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Abstract. In this paper we describe the theory and practice of self-calibration of cameras which are
fixed in location and may freely rotate while changing their internal parameters by zooming. The basis
of our approach is to make use of the so-called infinite homography constraint which relates the unknown
calibration matrices to the computed inter-image homographies. In order for the calibration to be possible
some constraints must be placed on the internal parameters of the camera.

We present various self-calibration methods. First an iterative non-linear method is described which
is very versatile in terms of the constraints that may be imposed on the camera calibration: each of the
camera parameters may be assumed to be known, constant throughout the sequence but unknown, or
free to vary. Secondly, we describe a fast linear method which works under the minimal assumption of
zero camera skew or the more restrictive conditions of square pixels (zero skew and known aspect ratio)
or known principal point. We show experimental results on both synthetic and real image sequences
(where ground truth data was available) to assess the accuracy and the stability of the algorithms and to
compare the result of applying different constraints on the camera parameters. We also derive an optimal
Maximum Likelihood estimator for the calibration and the motion parameters. Prior knowledge about
the distribution of the estimated parameters (such as the location of the principal point) may also be
incorporated via Maximum a Posteriori estimation.

We then identify some near-ambiguities that arise under rotational motions showing that coupled
changes of certain parameters are barely observable making them indistinguishable. Finally we study the
negative effect of radial distortion in the self-calibration process and point out some possible solutions to
it.

1. Introduction

We are concerned in this paper with the problem
of determining the internal parameters of a cam-
era which is free to rotate and zoom, but which
remains in one location, using unstructured visual
data. The internal parameters of a camera deter-
mine the mapping from image locations to rays in
3D Euclidean space, and for this reason so-called
“camera calibration” has been the subject of re-
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search right from the start of the short history of
machine vision.

While traditional approaches (see, e.g. [Tsai
and Lenz1989]) made use of known scene struc-
ture such as accurate grids, or accurately sur-
veyed beacons, relatively recently the possibility
of self-calibration of a camera simply by observ-
ing an unknown scene was realised and explored.
The first major work to consider the problem
was [Faugeras et al.1992], which showed that self-
calibration was theoretically and practically fea-
sible for a camera moving through an unknown
scene with constant but unknown intrinsics. Since
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that time various methods have been developed
[Hartley1994, Luong and Viéville1996, Heyden
and Åström1996, Triggs1997] including some to
deal with degenerate types of motion such as pure
translation [Moons et al.1993] or pure rotation
[Hartley1997].

More recently, the observation was made in
[Heyden and Åström1997, Pollefeys et al.1998,
Heyden and Åström1999, Hartley et al.1999] that
self calibration is possible under much looser as-
sumptions; some, but not all of the camera in-
trinsics may vary. This extension of the theory of
self-calibration allows calibration to be carried out
on video sequences with a zooming camera.

In this paper we explore the case of a stationary
camera which may rotate and change its intrinsics,
a situation which occurs frequently in a variety
of circumstances: surveillance devices and cam-
eras used for broadcasts of (for example) sport-
ing events are almost invariably fixed in location
but free to rotate and zoom, and hand-held cam-
corders are very often panned from a single view-
point. Although we address the case where the
camera undergoes pure rotation (i.e. about its
optic centre), in practice the method is applicable
whenever the rotation arm is very small relative
to the distance of the scene.

Our work is most closely related to the works of
Hartley [Hartley1997] and Pollefeys et al. [Polle-
feys et al.1998], but differs from the former in
that we consider the case of varying rather than
constant intrinsics, and from the latter in that
we consider pure rotations, a case not handled
by that work. It can also be related to work
on self-calibration from planar scenes for cameras
undergoing general motion [Triggs1998, Liebowitz
and Zisserman1998, Sturm and Maybank1999,
Zhang1999]. However, Triggs’ method applies to
a camera with constant intrinsics, Liebowitz and
Zisserman require some metric information about
the world plane to be known and the works by
Sturm and Maybank and Zhang require a plane
with known structure, whereas our methods deal
with the special case of the plane being located at
infinity.

In this paper we elaborate on, and extend our
own previous work in this area [Agapito et al.1998,
Agapito et al.1999, Agapito et al.2001] in a num-
ber of ways. In addition to a detailed description
of that work, we:

• consider optimal estimation of the calibration
parameters;

• examine some near-ambiguities which arise in
poorly conditioned sequences (small motions
and large focal lengths) and do not permit the
simultaneous computation of the motion pa-
rameters and the internal parameters of the
camera.

• explore the issue of calibration of non-linear
effects such as radial lens distortion;

• demonstrate applications of the theoretical re-
sults.

Recent work in self-calibration of rotating and
zooming cameras also includes work by Seo and
Hong [Seo and Hong1998, Seo and Hong1999].

The paper is organised as follows. We begin
with background material, describing pinhole pro-
jection equations and discussing the specific case
of zero translation (section 2.1). We then develop
a constraint which is the basis for self-calibration
(section 2.3). Two methods for self calibration, a
non-linear and a linear one are considered (section
3) and we present experimental results for a va-
riety of experiments with both synthetic and real
data (section 4). We go on to consider optimal pa-
rameter estimation (section 5), near-ambiguities
(section 6) and the effects of radial distortion (sec-
tion 7). An application of the work to building
spherical and cylindrical mosaics is demonstrated
(section 8) and we conclude with a discussion of
the work and future directions (section 9).

2. The rotating camera

2.1. Camera model

The projection of scene points onto an image by
a perspective camera may be modelled by the
central projection equation x = PX, where x =
[x y 1]� are the image points in homogeneous co-
ordinates, X = [X Y Z 1]� are the world points
and P is the 3× 4 camera projection matrix. Note
that this equation holds only up to scale. The
matrix P is a rank-3 matrix which may be decom-
posed as P = K [R|t], where the rotation R and the
translation t represent the Euclidean transforma-
tion between the camera and the world coordinate
systems and K is an upper triangular matrix which
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encodes the internal parameters of the camera in
the form

K =


 γf sf u0

0 f v0

0 0 1


 (1)

Here, f is the focal length and γ is the aspect
ratio The principal point is (u0, v0) and s is a skew
parameter which is a function of the angle between
the horizontal and vertical axes of the sensor array.

We choose, without loss of generality, to locate
the origin of the camera’s coordinate system at
the optic centre. Hence the projection matrix for
each view i may be written as

Pi = Ki [Ri|0] (2)

The projection of a scene point X =
[X Y Z 1]� onto an image point x may now be
expressed as

x = Ki [Ri|0]




X
Y
Z
1


 = KiRi


X

Y
Z


 = KiRiX (3)

Since the last column of the projection matrix
is zero, the depth of the world points along the
ray is irrelevant and we only consider the projec-
tion of 3D rays X. Therefore, in the case of a
rotating camera, the mapping of 3D rays to image
points is encoded by the 3×3 invertible projective
transformation

Pi = KiRi (4)

2.2. The inter-image homography

Given a 3D ray X, its projections onto two differ-
ent images will be

xi = KiRiX (5)
xj = KjRjX (6)

Eliminating X from these equations it is easy to
see that in the case of a rotating camera there
exists a global 2D projective transformation (ho-
mography) Hij that relates corresponding points
in two views:

xj = Hijxi (7)

whose analytic expression is given by:

Hij = KjRjR
−1
i K−1

i = KjRijK
−1
i (8)

The inter-image homographies Hij may be cal-
culated directly from image measurements, for in-
stance from point or line correspondences, or di-
rect methods based on image intensity.

