a fixed zoom/focus. It is therefore a good

test for the algorithms presented in this paper to check if

they indeed return constant intrinsic parameters for this

sequence. In Fig. 7 some of the images of the sequence

are shown. Figure 8 shows the reconstruction together

with the estimated viewpoints of the camera. In Fig. 9

another view is shown, both with texture and with shad-

ing. The shaded view shows that even small geometri-

cal details (e.g., window indentations) were recovered

in the reconstruction. To judge the visual quality of

the reconstruction, different perspective views of the

model were computed and displayed in Fig. 9. The re-

sulting reconstruction is visually convincing and pre-

serve the metric properties of the original scenes (i.e.,

parallelism, orthogonality, ...).

A quantitative assessment of these properties can be

made by explicitly measuring angles directly on the ob-

ject surface. For this experiment six lines were placed

along prominent surface features, three on each object

plane, aligned with the windows. The three lines in-

side of each object plane should be parallel to each

other (angle between them should be 0◦), while the

lines of different object planes should be perpendicu-

lar to each other (angle between them should be 90◦).

The measurement on the object surface shows that this

is indeed close to the expected values (see Table 2).

In Fig. 10 the focal length for every view is plot-

ted for the different algorithms and different sets of

Table 2. Results of metric measurements

on the reconstruction angle (±std. dev.).

Parallelism 1.0 ± 0.6 degrees

Orthogonality 92.5 ± 0.4 degrees
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Figure 8. Perspective view of the reconstruction together with the estimated position of the camera for the different views of the sequence.

Figure 9. Two other perspective views of the Arenberg castle reconstruction.

constraints. The calculated focal lengths are almost

constant as it should be. In one case also the principal

point was estimated (independently for every view),

but the results were not so good. Not only did the prin-

cipal point move a lot (over 100 pixels), but in this

case the estimate of the focal length is not as con-

stant anymore. In this case it seems the projective cali-

bration was not accurate enough to allow an accurate

retrieval of the principal point and it could be better

to stick with the simplified algorithm. In general it

seems that it is hard to accurately determine the ab-

solute value of the focal length, especially when not

much perspective distortion is present in the images.

This explains why the different algorithms can result

in different values for the focal length. On the other

hand an inaccurate estimation of the focal length only
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Figure 10. Focal length (in pixels) versus views for the different

algorithms.

has a small effect on the reconstruction (Bougnoux,

1998).

6.3. Real Sequence 2

This sequence shows a stone pillar with curved sur-

faces. While filming and moving away, the zoom was

Figure 11. Images 1, 4 and 8 of Sequence 2 (note the short focal length/wide angle in the first image and the long focal length in the last image).

Figure 12. Top view of the reconstructed pillar together with the different viewpoints of the camera (note the change in focal length).

changed to keep the image size of the object constant.

The focal length was not changed between the two first

images, then it was changed more or less linearly. From

the second image to the last image, the focal length has

been doubled (if the markings on the camera can be

trusted). In Fig. 11, 3 of the 8 images of the sequence

can be seen. Notice that the perspective distortion is

most visible in the first images (wide angle) and di-

minishes towards the end of the sequence (longer focal

length).

Figure 12 shows a top view of the reconstructed pillar

together with the estimated camera viewpoints. These

viewpoints are illustrated with small pyramids. Their

height is proportional to the focal length. In Fig. 13

perspective views of the reconstruction are given. The

view on top is rendered both shaded and with sur-

face texture mapped. The shaded view shows that even

most of the small details of the object are retrieved.

The bottom part shows a left and a right side view of

the reconstructed object. Although there is some dis-

tortion at the outer boundary of the object, a highly

realistic impression of the object is created. Note the

arbitrarily shaped free-form surface that has been re-

constructed.
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Figure 13. Perspective views of the reconstruction (with texture and with shading).

A quantitative assessment of the metric properties for

the pillar is not so easy because of the curved surfaces.

It is, however, possible to measure some distances on

the real object as reference lengths and compare them

with the reconstructed model. In this case it is possi-

ble to obtain a measure for the absolute scale and ver-

ify the consistency of the reconstructed lengths within

the model. For this comparison a network of reference

lines was placed on the original object and 27 manu-

ally measured object distances were compared with the

reconstructed distances on the model surface, as seen

in Fig. 14. From each comparison the absolute object

scale factor was computed. The results are found in

Table 3.

Due to the increased reconstruction uncertainty at the

outer object silhouette some distances show a larger

error than the interior points. This accounts for the

Table 3. Results of metric mea-

surements on the reconstruction ratio

(±std. dev.).

