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Self-Calibration of a Stereo Vision System
for Automotive Applications
Alberto Broggi, Massimo Bertozzi, and Alessandra Fascioli

Abstract—In this paper a calibration method for on-board cameras used

on the ARGO autonomous vehicle is presented. A number of markers have

been placed on the vehicle’s hood, which is framed by the vision system.

Thanks to the knowledge of the markers’ position it is possible to compute

camera position and orientation with respect to the vehicle. Being based

on fast computations, this procedure –of basic importance when the cam-

era head has pan-tilt capabilities– can be performed during autonomous

driving, without slowing down normal operations.

Keywords—Camera Calibration, Autonomous Vehicle, Real-Time Image

Processing

I. INTRODUCTION

ARGO is the experimental autonomous vehicle developed at

the Dipartimento di Ingegneria dell’Informazione, Università di

Parma, Italy. It integrated the main results of the research con-

ducted over ten years, regarding algorithms and architectures for

vision-based automatic road vehicles guidance. Thanks to the

availability of the ARGO vehicle, a passengers’ car equipped

with vision systems and automatic steering capability, a number

of different solutions for autonomous navigation have been de-

veloped, tested and tuned, particularly for the functionalities of

Lane Following and Vehicle Following.

The most promising approaches have been integrated into

the GOLD system [1, 2], which currently acts as the automatic

driver of ARGO. ARGO was demonstrated to the scientific com-

munity and to the public from June 1 to 6, 1998, when the

vehicle drove itself for more than 2000 km on Italian public

highways in real traffic and weather conditions. The results

of this tour (called MilleMiglia in Automatico) are available

at: http://www.ARGO.ce.unipr.it. The vehicle drove

about 94% of the whole tour in automatic mode.

The key problem of ARGO vision system –and of vision sys-

tems in general [3, 4, 5]– is a correct calibration. In all appli-

cations where not only recognition is important, but a correct

localization in world coordinates is essential, a precise mapping

between image pixels and world coordinates becomes manda-

tory. This correspondence may vary during system operations

due to many reasons; in automotive applications, vehicle move-

ments and drifts due to sudden vibrations may change the po-

sition and orientation of the cameras, making this mapping less

reliable as the trip proceeds. Furthermore, when the camera is

equipped with some degrees of freedom (e.g. a pan-tile head)

a recalibration is anyway required to avoid drifts and obtain

precise features localization. Moreover, the availability of the

self-calibration procedure allowed to move the cameras during

system operation –in order to test different camera positions
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and orientations– without having to stop the vehicle and run

the calibration procedure again. The faster the recalibration –

moreover– the more often it can be executed and therefore the

higher the precision of the whole vision system.

In this work the self-calibration procedure of the stereo cam-

eras installed on ARGO is presented: next section presents the

hardware setup, section III describes the algorithms for envi-

ronment perception, section IV presents a grid-based calibra-

tion procedure and the novel self-calibration method, while in

section V the conclusions are drawn.

II. SET-UP OF THE VISION SYSTEM

The ARGO vehicle is equipped with a stereoscopic vision

system consisting of two synchronized cameras able to acquire

pairs of grey level images simultaneously. The installed devices

(see figure 2) are small (3.2 cm × 3.2 cm) low cost cameras fea-

turing a 6.0 mm focal length and 360 lines resolution, and can

receive the synchronism signal from an external source.

Fig. 1

ARGO DRIVING IN AUTOMATIC MODE; THE ON-BOARD

INSTRUMENTATION IS VISIBLE.

(a) (b)

Fig. 2

THE CAMERAS INSTALLED INTO THE DRIVING CABIN: (a) INTERNAL VIEW

AND (b) INTERNAL VIEW AFTER A SHADOWING DEVICE HAS BEEN PLACED

ON THE WINDSHIELD TO PREVENT FROM DIRECT SUNLIGHT OVERHEATING

AND INTERFERING WITH THE CAMERA.
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The cameras lie inside the vehicle (see figure 1) at the top cor-

ners of the windscreen, so that the longitudinal distance between

the two cameras is maximum. This allows the detection of the

third dimension at long distances.

The images are acquired by a PCI board, which is able to

grab three 768× 576 pixel images simultaneously. The images

are directly stored into the main memory of the host computer

thanks to the use of DMA. The acquisition can be performed

in real-time, at 25 Hz when using full frames or at 50 Hz in the

case of single field acquisition.