2.3. The infinite homography constraint

We will now derive the constraint that relates the
homographies to the calibration matrices for each
view. Since Rij = K−1

j HijKi is a rotation matrix, it
satisfies the property that R=R−�, leading to

Kj
�H−�

ij K−�
i = K−1

j HijKi (9)

and
(
KjKj

�)
= Hij

(
KiKi

�)
Hij

� (10)

This same expression is also obtained by pro-
jecting a point on the plane at infinity, X =
[X Y Z 0] �, onto a camera with a non-zero fourth
column in Pi. The observed inter-image homogra-
phies Hij are thus the homographies induced by
the plane at infinity i.e. the infinite homographies
H∞.

Thus equation (10) is known as the infinite ho-
mography constraint; it relates the camera cali-
bration matrices to the infinite homographies and
constitutes the constraint we will use for self-
calibration.

This constraint may also be interpreted geomet-
rically in terms of the absolute conic and its pro-
jection on the image plane. The absolute conic
Ω∞ is a point conic in 3 space which is invariant
to Euclidean transformations. It consists of points
X = [X Y Z 0] � on the plane at infinity such
that X2 +Y 2 +Z2 = 0 or alternatively X�X = 0.
This implies that its expression in the Euclidean
frame is given by the identity matrix I.

Since points on the absolute conic are on the
plane at infinity they project onto the image
plane following the expression x = KRX, where
X = [X Y Z] �. Therefore, points on the im-
age of the absolute conic (IAC) ω must satisfy:
x�(KK�)−1x = 0 and the expression of the IAC is
thus given by ω = (KK�)−1. What is important to
note here is that the IAC only depends on the cal-
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Fig. 1. Corresponding image points are related by the
infinite homography H∞.

ibration parameters of the camera, therefore de-
termining the location of the IAC is equivalent to
knowing the calibration of the camera.

Noting that its inverse is the dual space line
conic, also called the dual image of the absolute
conic (DIAC) ω∗ = KK�, we may rewrite the infi-
nite homography constraint (10) as

ω∗
j = Hijω

∗
i Hij

� (11)

When the internal parameters of the camera
are varying, the DIAC is different for each frame
and the infinite homography constraint describes
its mapping between image planes [Luong and
Viéville1996]. It relates the 2D projective trans-
formations Hij to the calibration matrices for each
frame Ki and will constitute the basis for the self-
calibration algorithms we will describe.

2.3.1. An alternative derivation of the infi-
nite homography constraint A clean way of ex-
pressing the self-calibration problem was pre-
sented in [Hartley1993] and later in [Heyden and
Åström1996, Triggs1997] (for the case of a mov-
ing camera with constant but unknown intrinsics)
in terms of constraints on a quadric in P3 which
is invariant under Euclidean transformations. We
now show that for a rotating camera with varying
intrinsics, we can derive a similar constraint, and

that it is equivalent to the infinite homography
constraint.

The quadric in question is the degenerate dual
space disc quadric whose rim is the absolute conic
in the plane at infinity. It is a projective object
in 3D space which encodes metric structure and
which is easier to use than the absolute conic. The
representation of the quadric in a Euclidean frame
is given by the rank-3 4 × 4 symmetric matrix:

Q∗∞ =
[
I 0
0 0

]
(12)

It is easy to verify that any Euclidean transforma-
tion T maps Q∗∞ to itself: TQ∗∞T� = Q∗∞. The self-
calibration method comprises locating the quadric
in an initial projective frame and then using it to
recover the projective to Euclidean transformation
for the structure. Q∗∞ is recovered using its projec-
tion constraint: Q∗∞ projects onto the dual image
of the absolute conic (DIAC)

ω∗
i = KiKi

� = PiQ
∗
∞Pi

� (13)

ω *
i

ω *
j

Π 8

8Ω

8H

Fig. 2. The absolute conic Ω∞ is a point conic that lies
on the plane at infinity Π∞ which is invariant to Euclidean
transformations. It projects onto the image of the absolute
conic (IAC) ω, which depends only on the internal param-
eters of the camera at each frame. Its dual space line conic
is the dual image of the absolute conic (DIAC) ω∗. The
infinite homography H∞ maps the DIAC ω∗ between views:
ω∗

j = H∞ω∗
i H∞

�.
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independently of the projective basis chosen to ex-
press the projection matrices Pi.

While this constraint was originally introduced
in the context of self-calibration of a moving cam-
era with constant intrinsics [Hartley1993, Heyden
and Åström1996, Triggs1997], Pollefeys et al. ex-
tended the method to the case where the camera
parameters may vary [Pollefeys et al.1998]. We
now derive the projection constraint of Q∗∞ for the
case of a stationary rotating camera with varying
intrinsic parameters.

Without loss of generality we may choose the
first frame to be the projective basis in which the
camera matrices are expressed. Therefore

P0 = [I|0] , Pi = [Hi|0] (14)

where we define Hi to be the infinite homography
between views 0 and i, and

Q∗∞ =
[

K0K0
� −K0K�0 a

−a�K0K�0 a�K0K�0 a

]
(15)

where
[
a�1

]
is a 4-vector describing the location

of the plane at infinity Π∞.
We can rewrite (13) as:

ω∗
i = KiKi

� = Pi

[
K0K0

� −K0K�0 a
−a�K0K�0 a�K0K�0 a

]
Pi

� (16)

The projection constraint becomes

ω∗
i = KiKi

� = HiK0K0
�Hi

� = Hiω
∗
0Hi

� (17)

Thus in the case of a rotating camera the projec-
tion constraint of Q∗∞ reduces to the infinite ho-
mography constraint.

3. Self-calibration of rotating cameras

3.1. Problem formulation

The problem of self-calibrating a rotating and
zooming camera is that of determining the cali-
bration matrices for each frame, given only corre-
spondences between views.

The infinite homography constraint

KjKj
� = HijKiKi

�Hij
� (18)

relates the calibration matrices Kj to the 2D pro-
jective transformations Hij which may be com-
puted directly from corresponding features be-

tween images. Given at least 4 correspondences
between views the infinite homographies Hij may
be calculated and the infinite homography con-
straint may be used to compute the calibration
matrices Kj .

In this section we present different methods for
this self-calibration.

