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In this paper we propose a structure dependent method for the systematic design ofa self-
checking circuit which is well adapted to the fault model of single gate faults and which
can be used in test mode.

According to the fault model considered, maximal groups of independent and
unidirectionally independent outputs of an arbitrarily given combinational circuit are
determined. A parity bit is added to every group of independent outputs. A few
additional outputs are added to every group of unidirectionally independent outputs. In
the error free case, these groups of unidirectional independent outputs together with their
corresponding additional outputs are elements of a unidirectional error detecting code;
for example, a Berger code or an r-out-of-s code.

It is demonstrated how the pairs of (unidirectionally) independent outputs of a given
circuit can be determined. A simple heuristic solution for this problem based on a
modified circuit graph is also given.
The maximal classes of (unidirectionally) independent outputs can be computed as

cliques ofa dependency graph where the nodes ofthe graph are the outputs of the circuit.
The applicability of the proposed method is demonstrated for the MCNC benchmarks
circuits.

Keywords." Self-Checking circuits, Independent and unidirectionally independent outputs,
Parity-code, Berger-code

1. INTRODUCTION

The design of self-checking circuits[1-3] and
the combination of methods for on-line error
detection or concurrent checking and testing is of
great interest now (s.e.g.[4]). It was first proposed
in [5] that on-line error detection by duplication and
comparison be combined with testing to use the
same hardware in different operational modes.
These ideas were further developed in[6’7] for an
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arbitrary prediction function and for independent
outputs in [8]. Parity prediction for mutually disjoint
groups of outputs of combinational circuits is a
special case of this approach[9’1]. These methods,
however, are generally not well-adapted to the
specific structure of the monitored circuit and the
technical fault model. A method for the design of
self-checking and self-testing circuits which is to
some extent adapted to the fault model of single
gate faults, is given in [8]. In that paper, independent
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outputs of the monitored combinational circuit are
the groups of outputs for which the parity is
computed, duplicated, inverted, and compared
with the parities of the original circuit. In normal
operation mode, every single gate fault forcing an
output to be erroneous for the first time will be
detected. As well, every single gate fault will be
detected in test mode. In reality, however, there are
only very few cases where all the outputs of a
circuit can be combined into groups ofindependent
outputs of a reasonable size which are implemented
by completely different gates.

In [11], weakly independent outputs are used
instead of independent outputs for the design of
self-testing circuits. Low cost implementations of
self-testing circuits are very often possible, but in
on-line mode faults may only be detected with
some degree of latency and the circuits are not self-
checking.
As a generalization of[8], we propose in this

paper a structure dependent method for the
systematic design of self-checking combinational
circuits which is well-adapted to the fault model of
single gate faults and the structure of the con-
sidered circuit. Groups of independent outputs as
well as groups of unidirectionally independent
outputs are determined. Two outputs are unidi-
rectionally independent with respect to a given
fault if, in the presence of this fault either both
outputs are correct, only one output is erroneous,
or both the outputs are unidirectionally erroneous.

In normal operation mode, the proposed circuits
are self-checking with respect to all single gate
faults. In test mode, these error detection circuits
guarantee a 100% fault coverage for all nonredun-
dant single stuck-at- 0/1 faults.

In this paper, a given combinational circuit is
considered. In[12] a given circuit is modified by use
of a special input (output) encoding. The proposed
encoding technique guarantees that all internal
single stuck-at faults as well as all single stuck-at
faults of the input lines will result either in single bit
errors or in unidirectional multibit errors of the
outputs of the modified circuit. The rest of the
paper is organized as follows.