III. VISUAL PERCEPTION OF THE ENVIRONMENT

In order to achieve enhanced safety features or even au-

tonomous driving capabilities, a robust perception of the envi-

ronment is essential. The following section presents the basic

sensing functions integrated in the GOLD system:

• Lane Detection and Tracking (LD)

• Obstacle Detection (OD)

• Vehicle Detection and Tracking (VD)

• Pedestrian Detection (PD).

The LD and OD functionalities share the same approach: the

removal of the perspective effect through a mapping procedure,

the Inverse Perspective Mapping (IPM) [6, 7], which produces

a top view of the road region. The recognition of both lane

markings and generic obstacles is performed in the road do-

main. In fact, LD assumes that road markings are represented

in the remapped image by quasi-vertical bright lines of constant

width. On the other hand, OD relies on the specific warping pro-

duced by the remapping procedure to any object rising up from

the road surface.

Conversely, VD and PD algorithms are based on the search

for specific features (symmetry, constrained aspect ratio and typ-

ical position) possessed by vehicles and pedestrians, hence the

detection is performed on the acquired image.

For each functionality, the problems due to an incorrect cali-

bration are briefly depicted.

A. Lane Detection

The goal of LD is the reconstruction of road geometry. The

first phase of the algorithm is aimed at recognizing image pix-

els belonging to lane markings in the remapped image: this is

performed through the determination of horizontal black-white-

black transitions by means of low-level filtering.

The following medium-level process is aimed at extracting

information and reconstructing road geometry. The image is

scanned row by row in order to build chains of pixels. Each

chain is approximated with a polyline made of one or more seg-

ments, by means of an iterative process. The list of polylines is

then processed in order to semantically group homologous fea-

tures, and to produce a high level description of the scene. This

process in divided into the following steps:

• filtering of noisy features and selection of the features that

most likely belong to the line marking: each polyline is com-

pared against the result of the previous frame, since continuity

constraints provide a strong and robust selection procedure.

• Joining of different segments in order to fill the gaps caused by

occlusions, dashed lines, or even worn lines: all the possibilities

are checked for the joining, and similarity criteria are applied.

• Selection of the best representative through a scoring proce-

dure, and reconstruction of the information that may have been

lost, on the basis of continuity constraints; a parabolic model is

used in the area far from the vehicle, while in the nearby area a

linear approximation suffices.

• Model fitting: the two resulting left and right polylines are

matched against a model that encodes some knowledge about

the absolute and relative positions of lane markings on a stan-

dard road. The model is initialized at the beginning of the pro-

cess by means of a learning phase, and can be slowly changed

during the processing to adapt to new road conditions. The re-

sult is then kept for reference in the next frames.

The result of Lane Detection in a particularly challenging situa-

tion is displayed in green onto the original image in figure 3.a.

A highly incorrect calibration could lead to completely miss

the detection of lane markings; by altering their absolute or rel-

ative position in the remapped image and, thus, causing them to

not fit the model. Conversely, a slightly wrong calibration has a

small impact on the detection.

Anyway, even if the detection is succesful, the correct deter-

mination of the relative position between the vision system and

the markings is affected, therefore precluding a correct evalua-

tion of dangerous situations or automatic driving.

B. Obstacle Detection

The OD functionality is aimed at the detection of free space,

hence generic objects are localized without their complete iden-

tification or recognition.

Assuming a flat road hypothesis, the IPM is performed on

both stereo images. The flat road model is checked by means of

a pixel-wise difference between the two remapped images. In

fact, in correspondence to a generic obstacle, namely anything

rising up from the road surface, due to the different warping

produced by the remapping procedure in the two images, the

difference image features pairs of sufficiently large clusters of

non-zero pixels that possess a quasi-triangular shape. The low-

level portion of the process is consequently reduced to the com-

putation of the difference between the two remapped images, a

threshold, and a morphological filter aimed at removing small-

sized details in the thresholded image.

The following process is based on the localization of pairs of

triangles in the difference image. It is divided into:

• computing a polar histogram for the detection of triangles:

it is computed scanning the difference image with respect to a

focus and counting the number of overthreshold pixels for every

straight line originating from the focus. The polar histogram

presents an appreciable peak corresponding to each triangle.

• Finding and joining pairs of adjacent peaks: the position of a

peak determines the angle of view under which the obstacle edge

is seen. Two or more peaks are joined according to different

criteria, such as similar amplitude, closeness, or sharpness.