3.2. Constant intrinsic parameters

In the case where the camera’s internal param-
eters remain constant throughout the sequence
(Ki = K, i = 1...n) the infinite homography takes
the form

KK� = ω∗ = Hijω
∗Hij

� (19)

This expression may be used to generate a set
of linear equations in the entries of the dual image
of the absolute conic, ω∗, which may be used to
solve for ω∗, and subsequently for K by Choleski
factorization. This problem was solved by Hartley
in [Hartley1997].

3.3. Varying intrinsic parameters

Our main contribution has been to extend the self-
calibration capability to the case where the inter-
nal parameters of the camera are not constant but
change throughout the sequence. This would be
useful to self-calibrate a sequence taken by a zoom-
ing camera where the focal length and perhaps
other parameters are changing between views.

Here we describe two different algorithms: a
non-linear algorithm which is more versatile in the
nature of the constraints which can be imposed on
the intrinsic parameters of the camera, and a sim-
pler linear algorithm which involves solving a set
of linear equations to find the calibration param-
eters but which is more restrictive in the type of
constraints which can be imposed on the internal
parameters of the camera.

3.3.1. Non-linear algorithm It is possible to
use the infinite homography constraint (11) using
an approach similar to Pollefeys et al. [Pollefeys
et al.1998] to solve for the camera calibration ma-
trices Kj given the set of 2D projective transfor-
mations Hij which relate corresponding points be-
tween views. Without loss of generality we may
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choose the origin of the coordinate system to be
aligned with the first frame such that H00 = I and
H0j = Hj . We may now write the infinite homog-
raphy constraint as:

KjKj
� = HjK0K0

�Hj
� (20)

If U is the number of unknown intrinsics in the
first frame, and V is the number of intrinsics which
may subsequently vary, then the total number of
unknowns is U + V (n− 1) where n is the number
of frames. A condition for a solution is therefore

U + V (n − 1) ≤ P (n − 1) (21)

where P is the number of independent equations
provided by (20) which is clearly less than or equal
to 5. We therefore require V < 5 (i.e. strictly
less than 5), meaning that not all the intrinsic pa-
rameters may be allowed to vary throughout the
sequence and therefore some constraints on the pa-
rameters must be provided. When this is the case,
equation (20) may be solved and the calibration
matrices Kj , j = 0...n −1 may be determined. The
minimal assumption for this algorithm is that at
least one parameter must be constant throughout
the sequence.

A solution may be obtained using a non-linear
least squares algorithm. In our implementa-
tion [Agapito et al.1998], a Levenberg-Marquardt
algorithm is used, where the parameters to be
computed are the unknown intrinsic parameters
of each calibration matrix Kj and the cost func-
tion to be minimized is

D =
n−1∑
j=1

‖ KjKj
� − HjK0K0

�Hj
� ‖2

F (22)

where the subscript F indicates the use of
the Frobenious norm, and where KjKj

� and
HjK0K0

�Hj
� are normalised so that their Frobe-

nius norms are equal to one to eliminate the un-
known scale factor.

The calibration matrices Kj are then parameter-
ized explicitly in terms of their internal parame-
ters permitting us to impose any constraints avail-
able on the intrinsic parameters. This provides
great flexibility as the camera parameters may be
assumed to be known, unknown but constant or
varying. In particular, one may impose standard
constraints such as zero camera skew or known as-

pect ratio or less restrictive ones such as constant
but unknown skew, aspect ratio or principal point.

Another important aspect is that we have ob-
served that the algorithm converges to the global
minumum when initialized from a wide range of
starting points for the camera internal parameters.
In practice we use the output from the linear al-
gorithm described below as the starting point for
the non-linear minimization, but sensible guesses
of the internal parameters of the camera appear
to converge to the same solution.

Once the calibration matrices have been deter-
mined it is straightforward to compute the rota-
tion matrices Rj which express the relative orien-
tation of each frame with respect to the reference
frame using the expression Rj = K−1

j HjK0.

3.3.2. A linear algorithm The use of the infi-
nite homography constraint (11) does not provide
a simple way of imposing minimal constraints on
the calibration parameters (such as zero skew or
known aspect ratio) linearly. However, it was no-
ticed in [Zisserman et al.1998] and more recently
used in [Agapito et al.1999], that taking the in-
verse of (11) gives:

ωj = Hij
−�ωiH

−1
ij (23)

where now the inverse of the infinite homography
constraint on the image of the absolute conic, ωi =
Ki

−�K−1
i , leads to some linear constraints on the

intrinsic parameters. One may verify that if the
skew of the camera is zero (s = 0) the form of the
image of the absolute conic ωj in each frame is:

ωj =K−�K−1

=


 1/(γf)2 0 −u0/(γf)2

0 1/f2 −v0/f2

−u0/(γf)2 −v0/f2 1 + u2
0/(γf)2 + v2

0/f2




The important thing to note here is that this as-
sumption leads to a linear constraint in the coef-
ficients of each ωj : if skew is zero then the coef-
ficient ω12 = 0. There are additional constraints
on the camera intrinsics that also lead to linear
equations. We summarize these constraints here:

1. If skew is zero then ω12 = 0.
2. If skew is zero and aspect ratio is 1 (square

pixels constraint) then ω11 = ω22.
3. If skew is zero and u0 = 0, then ω13 = 0.

Similarly if v0 = 0 then ω23 = 0.
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Each of these constraints will give one linear
equation per frame in the entries of each ωj . Us-
ing the infinite homography constraint (23) one
may transfer the constraints to constraints on the
image of the absolute conic only in the reference
frame ωi. Now each constraint will provide one
linear equation in the 6 independent entries of ωi.
If more than 5 equations are available the problem
may be solved via least-squares.

The obvious advantage of the linear algorithm is
that it is a simple method that does not require an
initial estimate, hence it will not have convergence
problems. It is also a very fast method making it
suitable in real time applications. However, it has
the disadvantage of not incorporating some useful
constraints on the calibration parameters such as
unknown but constant parameters (skew, aspect
ratio, principal point). An alternative to solve
for such parameters would be to use the residual
from the linear algorithm as the cost function in a
search over the parameter space to determine the
value that best fits the data.

The self-calibration algorithms we have pre-
sented in this section are also applicable in the case
of cameras undergoing general motion to upgrade
the calibration from affine to Euclidean space. Ob-
taining affine structure is equivalent to knowing
the location of the plane at infinity. This in turn
is equivalent to determining the infinite homogra-
phies. Therefore, once these are known the rest of
the self-calibration problem is reduced to that of
self-calibrating a non-translating camera and the
infinite homography constraint may be used to de-
termine the calibration matrix for each frame.

Indeed these self-calibration methods may also
be used to guide the search for the plane at infin-
ity. Given a choice for the location of the plane at
infinity, the residual given by the self-calibration
algorithm may guide the search over a range of
feasible values for the plane at infinity that gives
the best calibration. The result is a stratified al-
gorithm for self calibration, applicable to cameras
undergoing general motion with changing internal
parameters, in which one proceeds from projective
to affine to Euclidean reconstruction. This algo-
rithm is described in [Hartley et al.1999].