All points 40.25 ± 2.2

Interior points ±0.9

Figure 14. To allow for a quantitative comparison between the real

pillar and its reconstruction, some distances, superimposed in black,

were measured.

outliers. Averaging all 27 measured distances gave a

consistant scale factor of 40.25 with a standard devi-

ation of 5.4% overall. For the interior distances, the

reconstruction error dropped to 2.3%. These results

demonstrate the metric quality of the reconstruction

even for complicated surface shapes and varying fo-

cal length. In Fig. 15 the focal length for every view
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Figure 15. Focal length (in pixels) versus views for the different

algorithms.

is plotted for the different algorithms. It can be seen

that the calculated values of the focal length correspond

to what could be expected. When the principal point

was estimated independently for every view, it moved

around up to 50 pixels. It is probable that too much

noise is present to allow us to estimate the principal

point accurately.

7. Some More Results

In this section some more results are presented which

illustrate the flexibility of our reconstruction method.

The two first examples were recorded at Sagalassos, an

archaeological site in Turkey. The last sequence con-

sists of images of a Jain temple in Ranakpur, India.

These images were taken during a tour around India

after ICCV’98.

7.1. The Archeological Site of Sagalassos

In Fig. 16 images of the Sagalassos site sequence

(10 images) are shown. They show the landscape

Figure 16. Some of the images of the Sagalassos site sequence.

Figure 17. Perspective views of the 3D reconstruction of the

Sagalassos site.

surrounding the Sagalassos site. Some views of the

reconstruction are shown in Fig. 17. With our tech-

nique this model was obtained just as easily as the pre-

vious ones. For most active techniques it is impossible

to cope with scenes of this size. The use of a stereo

rig would also be very hard since a baseline of several

tens of meters would be required. Therefore one of the

most promising applications of the proposed technique

is large scale terrain modeling. In addition one can
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Figure 18. Top view of the reconstruction of the Sagalassos site.

Figure 19. Three of the six images of the fountain sequence.

see from Fig. 18 that this model could also be used

to obtain a Digital Terrain Map or an orthomap at low

cost. In this case only 3 reference measurements—

GPS and altitude—are necessary to localize and orient

the model in the world reference frame.

7.2. The Fountain of Sagalassos

Besides the whole site, several monuments were re-

constructed separately. As an example, the reconstruc-

tion of the remains of an ancient fountain is shown. In

Fig. 19 three of the six images used for the reconstruc-

tion are shown. All images were taken from the same

ground level. They were acquired with a digital camera

with a resolution of approximately 1500 × 1000. Half

resolution images were used for the computation of the

shape. The texture was generated from the full resolu-

tion images. The reconstruction can be seen in Fig. 20,

the left side shows a view with texture, the right view

gives a shaded view of the model without texture. In

Fig. 21 two close-up shots of the model are shown.

7.3. The Jain Temple of Ranakpur

These images were taken during a tourist trip after

ICCV’98 in India. A sequence of 11 images was taken

of some details of one of the smaller Jain temples

at Ranakpur, India. These images were taken with a
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Figure 20. Perspective views of the reconstructed fountain with and without texture.

Figure 21. Close-up views of some details of the reconstructed fountain.

Figure 22. Three images of a detail of a Jain temple of Ranakpur.

standard Nikon F50 photo camera and then scanned in.

Three of them can be seen in Fig. 22. A view of the

reconstruction which was obtained from this sequence

can be seen in Fig. 23, some details can be seen in

Fig. 24. Figure 25 is an orthographic view taken from

below the reconstruction. This view allows to verify

the orthogonality of the reconstruction.

These reconstructions show that we are able to han-

dle even complex 3D geometries affectively with our

reconstruction system.
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Figure 23. A perspective view of the reconstruction.

Figure 24. Some close-ups of the reconstruction.

Figure 25. Orthographic view from below the reconstruction.

8. Conclusions

This paper focussed on self-calibration and metric re-

construction in the presence of varying and unknown

intrinsic camera parameters. The calibration models

used in previous research are on the one hand too re-

strictive in real imaging situations (constant parame-

ters) and on the other hand too general (all parameters

unknown). The more pragmatic approach which is fol-

lowed in this paper results in more flexibility.

A counting argument was derived which gives the

minimum number of views needed for self-calibration

depending on which constraints are used. We proved

that self-calibration is possible using only the most gen-

eral constraint (i.e., that image rows and columns are

orthogonal). Of course if more constraints are avail-

able, this will in general yield better results.

A versatile self-calibration method which can work

with different types of constraints (some of the intrin-

sic camera parameters constant or known) was derived.

This method was then specialized towards the prac-

tically important case of a zooming/focusing camera

(without skew and an aspect ratio
fy

fx
= 1). Both known

and unknown principal points were considered. It is

proposed to always start with the principal point in the

center of the image and to first use the linear algorithm.

The non-linear minimization is then used to refine the
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results, possibly—for longer sequences—allowing the

principal point to be different for each image. This can

however degrade the results if the projective calibra-

tion was not accurate enough, the sequence not long

enough, or the motion sequence critical towards the set

of constraints. As for all self-calibration algorithms it

is important to deal with critical motion sequences. In

this paper a general method is proposed which detects

critical and quasi-critical motion sequences.