• Estimating the obstacle distance: for each peak of the polar

histogram a radial histogram is computed scanning a specific

sector of the difference image. The radial histogram is analyzed

to detect the corners of triangles, which represent the contact

points between obstacles and road, therefore allowing the deter-

mination of the obstacle distance through a simple threshold.
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Figure 3.b shows a typical result for Obstacle Detection: the

red marker encodes both the obstacles’ distance and width.

The OD functionality highly depends on a correct calibration.

Even slight drifts from the correct calibration induce the two

remapped images to sensibly differ.

C. Vehicle Detection

The VD task is aimed at the detection of the distance and po-

sition of the preceding vehicle, which is localized and tracked

using a single monocular image sequence. A distance refine-

ment is computed using a simple stereo vision technique.

The algorithm is based on the following considerations: a

vehicle is generally symmetric, characterized by a rectangular

bounding box which satisfies specific aspect ratio constraints,

and placed in a given region of the image.

These features are used to identify vehicles in the image in

the following way: first an area of interest is identified on the

basis of road position and perspective constraints. This area is

searched for possible vertical symmetries. The search can hap-

pen to be misleaded by uniform areas and background patterns

presenting highly correlated symmetries or, viceversa, by strong

reflections causing irregularities in vehicle symmetry. For this

reason not only are gray level symmetries considered, but ver-

tical and horizontal edges symmetries as well, in order to in-

crease the detection robustness. All these symmetry data are

combined, using specific coefficients detected experimentally,

to form a single symmetry map.

Subsequently, a rectangular bounding box is searched for in a

specific region whose location is determined by perspective and

size constraints. Sometimes it may happen that in correspon-

dence to the symmetry maximum no correct bounding boxes

exist. In this case a backtracking approach is used: the symme-

try map is again scanned for the next local maximum and a new

search for a bounding box is performed.

The distance to the leading vehicle is estimated thanks to the

knowledge of the camera calibration. A standard stereo vision

technique applied to the bounding box containing the vehicle is

then used to refine the measurement.

The tracking phase is performed through the maximization of

the correlation between the portion of the image contained into

the bounding box in the previous frame (partially stretched or

reduced to take into account small size variations due to the in-

crement or reduction of the relative distance) and the new frame.

Figure 3.c shows a result of the Vehicle Detection algorithm:

the yellow box represents the vehicle’s bounding box, while the

red corners define the search area.

For this functionality, a wrong calibration does not impact on

the detection but leads to a wrong result in distance computation.

D. Pedestrian Detection

The PD functionality is aimed at localizing objects with a hu-

man shape using a single monocular image sequence. Stereo

vision is exploited in the steps where the understanding of the

objects’ distance is concerned.

The algorithm relies on the following hypothesis: a pedestrian

is featured by mainly vertical edges with a strong symmetry with

respect to the vertical axis, size and aspect ratio satisfying spe-

cific constraints, and is generally placed in a specific region.

Given these assumptions, the localization of pedestrians pro-

ceeds as follows: first an area of interest is identified on the ba-

sis of perspective constraints and practical considerations (see

red corners in figure 3). Then the vertical edges are extracted. A

specific stereo vision-based procedure is used to eliminate edges

deriving from background objects.

In order to evaluate vertical edges’ symmetry with respect to

vertical axes, symmetry maps are computed. These maps are

scanned in order to extract the areas which present high verti-

cal symmetry. The positions of the pedestrians detected in the

previous frame are also taken into account in the selection. Too

uniform areas are recognized by evaluating the edges’ entropy

and immediately discarded, while for the remaining candidates a

rectangular bounding box is determined by finding the object’s

lateral and bottom boundaries and localizing the head through

the match with a simple model encoding a pedestrian’s head.

Distance assessment is then performed: the estimate deriving

from the position of the bounding box’ bottom border is refined

thanks to a simple stereo vision technique previously mentioned

in section III-C.

Finally the pedestrian candidates are filtered: only the ones

which satisfy specific constraints on the size and aspect ratio

and present a non uniform texture are selected and labelled as

pedestrians. The results of the previous frame are taken into

account in this selection, as well.

Two green bounding boxes enclosing detected pedestrians are

shown as examples in figure 3.d.

The step of PD mostly affected by a wrong calibration is the

removal of the background. When the background is only par-

tially removed, edge images are full of features that do not be-

long to pedestrians, thus making more difficult the whole pro-

cess. Analogously to previous functionalities also distance com-

putation is affected.