4. Experimental results

4.1. Experiments with synthetic data

Experiments were first carried out on synthetic
data to evaluate the performance of the linear and
non-linear self-calibration algorithms using differ-
ent constraints on the internal parameters. The
data were created to simulate a camera with a
zoom lens providing a total focal length range of
12.5 mm to 35 mm and the CCD size was 7×5
mm. A cloud of 1000 points was randomly gen-
erated within a confined cubic space of 3 m side
lying in front of the rotating camera at a distance
of 5 m. The points were projected onto each of
the image planes arising from the different orienta-
tions of the camera and the location of each image
point was then perturbed in a random direction
by a distance governed by a Gaussian distribution
with zero mean and standard deviation σ mea-
sured in pixels. The skew of the image axes was
taken to be zero, the aspect ratio of the image
pixels equal to one, and the principal point was
located at the centre of the image. The camera
motion was such that the principal ray described
a circular trajectory, simulating the motion of a
pan-tilt unit. The focal length of the camera in-
creased linearly throughout the 30 frame sequence
from a value of 800 pixels to 1400 pixels.

In Figure 6 we show the results of one run of
the self-calibration algorithms on two different se-
quences for a typical noise level of σ = 0.5 pixel,
comparing the performance of the different algo-
rithms using different constraints on the intrinsic
parameters.

The graphs compare the results of the computa-
tion of the focal length, the principal point and the
motion of the camera with ground truth data. The
algorithms were run on two different sequences,
one where the radius of motion of the camera was
larger (θ = 5◦) and the focal length of the camera
was shorter and another one with a smaller mo-
tion (θ = 3.5◦) and larger focal length, a less well
conditioned configuration.

More accurate results were obtained in both se-
quences when the principal point was assumed to
be constant but unknown. When the location of
the principal point was allowed to vary in the min-
imization, the effect was that, although the rate of
change in focal length was correctly estimated, its



8 L. de Agapito, E. Hayman and I. Reid

(a)
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−20

0

20

40

60

80

sigma (pixels)

E
rr

or
 in

 f
oc

al
 le

ng
th

 (
%

)

Non−linear self−calibration const pp

(b)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−20

0

20

40

60

80

sigma (pixels)

E
rr

or
 in

 f
oc

al
 le

ng
th

 (
%

)

Linear self−calibration known pp

(c)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−20

0

20

40

60

80

sigma (pixels)

E
rr

or
 in

 f
oc

al
 le

ng
th

 (
%

)

Non−linear self−calibration var pp

(d)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−20

0

20

40

60

80

sigma (pixels)

E
rr

or
 in

 f
oc

al
 le

ng
th

 (
%

)

Linear self−calibration var pp

Fig. 3. This figure shows the mean and the rms error in the computation of the focal length for different noise levels.
Results are represented as error bars showing the mean and lower and upper ranges of the rms relative error. The experiment
was run 100 times and errors were computed over the 30 frames of the sequence. Results are shown for the non-linear
algorithm assuming (a) constant but unknown and (b) varying principal point; and for the linear algorithm assuming (c)
known and (d) varying principal point
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Fig. 4. This figure shows the mean and the rms error in the computation of the principal point for different noise levels.
We show results from (a) the non-linear algorithm assuming constant but unknown principal point and (b) varying principal
point; and from the (c) linear algorithm assuming known principal point and (d) varying principal point.

overall scale was not accurately computed. This
behaviour is due to a near-ambiguity that arises
in the simultaneous computation of the motion
and focal length parameters and which will be de-

scribed in depth in Section 6. The effect of this
ambiguity is more severe in poorly conditioned se-
quences (small motions and large focal lengths)
and when the principal point is allowed to vary.
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Fig. 5. Mosaics constructed from the two bookshelf sequences during which the camera panned and tilted while the focal
length remained fixed (left) and was varied (right).

Figures 3 and 4 show the performance of the lin-
ear and non-linear self-calibration algorithms with
respect to increasing levels of noise. The mean and
relative rms error were obtained after running the
experiment 100 times using different seeds to gen-
erate the noise.

The errors in computing the focal length are de-
picted in Figure 3 as error bars representing the
mean and the upper and lower ranges of the rel-
ative rms error expressed as a percentage. These
errors appear to be larger when the principal point
was allowed to vary both with the non-linear and
the linear algorithms. There is a noticeable bias in
the estimation of the focal length when the linear
method was used allowing the principal point to
vary.

Figure 4 shows the mean and rms error in the
computation of the location of the principal point.
The error was computed as the distance of the es-
timated location of the principal point from its
true location. Once more the error bars represent
the mean and the upper and lower values of the
rms error. Both the linear and non-linear meth-
ods show similar responses to noise, and errors
are larger when the principal point was allowed to
vary in both cases.

4.2. Experiments with real data

The image sequences used in our experiments were
taken using a camera with a zoom lens mounted
on our Yorick stereo head/eye platform [Sharkey
et al.1993]. The camera was rotated using one
of the two independent vergence axes to pan the
camera, and the common elevation axis to tilt it.

The mechanics of our head do not permit rotations
about the Z axis. Interestingly, this situation
arises very often when using stationary cameras,
since they tend to be mounted on tripods with
2 degrees of freedom for rotation. As described
in [Agapito et al.1999, Hayman2000] this type of
motion is degenerate: imposing only the skew zero
constraint fails to solve the self-calibration prob-
lem and additional constraints must be used.

Two image sequences were taken. In the first
sequence, the focal length of the camera was con-
stant, while the pan and the tilt of the camera
were varied to perform a circular trajectory. In the
second sequence, the focal length of the camera
was set to increase linearly, using the controlled
zoom lens, while the camera performed a simi-
lar circular motion. The encoders of the head/eye
platform provided ground truth values for the pan
and tilt angles of the camera and are accurate to
0.01 of a degree. The servo control of the zoom
lens provided ground truth values of the position
of the zoom lens for each frame in the image se-
quence. The camera was then calibrated, using
an accurately manufactured calibration grid and
a classical calibration algorithm, to obtain ground
truth values for the internal parameters at each
of the different positions of the zoom lens. Ra-
dial lens distortion was modelled using a one pa-
rameter model and the images were appropriately
warped to correct for this factor.