In section 2, the basic notions and notations such
as unidirectionally independent outputs, maximal
groups of tlnidirectionally outputs, and generalized
circuit graph are given. Basic theorems useful for
the determination of independent outputs and
unidirectionally independent outputs are also pre-
sented. In section 3, it is shown how independent
and unidirectionally independent outputs can be
used to design self-checking circuits. A few addi-
tional outputs are added to every group of
unidirectionally independent outputs. In the error
free case, these groups of unidirectionally indepen-
dent outputs are elements of an error detecting
code which detects all unidirectional errors. Every
group of independent outputs is checked by a
parity bit. In section 4, it is explained how pairs of
(unidirectionally) independent outputs can actually
be determined. The determination of maximal
groups of (unidirectionally) independent outputs
can be reduced to the standard graph-theoretical
problem of the determination ofmaximal cliques of
a dependency graph, where the nodes of the graph
are the outputs of the circuit considered.

In section 5 experimental results for benchmark
circuits are given.

2. BASIC NOTIONS AND NOTATIONS

In this paper we consider a combinational circuit fc
with n binary inputs x,...,Xn and m binary out-
pUtsyl f(xl,..., Xn),..., Ym fm(Xl,..., Xn),where
fl,...,fro are n-ary Boolean functions. Let x=
(xl,..., Xn), and y (y,..., Ym).
The set of technical faults considered is denoted

by b= {b0, b,..., bK}, where b0 denotes the ab-
sence of a fault.
The output Yi under input x in the presence of a

fault bj E b is described by

Yi,j fi (bj, x).

Then, for the correct output in the absence of a
fault, we have

Yi, o Yi---- fi(b0, x) fi(x).
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The notion of unidirectionally independent out-
puts is introduced in the following definition.

DEFINITION The outputs Yi and Yk are called
unidirectionally independent with respect to the
fault Cj E and with respect to a subset X c_ X of
the input set X if we have, for x E X, either

1. fi(x) fi(j, x) and f(x) f(j, x)
or
2. (fi(x)--fi(bj, x) and fk(X) fk(bj, X)) or (fi(x)-7/=

fi(j, x) and fk(X) fk(j, X))
or
3. fi(x)#fi(j,x) and fk(x)fk(j,x) and fi(x)=

fk(X).

According to this definition, two outputs are
unidirectionally independent if they are both
correct, if only one of them is erroneous, or if they
are both unidirectionally erroneous. In the last
case, both outputs are changing from 0 to or from
toO.
Independent outputs are a special case of

unidirectionally independent outputs. Outputs are
independent if only the conditions and 2 of
Definition are fulfilled. Thus two outputs are
independent if they are either both correct or if
only one of them is erroneous at a time.

In the following we sometimes omit the subset X,
especially if this subset is not specified. Now we
generalize the definition of a pair of unidirection-
ally independent outputs with respect to a set of
faults and a set of outputs.

DEFINITION 2 The outputs Yi and Yk are called
unidirectionally independent with respect to a set
of faults if these outputs are unidirectionally
independent with respect to every fault Cj .
DEFINITION 3 The outputs Yi,’’’,Yir form a
group of unidirectionally independent outputs if
every pair of these outputs is unidirectionally
independent.

Similar definitions can be given for independent
outputs. Independent outputs can be determined by
use of the generalized circuit graph introduced in [9].
In a similar way, unidirectionally independent
outputs can be determined by a modification of

this generalized circuit graph. This will be
explained now.
A combinational circuit C can be described by

the connections between outputs and inputs of its
logical gates. The gates and the direct outputs of
the circuit are called "elements" of the circuit.
These elements can be combined into maximal
classes Ci of elements with one output. The
maximal classes Ci are identified with the nodes
Ni of the generalized circuit graph G. A node N1 of
this graph G is connected with a node N2 by an
directed edge directed from N1 to N2 if the output
of the class C1 is connected to one of the inputs of
the gates of the class C2. The maximal classes of
elements with one output corresponding to the
nodes of the generalized circuit graph can be
determined as follows"

1. Create a subset for each non-fanout output of
the circuit, and mark each element.

2. If the output of an element is connected only to
marked elements of a single, already existing
subset, add the element to the subset and mark
the element.

3. If the output of an element is connected only to
already marked elements not all belonging to
the same subset mark this element and create a
new subset containing this element. The element
is the output of the newly opened subset.