IV. CALIBRATION

The correctness of the results of all the functionalities dis-

cussed in section III is heavily dependent on an accurate cali-

bration of the vision system [8, 9].

Therefore, a fast and effective calibration method is needed.

The image acquisition process can be devised as a transfor-

mation from the world space W ≡ (O, x̂, ŷ, ẑ) to the image space

I ≡ (C, û, v̂, ô).
Without any specific assumption about the scene, the ho-

mogeneous coordinates [10, 11] of an image point Q =
( u v o = 0 1 ) correspondent to a world point P =
( x y z 1 ) can be obtained as a matrix equation:

Q = Tacquisition ×P (1)

where Tacquisition is a 4× 4 transformation matrix depending on

the different parameters of the vision system:

Extrinsic parameters: they represent the spatial orientation and

displacement of the vision system with respect to the world (fig-

ure 4), more precisely: the camera position C = (l,d,h) ∈ W ,

and the three angles: γ, θ, and ρ.

Intrinsic parameters: they characterize the camera and are: the

camera resolutions nû and nv̂, camera focus f , and pixel dimen-

sions λû and λv̂.
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(a) (b) (c) (d)

Fig. 3

TYPICAL RESULTS FOR (a) LANE DETECTION, (b) OBSTACLE DETECTION, (c) VEHICLE DETECTION, AND (d) PEDESTRIAN DETECTION.

γ
η

(a)

θ

η

(b)

ρ

(c)

Fig. 4

EXTRINSIC CALIBRATION PARAMETERS.

While the cameras’ intrinsic parameters are known, the ex-

trinsic ones depend on the camera orientation and position in-

side the vehicle and are subject to drifts due to vibrations.

In the following, two different techniques are presented and

discussed. The former is divided into two steps. Initially a

supervised phase permits to obtain an estimation of the vision

system parameters thanks to the use of a grid of a known size

painted on a road. A following automatic phase allows the

refinement the results. Unfortunately, even if this calibration

method shows good results, it still needs a structured environ-

ment (the grid); therefore a novel approach not relying on spe-

cific assumptions about the environment has been developed.

A. Grid-based Calibration

Supervised calibration: the first part of the calibration process

is an interactive step. A grid with a known size, shown in fig-

ure 5, has been painted onto the ground and two stereo images

of the scene are captured and used for the calibration. Thanks to

a graphical interface a user selects the intersections of the grid

lines; these intersections represent a small set of points whose

world coordinates are known to the system; this mapping is used

to compute the calibration parameters.

This first step is intended to be performed only when the ori-

entation of the cameras or the vehicle trim changes. Since the

homologous points are few and their image coordinates may be

affected by human imprecision, this calibration represents only

a first parameters estimation and a further process is required.

Automatic parameters tuning: after the supervised phase, the

calibration parameters have to be refined. For this purpose, an

automatic procedure has been developed [7]. Since this step is

only a refinement, a specifically structured environment, such

as the grid, is no longer required and a sufficiently textured flat

scenery in front of the vision system is sufficient. The param-

eters’ tuning consists of an iterative procedure, based on the

application of the IPM transform to both stereo images: itera-

tively small deviations to the coarse extrinsic parameters of one

camera, computed during the previous step, are applied, and the

captured images are remapped. The aim is to get the remapped

images as similar as possible. All the pixels of the remapped im-

ages are used to test the accuracy of the calibration parameters

through a least square difference approach.

Fig. 5

VIEW OF THE CALIBRATION GRID.
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B. Self Calibration

The automatic tuning described in the previous paragraph was

initially planned to be also used for compensating small drifts of

the vision system parameters due to vehicle vibrations or camera

movements. Unfortunately it is too slow (a typical parameters

computation requires about 5 s on a Pentium II 450 MHz-based

PC) to be of use during real-time system usage. Moreover, it

requires a flat road to compute the calibration parameters.

A novel approach has been developed, based on the use of

markers on the hood of the vehicle. In fact images acquired

from the stereo vision system also include a large portion of the

hood. While that portion is useless for the functionalities de-

scribed in section III, it is used to compute the relative position

and orientation between the cameras and the vehicle.

The World coordinates (x, y, z) of the markers in a coordinate

system joint with the car are known and the determination of

their image coordinates (um, vm) allows to compute the position

and orientation of the cameras in the same reference system.