The different methods are validated by experiments

which are carried out on synthetic as well as real image

sequences. The former are used to analyze noise sensi-

tivity and influence of the length of the sequence. The

latter show the practical feasibility of the approach.

Some more results were included to demonstrate the

flexibility of the approach and the visual quality of

the results which can be obtained by incorporating this

technique in a 3D reconstruction system.

In the future several problems will be investigated

more in depth. Some work is planned on attaching a

weight to different constraints. For example, the skew

can be very accurately assumed to be zero, whereas

the principal point is only known to lay somewhere

around the center of the image. Also the critical mo-

tion sequence detection should be incorporated in the

algorithm and be used to predict the accuracy of the

results.

Appendix

In this appendix the proof of Theorem 1 is given. Be-

fore starting the actual proof a lemma will be given.

This lemma gives a way to check for the absence of

skew from the coefficients of P directly without need-

ing the factorization. A camera projection matrix can

be factorized as follows P = [H | e] = K [R | −Rt].

In what follows hi and ri denote the rows of H and R.

Lemma 1. The absence of skew is equivalent with

(h1 × h3)(h2 × h3) = 0.

Proof: It is always possible to factorize H as KR.

Therefore the following can be written:

(h1 × h3)(h2 × h3)

= (( fx r1 + sr2 + ur3) × r3)(( fyr2 + vr3) × r3)

= (( fx r1 + sr2) × r3)( fyr2 × r3)

= − fx fyr2r1 + s fyr1r1 = s fy .

Because fy 6= 0 this concludes the proof. ✷

Equipped with this lemma the following theorem can

be proven.

Theorem 1. The class of transformations which pre-

serves the absence of skew is the group of similarity

transformations.

Proof: It is easy to show that the similarity transfor-

mations preserve the calibration matrix K and hence

also the orthogonality of the image plane:

K[R | −Rt]

[

R′ σ−1t′

0 σ−1

]

= K[RR′ | σ−1(Rt′ − Rt)].

Therefore it is now sufficient to prove that the class

of transformations which preserve the condition (h1 ×
h3)(h2 × h3) = 0 is at most the group of similarity

transformations. To do this a specific set of positions

and orientations of cameras can be chosen, since the

absence of skew is supposed to be preserved for all

possible views. In general P can be transformed as

follows:

P′ = [H | e]

[

A b

c⊤ d

]

= [HA + ec⊤ | Hb + ed]

If t = 0 then H′ = KRA and thus

(h′
1 × h′

3)(h
′
2 × h′

3)

= (( fx r1 + ur3)A × r3A)(( fyr2 + vr3)A × r3A).

Therefore the condition of the lemma is equivalent with

(r1A × r3A)(r2A × r3A) = 0.

Choosing the rotation matrices R1, R2 and R3 rota-

tions of 90◦ around the x-, y- and z-axis, imposes the

following equations to hold:

(a1 × a2)(a3 × a2) = 0 ,

(a3 × a1)(a2 × a1) = 0 ,

(a2 × a3)(a1 × a3) = 0 .

(A1)

Hence (a1 ×a2), (a1 ×a3) and (a2 ×a3) define a set of

3 mutually orthogonal planes where a1, a2 and a3 form

the intersection and are therefore also orthogonal.

Choosing R4 and R5 as R1 and R2 followed by a

rotation of 45◦ around the z-axis, the following two
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equations can be derived:

((a1 + a3) × a2) ((a1 − a3) × a2) = 0

((a3 + a2) × a1) ((a3 − a2) × a1) = 0.
(A2)

Carrying out some algebraic manipulations and using

a1 ⊥ a2 ⊥ a3 this yields the following result:

|a1|2 = |a2|2 = |a3|2.

These results mean that A = σR with σ a scalar and R

an orthonormal matrix. The available constraints are

not sufficient to impose det R = 1, therefore mirroring

is possible.

Choose R6 = R1 and t⊤6 = [1 0 0], then ((a1 + c⊤) ×
a2)(a3 ×a2) = 0 must hold. Using (A1) and a2 ×a3 ∝
a1 this condition is equivalent with (c × a2)a1 = 0.

Writing c as c1a1 + c2a2 + c3a3 this boils down to

c3 = 0. Taking R7 = R2, t7 = [0 0 1]⊤, R8 = R3

and t8 = [0 1 0]⊤ leads in a similar way to c2 = 0 and

c1 = 0 and therefore to c⊤ = [0 0 0].

In conclusion the transformation [ A b
c⊤ d] is restricted

to the following form [
σR t

0 1] which concludes the proof.

✷

Remark that 8 views were needed in this proof. This

is consistent with the counting argument of the previous

paragraph.
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Heyden, A. and Åström, K. 1996. Euclidean reconstruction from

constant intrinsic parameters. In Proc. International Conference

on Pattern Recognition, Vienna, Austria, pp. 339–343.
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