The homographies that relate corresponding
points between views were computed in two
stages. First, the inter-image homographies were
computed from corresponding corners (detected
and matched automatically). Second, the homo-
graphies were refined by minimizing the global
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Fig. 6. Calibration results with synthetic data in the presence of image noise of σ = 0.5 pixel, showing only one run of the
non-linear and linear algorithms on 2 sequences with different motions: (a) smaller focal length and motion of 5◦ radius
and (b) larger focal length and smaller motion of 3.5◦ radius. We show computed values for the focal length (left), the
location of the principal point (middle) and the motion (right). Results are shown for (i) the iterative Levenberg-Marquardt
algorithm imposing only the square-pixels constraint (LM VARYING PP), the (ii) iterative Levenberg-Marquardt algorithm
imposing both the square-pixels and the constant principal point constraints (LM CONSTANT PP), (iii) the linear algorithm
imposing the square-pixels constraint (LIN VARYING PP) and (iv) the linear algorithm imposing the square-pixels and
known principal point constraint (LIN KNOWN PP). For visualization purposes, the motion was represented by plotting
pan versus elevation angles.
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Fig. 7. Ground truth and computed values for the focal length (left), the location of the principal point (middle) and the
motion of the camera (right) for the fixed focal length (top) and the variable focal length (bottom) bookshelf sequences.
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image reprojection error using a bundle-adjustment
technique [Capel and Zisserman1998]. This sec-
ond stage is usually essential in order to obtain
accurate calibration results. Figure 5 shows the
mosaics of both image sequences constructed us-
ing the homographies to register the images.

Figure 7 shows results of the self-calibration al-
gorithms applied to the constant and varying focal
length sequences applying different constraints on
the intrinsic parameters. The values of the aspect
ratio and the skew were assumed to be known and
equal to 1 and 0 respectively. Once more, the
estimates of focal length and motion are greatly
improved when the non-linear method is run as-
suming a constant but unknown principal point.

5. Optimal estimation

The previous self-calibration algorithms are not
optimal in a statistical sense, since both the non-
linear and linear algorithms minimize algebraic,
rather than geometric errors. In this section we
derive an optimal estimator for the calibration and
the motion parameters for the case when point
correspondences are used as input data. Similar
derivations may be obtained for the case where
line correspondences are used or for direct ap-
proaches.

5.1. Maximum Likelihood Estimation (MLE)

Let us consider that the noise w on the measured
image feature positions x̂ is additive and described
by a Gaussian distribution with mean zero and
standard deviation σ. The measured location x̂ is
thus related to the true location by:

x̂ = x + w = H(θ) + w (24)

where x = H(θ) describes the model we have for
the true values of the image points given an esti-
mate of the model parameters θ. In our case, of
course, this is the projection equation:

x̂ = x + w = KRX + w (25)

It is then straightforward to prove that a Maxi-
mum Likelihood Estimate is given by:

MLE = arg min
KiRiXj

n∑
i=1

m∑
j=1

‖ x̂ij − KiRiXj ‖2 (26)

That is, the Ki, Ri and Xj which minimise the
sum of the squared distances of measured feature
locations to the true image points for all points
across all views.

The minimum of this non-linear cost function
is sought using a Levenberg-Marquardt algorithm
modified to take advantage of the sparse block
structure of the matrices involved in the pro-
cess. This method is generically termed bundle-
adjustment in the computer vision and pho-
togrammetry communities.

Given the large number of model parameters it
is not surprising that the objective is highly non-
convex and so it is crucial to provide an initial
estimate for the iteration close to the global min-
imum for the algorithm to converge to it. Our
overall algorithm is as follows. First compute
the inter-image homographies from correspond-
ing points between views. Then obtain an initial
estimate for matrices Ki and Ri using the linear
method described in section 3.3.2. Use this as the
starting point for the non-linear method described
in section 3.3.1. Finally, refine the estimates of the
camera matrices Ki, the rotation matrices Ri, and
the 3D rays Xj using the MLE minimization.

5.2. Using priors on the estimated parameters:
Maximum a Posteriori Estimation (MAP)

The principal point is known to be a poorly con-
strained parameter which tends to fit to noise.
Thus, as we observed in our experiments, per-
mitting it to vary indiscriminately can have very
deleterious effects in the computation of the other
parameters. However, the use of prior knowledge
about the distribution of this parameter can be
used to reduce these effects.

If we model our prior expectation that the prin-
cipal point probably lies close to the centre of the
image as a Gaussian distribution whose mean is
the image centre, it is then easy to prove that a
Maximum a Posteriori estimate of the calibration
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parameters is simply:

MAP= arg min
KiRiXj

n∑
i=1

m∑
j=1

‖ x̂ij−KiRiXj‖2+

n∑
i=1

(ui
0 − u0)�

[
σ2

x 0
0 σ2

y

]−1

(ui
0 − u0) (27)

where ui
0 = (u0

i, v0
i) is the estimate of the prin-

cipal point location for each frame, σx and σy are
the uncertainties in the x and y direction of the
principal point and u0 is its expected prior value,
taken to be at the centre of the image.

That is, the new cost function is simply the cost
in equation (26) with the addition of a term pe-
nalizing estimates of the principal point which are
far from the image centre.

5.3. Experimental results

5.3.1. Synthetic data Experiments were run
first on synthetic data. The motion of the camera
and the variation of focal length was equivalent
to that used in previous synthetic experiments in
Section 4.1. However in this experiment the true
location of the principal point varied throughout
the sequence. Ground truth values and the results
for the computation of the focal length, principal
point and motion of the camera are shown in Fig-
ure 8. The MLE and MAP refinement algorithms
were run using two different initial estimates as
starting points for the minimization.

Figure 8 (a) shows the results obtained when
the output of the non-linear LM algorithm using
the square pixels and constant principal point con-
straints was used as the initial estimate for the
MLE and MAP. Both MLE and MAP provided
improved estimates of the calibration and motion
parameters.

However, when MLE and MAP were initialized
at the output of the non-linear LM method with
varying principal point (see Figure 8 (b)), the es-
timates of the focal length and the motion im-
proved, but were still far from the true solution.
The ambiguity between focal length and rotation
which will be described in Section 6 is still present
and MLE and MAP do not appear to resolve it.

5.3.2. Real images Here we present the results
of the MLE and MAP refinement stage on the
bookshelf sequence shown in section 4.2. Once
more we show results choosing two different initial
estimates for the minimization. Results are shown
in Figure 9 and prove the significance of choosing
a good starting point for the minimization.

When the starting point was set at the out-
put given by the non-linear algorithm imposing
the square pixels and constant principal point
constraints (see Figure 9 (a)), the minimization
started off close to the true solution and the fi-
nal estimates given by MLE and MAP were very
close to the global minimum. However, when
the initial estimate was chosen to be the output
from the non-linear algorithm allowing the prin-
cipal point to vary (see Figure 9 (b)) the min-
imization started far from the true solution and
MLE failed to obtain estimates close to the ground
truth. These results show that optimal methods
can fail to resolve the near-ambiguities which will
be described in Section 6.

Best results, particularly for the motion param-
eters, were consistently given by the MAP esti-
mate imposing a prior on the location of the prin-
cipal point.