B.1 Markers Detection

Eight markers were applied on the hood, four1 for each cam-

era. In order to ease markers detection, their color (white) was

chosen to have a good contrast with respect to the hood color

(dark grey) and also markers’ shape and orientation was selected

so to compensate the perspective effect and equalize their size

in the images (see figure 6).

Fig. 6

THE EIGHT MARKERS ON ARGO HOOD.

The image (figure 7.a) is binarized using eight differently ori-

ented gradient-based filters computed on a 3× 3 neighborhood

of each pixel and ORing their results (figure 7.b). Since the

markers edges could still present small gaps, a simple morpho-

logical filter is used to fill them out (figure 7.c). Pixels are then

clusterized and the size of each cluster is computed: too small

or too large ones are discarded as noise (figure 7.d).

At this point the image contains only few components with a

similar size and a simple pattern matching technique allows to

identify markers (figure 7.e and 7.f) and compute their image

coordinates (um, vm).

Since markers’ world coordinates are known, using (1) it is

1Three markers would suffice for the univocal determination of parameters,
but a fourth has been introduced for a more robust calibration.

(a) (b) (c)

(d) (e) (f)

Fig. 7

MARKERS DETECTION STEPS FOR THE LEFT CAMERA: (a) LEFT IMAGE,

(b) BINARIZED IMAGE, (c) BINARIZED IMAGE AFTER THE

MORPHOLOGICAL FILTERING (d) SMALL SIZED CLUSTERS, (e) THE

PATTERN USED FOR THE MATCHING, AND (f ) THE FINAL RESULT.

possible to compute their image coordinates (um, vm) correspon-

dent to a given set of extrinsic parameters: C, γ, θ, and ρ.

B.2 Exhaustive Approach

For each parameter a range of values centered around the cor-

respondent value computed by means of the grid-based calibra-

tion is scanned using a specific step. During the scanning the

coordinates (um, vm) are computed for all markers. The set of

values that minimize the distances amongst computed (um, vm)

and measured (um, vm), i.e. which gives the minimum of the

function

∆(C,γ,θ,ρ) = ∑
m

[

(um −um)2 +(vm − vm)2
]

(2)

is taken as the correct calibration.

While this approach gives satisfactory results from the point

of view of the calibration accuracy, it is not practical from the

point of view of timings: on the computing engine of the ARGO

vehicle it takes about 8 s. In fact, if for all four parameters to

be computed, n values are considered in each interval2, the total

number of combinations to be used for computing (um, vm) is

n4. Even for a small value of n a great number of iterations is

required (i.e. for n = 20 the number of iterations is 160000).

C. M-ary tree Approach

Another possible approach is the use of an M-ary tree. The

ranging interval of the parameters is scanned using a bigger step

than the one used for the exhaustive approach. In such a case, the

interval is split into M sub-intervals with 2 ≤ M ≤ n. For each

sub-interval the center value is used to compute function (2).

The sub-interval where function (2) assumes the lowest value is

selected and the process is iterated until a satisfactory precision

is reached. The number of iterations needed to find the solution

is logM(n) and, since for each iterations M values of function (2)

have to be computed, the global number of steps is M× logM(n).
Figure 9 shows a comparison where n = 27 and M = 3.

2 Actually, the number of values in each interval depends on the parameter
considered; anyway, for sake of simplicity, in the following n will be regarded
as constant with respect to the different parameters.
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(a) (b) (c)

(d) (e) (f)

Fig. 8

IMAGES ACQUIRED UNDER DIFFERENT ORIENTATIONS AND THEIR REMAPPED VERSIONS: (a) REFERENCE IMAGE, (d) DIFFERENT VALUE OF ρ, (b) AND (e)

DIFFERENT VALUES OF γ, (c) AND (f) DIFFERENT VALUES OF θ.

(a)

(b)

M

n

Fig. 9

NUMBER OF STEPS NEEDED FOR FINDING THE MINIMUM OF FUNCTION (2),

EACH DASH REPRESENTS AN EVALUATION: (a) EXHAUSTIVE APPROACH

AND (b) M-ARY TREE APPROACH WITH n = 27 AND M = 3.

When M = n this approach is the same and performs as the

exhaustive one. Conversely, for M assuming small values this

approach tends to be similar to a binary one thus requiring

2× log2(n) ≪ n iterations. Unfortunately, since a small M im-

plies great sub-intervals and since function (2) is not monotonic

and presents local minima, the lower the value of M the greater

the probability to miss the minimum. Therefore a pure binary

approach, altough presenting nearly optimal performance fig-

ures, has to be discarded.