4. Continue until all elements are marked and
belong to a subset.

In the next step the circuit graph G (N, V) will
be modified into the modified circuit graph
G =(N’, V’). In addition to the nodes N of the
circuit graph G, a node nl,...,nm is assigned to
every output Yl,..., Ym of the circuit ft. For the set
N’ of nodes of G’, we have N’=N tA {nl,..., nm}.
In the modified circuit graphG t, the nodes Ni, Nk E
N are connected by a non-marked edge if there is a
path from the output element of the node Ni to one
of the inputs of the output element of Nk .with an
even number of inversions. The nodes Ni, Nk EN
are connected by a marked edge if there is a path
from the output element ofthe node Ni to one of the
inputs of the output element of Nk with an odd
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number of inversions. Inversion of the output of
the output element ofNi as well as inversions at the
input of the output element of Nk are taken into
account. Inversions at an input of the output
element of Ni as well as inversions of the output of
the output element of Nk are not considered for
the marking of the edge from Ni to Nk. Thus,
two nodes of the modified graph G’ are connected
by at most two edges, a marked one and an
unmarked one.
As an example we consider the combinational

circuit of Fig. 1, which implements the following

Xl
X2

five Boolean functions:

Yl ("nXl)X2X3(x4)V (x V X2)X3X4
k/ (X1) (-’nX3)X4

Y2 -(Xl V x2) V XlX3(-’nx4)
k/Xl (x3)x4 V (Xl V x2)(-nx3)(-x4)

Y3 (x3 V x4)((’Xl)(x2)V (Xl)X3(-x4))
Y4 (Xl)(x2) k/Xl(X3)X4 V XlX3(’-nx4)
Y5 -(x3 V x4) V (-xl) V (-x2).

The modified generalized circuit graph is shown
in Fig. 2. According to Fig. 2, two edges are drawn

Yl

Y2

Y3

23-) y5

FIGURE Example of a combinational circuit.
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N1
N$

nl

N2 N7

N9
n2

N10
n3

N5 Nil

N6
N12

n5

FIGURE 2 Modified generalized circuit graph of the example circuit of Fig. 1.

from the node N3 to the node N9. The first edge
corresponds to a path with one inversion (an odd
number ofinversions) from element 3 to element 20
via element 9. The second edge via element 11 has
no inversion (an even number of inverversions).

Similarly, as in[9], a node Ni of the modified gen-
eralized circuit graph is called structural essential
for the node Nk if there is at least one path from Ni
to Nk. If there is no path from Ni to Nk the node Ni
is called structural non-essential for the node Nk.

The output of the output element ej of the
maximal class C corresponding to the node N
will be denoted by zj. The upper index r of e is the
number of the element in the circuit fc if the
elements of the circuit are numbered.
We are mainly interested in outputs which are

(unidirectionally) independent with respect to
functional faults of single gates (single gate faults).
The maximal classes of elements with one output
are very useful notions to describe these faults.
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DEFINITION 4 The outputs Yi and Yk are called
(unidirectionally) independent with respect to the
node Nj if these outputs are (unidirectionally)
independent with respect to all single gate faults
within the maximal class Cj.
PROPOSITION The outputs Yi and Yk are unidi-
rectionallyindependentwithrespectto thenodeN of
the generalized circuit graph if and only if we have

dyi dyk
(Yi Yk) 0.Fi,k;j jj" dzj

(1)

Thereby zj is the output of the output element e of
the maximal class C corresponding to the node Nj.

Proof A fault within the class Cj which forces an
output Yi to be erroneous for some x E X necessarily
changes the output zj(x) of Cj into zj(x), and for
every input x EX there exists a single gate fault
within Cj which forces zj(x) to be -zj(x). (For
z(x) (0), a stuck-at-0 (1) fault of the output gate
ofC results in an output of 0 (1)).