6. Degeneracies and near-ambiguities in
self-calibration

During practical use of the self-calibration tech-
niques discussed so far in this paper it is important
to be aware of situations in which the recovery of
camera and motion parameters yield insufficiently
accurate or even completely meaningless results.
Potential sources of such problems are i) radial
distortion, ii) degenerate configurations, and iii)
the information for self-calibration dropping be-
low noise levels.

While radial distortion is the topic of section 7,
this section briefly reviews literature on criti-
cal configurations before identifying how the es-
timates of parameters deteriorate in situations
which are not degenerate, but which poorly con-
strain the solution because perspective effects in
the cameras are less prominent.
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Fig. 8. Results of MLE and MAP refinement on synthetic data, where the noise level was σ = 0.6 pixels. Results are shown
for one run of the self-calibration algorithm using two different starting points for the minimizations: (a) the output of the
Levenberg-Marquardt (LM) minimization assuming unknown but constant principal point and (b) the output of the LM
minimization allowing the principal point to vary. Graphs show (i) ground truth, (ii) starting points (LM constant/varying)
(iii) MLE assuming constant principal point (MLE constant pp) and (iv) MLE with varying (MLE varying pp) principal
point and (v) MAP estimation (MAP estimate).
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Fig. 9. Ground truth and computed values of the focal length, the location of the principal point and the motion of the
camera for the variable focal length bookshelf sequence using the MLE and MAP refinement. Results are shown using
different starting points. In (a) we show results using the iterative Levenberg-Marquardt algorithm imposing both the
square-pixels and the constant principal point constraints (LM constant pp) as starting point, whereas in (b) the starting
point was provided by the iterative Levenberg-Marquardt algorithm imposing only the square-pixels constraint, allowing
the principal point to vary (LM varying pp). Results are given for (i) MLE allowing the principal point to vary (MLE
varying pp), (ii) MLE with constant principal point (MLE constant pp) and (iii) maximum a posteriori estimation (MAP
estimate).
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6.1. Degenerate configurations: review

By a degenerate configuration, we mean that a
particular motion may result on no constraints
whatsoever on a given intrinsic parameter (or
combination of parameters). For example, it is
easy to see that a pure rotation about x- or y-axis
only can never reveal anything about the camera’s
aspect ratio. Likewise, in Agapito et al. [Agapito
et al.1999], the linear self calibration algorithm
was used to show that the zero-skew constraint is
insufficient to self-calibrate pan-tilt platforms.

Kahl, Triggs and Åström [Kahl1999, Kahl
et al.2000] considered this problem, ie. of identify-
ing multiple conics on the plane at infinity which
satisfy the calibration constraints, in the context
of cameras which may also translate. A valuable
contribution of their work was to determine the
degeneracies for single-axis rotations under var-
ious constraints on known intrinsic parameters.
The case where only the focal length is unknown
was also considered by Sturm [Sturm1999] and
Pollefeys [Pollefeys1999]. Literature concerning
the case of all intrinsic parameters being constant
but unknown [Sturm1997, Zisserman et al.1998] is
also relevant since if an ambiguity exists in config-
urations with constant intrinsics, it will certainly
persist when the intrinsic parameters may change.

We do not consider degenerate configurations
further in this paper, however we note that Hay-
man [Hayman2000] provides a full categorization
of degeneracies for pan-tilt, pure pan and pure tilt
platforms, building on the existence proofs of Hey-
den and Åström [Heyden and Åström1998, Hey-
den and Åström1999]. Here, the dimensionality of
the family of solutions is deduced and also which
parameters are and which are not recovered cor-
rectly. This work deals also with cases where one
or more parameters are constant but unknown.
For pure pan or tilt it demonstrates that it is in-
sufficient to impose that the aspect ratio is con-
stant, its value must be known, and constraints
must in addition be applied to either the skew or
principal point.

6.2. Near-ambiguities

We now consider two near-ambiguities present in
the case of rotating cameras. Note that as op-

posed to the true ambiguities discussed in sec-
tion 6.1, these near-ambiguities consist of coupled
changes in the parameters being barely observable
in the image motion and therefore often falling be-
low noise levels.

6.2.1. Angle of rotation/focal length near-ambiguity
For small rotations there is a near-ambiguity be-
tween the rotation and the focal length, and it
is difficult to distinguish between small rotations
with a large focal length and larger rotations with
a small focal length.

Although one may develop an argument based
on small rotation approximations of homogra-
phies, the ambiguity is most easily seen by differ-
entiating the non-homogeneous projection equa-
tion x = (f/Z)X,

ẋ =
f

Z
Ẋ +

ḟ

Z
X− fŻ

Z2
X (28)

where the focal length f is a function of time and
x = (x y f) and X = (X Y Z) are expressed in
camera centred frames. For simplicity skew, as-
pect ratio and principal point are assumed known.
Ẋ = Ω × X + V where Ω is the camera’s angu-
lar velocity and V is the velocity of the camera
centre which for a purely rotating camera is zero.
Substituting X = (Z/f)x back into equation (28)
then yields

ẋ = Ω× x +
ḟ

f
x− k̂ · Ẋ

Z
x

The image motion in the x-direction is thus

ẋ = fΩY − yΩZ +
x

f
(xΩY − yΩX) +

ḟ

f
x (29)

A similar expression holds for ẏ of course.
Rotations about the optic axis and the relative

change in focal length can be recovered from the
terms −yΩZ and ḟx/f respectively (the latter is
zoom-induced looming motion). However, the first
term fΩY , a uniform motion of the image due to
the component of rotation perpendicular to the
optic axis, contains an ambiguity between focal
length and rotation. The third term, (x/f)(xΩY −
yΩX), which also arises from the component of
rotation perpendicular to the optic axis, provides
some disambiguating information since f and ΩY

no longer appear as a product. Unfortunately this
term is likely to disappear below noise levels for
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large focal lengths (equivalently a small field of
view) and also for small rotations since the term
is proportional to the motion perpendicular to the
optic axis. Notice too that the disambiguating
information is small except at the edges of the
image. Unfortunately this is also where the optical
properties of the lens are poorest. Compounding
these difficulties is that in practical applications,
sequences taken at large f are less likely to contain
significant rotation.

Consider now a sequence of several images with
a small total camera rotation. Equation (29) in-
tegrates to give image motion

∆x ≈ ẋ∆t = fθY − yθZ +
x

f
(xθY − yθX) +

∆f

f
x

(30)

f is then the focal length in some reference frame
whereas rotation angles θ and the change in fo-
cal length ∆f vary between frames. If the disam-
biguating term is vanishingly small, replacing f
by kf , ∆f by k∆f , and θY by θY /k in all frames
would not change the image motion ∆x. Therefore
this near-ambiguity persists over a whole sequence
of images. Note that k here is a constant factor
over the entire sequence since f in equation (30)
refers to the focal length in the reference frame.

In experiments we find that the near-ambiguity
is much more pronounced when the principal point
is allowed to vary in the self-calibration algorithm:
with more parameters, the model is more likely to
fit to the noise rather than the underlying true
solution.