The correct and fast minimum localization depends on the

determination of a good value for M: as mentioned, low values

may lead to miss the global minimum; conversely, high values

of M require a high computational time.

After the evaluation of typical behaviors of function (2), on a

n = 100 interval the choice of M = 8 gives satisfactory results

with respect to both processing time and accuracy.

Figure 8 presents qualitative results showing the top view of

the calibration grid obtained with the parameters yielded by the

self-calibration method. In order to assess the accuracy of the

procedure, the world coordinates of a specific set of grid points

(marked on the remapped images) have been obtained and com-

pared to the real ones: the average error evaluated on a high

number of samples turned out to be neglectable. Concerning

performance issues, for typical calibration values this approach

requires less than 300 ms to find the minimum of function (2).

V. CONCLUSIONS

In this paper a fast algorithm aimed at the self-calibration of

the stereo vision system installed on the ARGO prototype vehi-

cle has been presented. The algorithm is based on the localiza-

tion of specific markers placed on the vehicle’s hood, hence it

does not require a structured environment for the calibration of

the cameras. It has been tested on board of ARGO experimen-

tal vehicle: the results show that the self-calibration procedure is

sufficiently accurate for the driving assistance functionalities de-

scribed in section III. Since the processing requires 300 ms and

the recalibration does not need be performed on every frame, the

possibility of running the calibration as a background process is

currently being investigated.

REFERENCES

[1] A. Broggi, M. Bertozzi, G. Conte, and A. Fascioli, “ARGO Prototype
Vehicle,” in Intelligent Vehicle Technologies: Theory and Appications
(L. Vlacic, F. Harashima, and M. Parent, eds.), ch. 14, London, UK:
Butterworth-Heinemann, June 2000. ISBN 0-3407-5986-0.

[2] M. Bertozzi and A. Broggi, “GOLD: a Parallel Real-Time Stereo Vision
System for Generic Obstacle and Lane Detection,” IEEE Trans. on Image
Processing, vol. 7, pp. 62–81, Jan. 1998.

[3] E. D. Dickmanns, “Performance Improvements for Autonomous Road Ve-
hicles,” in Procs. 6th Intl. Conf. on Intelligent Autonomous Systems, (Karl-
sruhe, Germany), pp. 2–14, Mar. 1995.

[4] C. E. Thorpe, ed., Vision and Navigation. The Carnegie Mellon Navlab.
Kluwer Academic Publishers, 1990.

[5] S. Ernst, C. Stiller, J. Goldbeck, and C. Roessig, “Camera Calibration for
Lane and Obstacle Detection,” in Procs. IEEE Intl. Conf. on Intelligent
Transportation Systems‘99, (Tokyo, Japan), pp. 356–361, Oct. 1999.

[6] A. Broggi, M. Bertozzi, A. Fascioli, and G. Conte, Automatic Vehicle
Guidance: the Experience of the ARGO Vehicle. World Scientific, Apr.
1999. ISBN 981-02-3720-0.

[7] M. Bertozzi, A. Broggi, and A. Fascioli, “Stereo Inverse Perspective Map-
ping: Theory and Applications,” Image and Vision Computing Journal,
vol. 8, no. 16, pp. 585–590, 1998.

[8] R. Hartley, “Self-calibration of stationary cameras,” International Journal
of Computer Vision, vol. 22, pp. 5–23, February 1997.

[9] Q.-T. Luong and O. D. Faugeras, “Self-Calibration of a Moving Camera
from Point Correspondences and Fundamental Matrices,” International
Journal of Computer Vision, vol. 22, pp. 261–289, Mar. 1997.

[10] O. Faugeras, Three-Dimensional Computer Vision: A Geometric View-
point. cambridge: The MIT Press, 1993.

[11] R. F. Riesenfeld, “Homogeneous Coordinates and Projective Planes in
Computer Graphics,” IEEE Computer Graphics and Applications, 1981.


	Introduction
	Set-up of the Vision System
	Visual Perception of the Environment
	Lane Detection
	Obstacle Detection
	Vehicle Detection
	Pedestrian Detection

	Calibration
	Grid-based Calibration
	Self Calibration
	Markers Detection
	Exhaustive Approach

	M-ary tree Approach

	Conclusions