The inputs of fc for which a change of the output
zj of Cj results in a change of the output Ys, s i, k,
are determined by dys/dzj(x)=l. Thus dyi/
dzj(x).dyk/dZj(X)= determines the inputs for
which a change ofzj results in a simultaneous change
of both the outputs Yi and Yk, respectively, yi(x)
yk(X)--- determines the inputs for which we have
yi(x)=-yk(x), and dyi/dzj(x).dyk/dzj(x)(yi(x)
@ yk(x))- determines the inputs for which a
change of zj simultaneously changes the outputs
yi(x) and yk(x) in different directions. From these
equations we conclude (1).
For independent outputs, we have the following

proposition.

PROPOSITION The outputs Yi, and Yk are inde-
pendent with respect to the node Nj of the general-
ized circuit graph if and only if we have

dyi. dyk 0. (1’)F’i,k;j dzj dzj

For practical applications, the following sufficient
conditions for the determination of (unidi-

rectionally) independent outputs with respect to a
node N of the modified generalized circuit graph
are of interest.

CONDITION 2 The outputs Yi and Yk are unidirec-
tionally independent with respect to the node Nj if

1. N is structural non-essential for at least one of
the output nodes ni or nk,

or
2. all the path’s from Ni to ni and fromN to ng in
the modified generalized Graph G’ contain either
an even number ofmarked edges or an odd number
of marked edges.

CONDITION 2 The outputs Yi and yg are indepen-
dent with respect to the node N if Nj is structural
non-essential for at least one of the output nodes ni
and n.
Example By use of Condition 2, the outputs Y
and YE can be dependent with respect to the node
N3, and the outputs y3 and Y5 can be dependent
with respect to the node N4. To decide whether or
not they are unidirectionally independent, we
compute

dyedyl
x3x4 (-nx1)x V (x1)x4 V x3x4,

dz3 33
dy__3 dy5

(’Xl)(’nX2) V (-nXl)X3(-x4),4 XlX2.
dz4

Now we check condition 1:

dyl dye2 (Yl Y2) x3x4 0
dz3 dz3

dY--23" dY---25 (Y3 @ Ys) 0.
dz4 dz4

Thus the outputs ya and Y5 are unidirectionally
independent and the outputs Y and Y2 are not.
The following theorem is of great practical

interest for the determination of unidirectionally
independent outputs.

PROPOSITION 3 Two outputs Yi and Yk are (uni-
directionally) independent with respect to the set of
all single gate faults if they are (unidirectionally)
independent with respect to all nodes Nj of the
generalized circuit graph.
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3. DESIGN OF SELF-CHECKING CIRCUITS
WITH UNIDIRECTIONALLY
INDEPENDENT OUTPUTS

Figure 3 shows the general structure of the pro-
posed self-checking circuit.
The outputs Yl,...,’Ym of the circuit f are

arranged in h different groups Y1,...,Yh with
Yi {Yi,..., Yini}, 1,..., h, of independent
outputs and unidirectionally independent outputs.
Every group Yi {Yil,..., Yini}, i= 1,..., h, will be
supplemented with some additional outputs
vil,...,vit forming an extended group Yi
{Yi,-.., Yini, Vh,..., Vhti }.

If the outputs of a group Yj are independent only
a single parity bit vj is added. In Fig. 3 Y is

assumed to be a group of independent outputs.
Therefore only a single parity bit is added to this
group.

If the outputs of a group Yi are unidirectionally
independent the ti additional outputs are deter-
mined in such a way that the outputs Yi,... ,’Yini,

Vh,..., Vhti are elements of an error detecting code
for all unidirectional errors.

In Fig. 3 the group Yh is supposed to be a group
of unidirectionally independent outputs. Thus the
outputs Vh,..., Vhti are added.
A possible error detecting code is a Berger-

code[3] or an s-out-of-r code [141 where s is the
number of l’s and r is the number of bits, r ni + ti.
To determine the elements of an s-out-of-r code

we. consider all the possible binary ni-tupels of the

FIGURE 3 General structure of the proposed self-checking circuit.
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outputs Yil,..., Yin of the group Yi for x E X. Let
Mi (mi) be the maximal (minimal) number of l’s of
this n-tupels. Then ti is determined by ti Mi mi.
It is easy to determine the outputs Vhl Vhti such
that Yi Yi.i, Vh Vhti are elements ofan Mi-out-
of-(ni + ti) code.