6.2.2. Angle of rotation/principal point near-
ambiguity A similar analysis (again using the x-
dimension of the image motion) shows that it is
difficult to distinguish between a shift in the prin-
cipal point along x and a rotation of the camera
about y. Relaxing the constraint of the principal
point being at (0 0), the non-homogeneous projec-
tion equation becomes x = (f/Z)X + (u0 v0 0)�,
and differentiation with respect to time yields

ẋ = u̇0 + fΩY − yΩZ +
x

f
(xΩY − yΩX) +

ḟx

f
(31)

In addition to the previously mentioned near-
ambiguity between focal length and motion, it is

now also difficult to distinguish between motions
of fΩY and u̇0. Thus for each single image, if δu is
the error in the estimation of the principal point
in that frame, and f is the focal length, by in-
troducing a compensatory, but erroneous rotation
of δu/f about y, the observed images are near-
identical. This is illustrated in Figure 10. Again,
the disambiguating information is contained in the
term (x/f) (xΩY − yΩX), though now this has to
resolve not one but two ambiguities. This explains
why the ambiguity between focal length and mo-
tion is harder to resolve when the principal point
is assumed to be varying between each frame in
the self-calibration algorithm.

Another way of describing this near-ambiguity
is that a large focal length perspective projec-
tion is hard to distinguish from a spherical pro-
jection where the principal point is meaningless.
Referring to equation (31), apart from u̇0 the
only term which describes a planar rather than
spherical projection is the disambiguating term
x
f (xΩY − yΩX).

6.2.3. Examples Figure 11 illustrates these
near-ambiguities using both simulated and real
image data. The experiments on real data use the
bookshelf sequence, and the simulated data was
synthesized similarly. Levenberg-Marquardt was
used to minimize D in equation (22), and the prin-
cipal point and focal length allowed to vary over
the sequence during the minimization.

In each set of results the first two plots show the
recovered and veridical focal length and principal

θ Estimated pp
True pp

Erroneous
rotation Optic centre

Fig. 10. The near-ambiguity between motion of the prin-
cipal point and rotations. The two configurations of 1D
cameras represent i) the true configuration (solid lines) and
ii) a configuration where there is an error in the principal
point and orientation of the camera (dashed lines). Since
the two camera planes are nearly coincident, the images
obtained from the two configurations are nearly identical.
The problem is more pronounced the smaller the field of
view of the camera.
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Fig. 11. Correcting the pan and tilt angles by accepting the principal-point/rotation near-ambiguity. Part (a) uses sim-
ulated data and part (b) real data (the bookshelf sequence), both use a linearly increasing focal length and motion with
cone half angle 3◦.

Table 1. Verification of the near-ambiguity between focal length and motion exhibited in Figure 11.

Recovered f / Radius of recovered motion / Product of
true f radius of true motion the two

Synthetic data, varying f 0.7819 1.2789 1.000

Real images, varying f 1.198 0.826 0.989

point. The + symbols in the third plots show the
recovered camera motion in terms of pan and tilt
angles. These are roughly circular, but there is a
good deal of scatter about the best-fit circle.

This scatter turns out to be almost entirely due
to the principal-point/rotation near-ambiguity.
Using the ground truth value for the position of
the principal point, the pan and tilt angles are cor-
rected in each frame and re-plotted as × symbols.
These form near perfect circles.

However, the scale of the motion is still incor-
rect. This is due to the near-ambiguity between
focal length and rotation. Table 1 illustrates this
point with the recovered scale of focal length and
motion compared to the ground truth: multiplied
together they give a number very close to unity.

The effect of these near-ambiguities in recover-
ing a Euclidean reconstruction from multiple ro-

tating cameras is described in [Hayman et al.2000]
and [Hayman2000].

7. Effects of radial distortion

Radial distortion effects have frequently been ne-
glected in computer vision, in particular in self-
calibration applications. In this section we will
prove that they can have a very severe effect on the
self-calibration process. Thus, a proper estimation
of the radial distortion parameters is necessary to
achieve good self-calibration results. The radial
distortion that occurs in a lens may be modelled
using the second order radial transformation

rd =
ru

1 − κ ‖ ru ‖2
(32)
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where

rd = xd − c ru = xu − c (33)

Here, c is the centre of radial distortion, xu is
the undistorted image point and xd is the dis-
torted image point. When the radial distortion
is negative (κ < 0) images exhibit a barreling ef-
fect, whereas when distortion is positive (κ > 0)
a pin-cushion effect appears in the image. Typ-
ically κ varies non-linearly with focal length and
lies in the range −1 × 10−6 < κ < 1 × 10−6. In
Figure 12 we show the particular form of the dis-
tortion curve for the EIA servo-lens we have used
in our experiments obtained using a calibration
grid and a classical calibration algorithm.

The non-linear effect of radial distortion on the
image formation process can be expressed as

xd = d(f, xu) KRX (34)

where d is a non-linear function that depends on
the focal length f and on the coordinates of the
undistorted image point xu. Tordoff and Mur-
ray [Tordoff and Murray2000] describe the geo-
metric effect caused by radial distortion. This may
be explained by the fact that rays are now bent
and if we join a 3D point in space with its projec-
tion on the image by a straight line it will no longer
pass through the centre of projection. This in turn
implies that the transformation that maps corre-
sponding points between views is no longer a ho-
mography and therefore the infinite homography
constraint used for self-calibration is not strictly
satisfied.

700 800 900 1000 1100 1200 1300 1400 1500 1600
−1

−0.5

0

0.5

1
x 10

−7

focal length (pixels)

κ

Fig. 12. Distortion curve for the EIA servolens used in
our experiments showing the dependency of the distortion
parameter κ with focal length

7.1. Effects of radial distortion on self-calibration

As one might expect from the fact that the in-
finite homography constraint is no longer satis-
fied, radial distortion has a severe impact on the
self-calibration process. In this section we present
some examples that demonstrate this situation.

In Figure 13 we show the ground truth val-
ues and the calibration parameters recovered by
the non-linear self-calibration method on the same
synthetic sequence used in previous experiments,
but where the image points were first distorted ac-
cording to the distortion curve shown in Figure 12.
The focal length appears to be largely overesti-
mated and the motion is no longer circular and is
underestimated.

This same behaviour was observed on a real im-
age sequence, where the camera performed a cir-
cular motion while zooming first in and then out.
The images were not corrected for radial distor-
tion. Figure 14 shows the self-calibration results
obtained using the non-linear method imposing
the square pixels and constant principal point con-
straints. Ground truth values for the motion and
the calibration parameters (obtained using a clas-
sic calibration technique) are also shown for com-
parison.

Once more, the estimated motion is far from be-
ing circular and the focal length is underestimated.
These results prove that it is crucial to introduce
radial distortion into the self-calibration process,
the question being how to do it automatically.

7.2. Solving for radial distortion

When the camera has constant focal length radial
distortion can be described by a single κ. In that
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Fig. 13. Self-calibration results for a radially distorted
synthetic image sequence. A raw self-calibration algorithm
was used where radial distortion was not modelled.
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case there are some well-behaved error measures
that can be minimized to solve for the value of κ.
Figure 15 depicts two such measures: the resid-
ual from the self-calibration minimization and the
residual from the linear computation of the inter-
image homographies from point matches. These
cost functions give a good error surface and were
used in previous experiments reported by Hart-
ley [Hartley1997] and Sawhney et al [Sawhney and
Kumar1999], where self-calibration and distortion
were reliably determined for a non-zooming cam-
era.

The main difficulty in solving for radial distor-
tion when the focal length of the camera varies is
that κ is different for each image. We have con-
sidered different ways to solve this problem.

• Include one κi parameter per image in the
MLE minimization.

• Parameterize the distortion curve as a func-
tion of the focal length and solve for the curve
parameters at the same time as the calibration
using MLE.
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Fig. 14. Ground truth and self-calibration results for a
radially distorted real image sequence.
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Fig. 15. Residual of the homography calculation and of
the self-calibration algorithm for different values of kappa
for a sequence with constant focal length.

• Correct the inter-image homographies for the
radial distortion in an initial stage and then
perform self-calibration using radially cor-
rected data.

The first option can be quickly discarded. Ex-
perimentation shows that the large number of pa-
rameters causes the minimization to fall easily into
local mimima.

The obvious disadvantage of the second option
is that the parameterization would depend entirely
on the specific dependence of the radial distortion
parameter κ with the focal length for each lens.
We have attempted to approximate the distortion
curve by a 3rd order polynomial which appears to
describe well the behaviour of our EIA servolens
(see Figure 12). We model the κ as

κ = α0 + α1f + α2f
2 + α3f

3 (35)

and solve for α0...α3.
Figure 16 shows the results obtained for syn-

thetic data using MLE to solve for the 4 distortion
curve parameters at the same time as the calibra-
tion and motion parameters. Clearly, MLE fails
to obtain good calibration results. The starting
point for the minimization (LM constant pp) given
by the output of the non-linear self-calibration
method is too far from the solution, causing MLE
to fall into a local minimum. The focal length and
the motion parameters are improved but are still
far from the true values.

Thus, the final solution appears to hold the
most promise. It is based on the observation that
an error in radial distortion correction will induce
residual errors in the homography estimation in
addition to noise.

While in the case of constant focal length this
residual provided a good cost function for the com-
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Fig. 16. Results for MLE including radial distortion
terms in the minimization
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Fig. 17. Cylindrical mosaic created using 150 images of the Plaza Mayor in Salamanca. The camera’s focal length varied
throughout the sequence

putation of the radial distortion parameter, the
situation is greatly complicated when we allow
changing focal length (and hence κ). Tordoff and
Murray [Tordoff and Murray2000] have developed
a method that gives promising results on synthetic
data. Here, cubic polynomials, describing locally
the κ curve, are fitted to patches of 10 frames.
Once the patches are all fitted, an average is taken
where they overlap and this value of κ is used to
perform the radial correction of each one of the
images, and self-calibration would follow on the
corrected images. This is the subject of ongoing
investigation.

8. Application: automatic generation of
cylindrical and spherical panoramic
mosaics

Panoramic mosaics are generated by registering
a series of images taken by a rotating camera
and projecting them onto a cylinder or sphere.
If the true focal length of the camera is known
then the radius of the cylinder can be adjusted
to that value. This would achieve perfect closure
in the cylindrical projection in the case of a 360◦

panorama. If the focal length is not correctly es-

timated an error would occur in the length of the
final composite image.

Most panoramic mosaicing techniques have
been applied to image sequences taken with a
camera with constant focal length [Szeliski and
Shum1997, Sawhney et al.1998]. The difficulty
with a sequence where the camera might be zoom-
ing between views is the accurate estimation of the
focal length.

We have used our self-calibration method to cal-
ibrate a sequence of 150 images of the Plaza Mayor
in Salamanca taken with a hand-held video cam-
era where the camera was changing its zoom set-
ting between views. The computed focal length
was used to generate a cylindrical mosaic which is
shown in Figure 17. Although the sequence only
shows a 90◦ sweep this technique could be applied
to generate full 360◦ panoramas.

9. Discussion

In this paper we have discussed the theory of self-
calibration of rotating cameras with varying in-
ternal parameters. We have described two self-
calibration algorithms (linear and non-linear) to
solve for the varying intrinsic parameters of the
camera given the inter-image homographies that
relate corresponding points between views. The
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algorithms are based on the use of the infinite ho-
mography constraint which describes the mapping
of the image of the absolute conic (or its dual)
between views. Both methods require some con-
straints to be imposed on the calibration parame-
ters of the camera.

The first algorithm is iterative and requires an
initial estimate, however we have experienced that
the global minimum is achieved over a wide range
of starting points. The problem is parameterized
explicitly in terms of the calibration parameters
of each camera, therefore it is a very flexible al-
gorithm in terms of the constraints that can be
imposed on the intrinsics. Each calibration pa-
rameter may be assumed to be known, constant
throughout the sequence or free to vary. The lin-
ear algorithm is a fast and simple method, suit-
able for real-time applications, but is more re-
strictive in terms of the constraints that can be
imposed on the internal parameters of the cam-
era. It can be used with the minimal assumption
of zero camera skew, but useful constraints such
as a constant principal point or aspect ratio may
not be imposed. A final bundle-adjustment al-
gorithm where global image reprojection error is
minimized has also been described. If some prior
knowledge on the distribution of the parameters is
known, this may be imposed via a MAP estimate.

In the experimental results we have analysed
the effect of imposing different constraints on the
intrinsic parameters of the camera. A relevant is-
sue we have addressed is that, in general, best
results are obtained when the principal point is
assumed to be constant throughout the sequence,
even when it is known to be varying in reality.
This, perhaps contradictory, effect is caused by the
fact that there is an inherent near-ambiguity in the
simultaneous computation of the rotation param-
eters and the focal length of the camera which be-
comes more prominent when the principal point, a
poorly conditioned parameter, is allowed to vary
indiscriminately. Results improve when a MAP
estimate is used to impose a prior on the location
of the principal point.

An important issue we have addressed is the
effect of radial distortion on the self-calibration
process. Radial distortion can have very nega-
tive effects on the self-calibration of a rotating
and zooming camera. Here we have investigated

the possibility of including some radial correction
parameters in the bundle-adjustment stage of the
self-calibration process. However, in these experi-
ments bundle-adjustment did not succeed to con-
verge to the global minimum. Therefore, finding
a reliable method to determine the radial distor-
tion parameters automatically when the intrinsic
parameters of the camera are varying is an impor-
tant matter currently under investigation.
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