If the number of l’s of the considered ni-tuple
Yil,..., Yini is Ki, mi _< Ki _< Mi, then exactly Mi
Ki additional outputs Vhl,...,Vhti have to be 1.
These Mi Ki ones can be arbitrarily distributed
over the additional outputs Vhl,...,Vhti.

These additional outputs will be jointly imple-
mented by use of an additional combinational
circuit fca as shown in Fig. 3. Every fault in the
additional circuit fea will be detected.

Every extended group Yi is checked by use of a
self-checking code-checker[2’3’15’16] with two out-
puts ui, ui2 with ui =-ui2 in the fault free case.
These outputs are compacted by a two-rail checker
TRC with 2h inputs and 2 outputs U1 and U2, with

U1 U2 in the fault free case. Every single gate
fault of the circuit f and every fault of the circuit fe
will be detected by an output ui ui2 for some if it
forces at least one of the outputs of fc or fa to be
erroneous for the first time. Since ui ui: implies
U U2 at the output of the two-rail checker, every
single gate fault of f and fca will be immediately
detected. In Fig. 3 the groupY is checked by a self-
checking parity checker SCP, and the group Yh is
checked by a self-checking ,code checker SCC for
the corresponding code.

4. DETERMINATION OF INDEPENDENT
AND UNIDIRECTIONALLY
INDEPENDENT OUTPUTS

If Ri,j-- the outputs yi and yj are obviously
independent, if Ri,j 0 we have to compute the
expression Fti,j;k according to (1’). If for all k
with Nk E Ri, j, Ri, 0 we have Fi,,j;k 0, the
outputs Yi and yj are independent.

For the determination of pairs of unidirection-
ally independent outputs this procedure has to be
modified.

1’. To every node nj, j 1,...,m, we assign two
sets Tj and Tj A node Nk, Nk N, belongs
to Tj (T[) if there exist a path from Nk to nj
with an even (odd) number of inversions.

2’. For every pair of nodes ni,nj with C-j,
i,j 1,..., n, we determine the set Mi,j--Ti 71

(Tj’) U Tj 71 (Ti). IfMi, =0, the outputs Yi and

yj are obviously unidirectionally independent
and the outputs Yi and yj are called graphically
unidirectionally independent. If Mi,j 0 we
have to compute the expression Fi, j; k according
to(i).

If for all k with NkGMi,j, Mi,j we have
Fi,j;k =0, the outputs Yi and yj are unidirectionally
independent.
For the circuit fe of Fig. with the generalized

circuit graph ’of Fig. 2, we have

S1 --{N1, N2, N3, N6, N8),
S2 {N2, N3, N6, N7, N9 },
$3 ={Ni, N2, N4, Ns, NlO},
$4 --(N2, Ns, N6, N7, Nil },
$5 --{N4, N12}

from which we conclude that

Pairs of independent outputs can be determined in
the following steps:

1. Consider the nodes n,...,nm of f. To every
node nj, j 1,..., m, we assign a set Sj. Thereby
a node Nk, Nk EN belongs to S if there exists
a path from Nk to n.

2. For every pair of nodes ni, nj with i:/: j,
i, j 1,..., n, we determine the set Ri, Sif) Sj.

R1,5 S1 f’] $5 0, R2,5 $2 f-’l $5 0,

R4,5 $4 I") $5 0,

and the pairs of outputs Yl and Ys, Y2 and Y5 and Y4
and Y5 are graphically independent.
For 1,..., 5 the sets
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are

T1 --{N1,N2, N3,N6, N8},T’ (,
T2 :{N2, N3, N6, N7, N9},T {N3 }
T3 ={N, N2, N4, Ns, NlO},T
T4 --{N2, Ns, N6, N7, Nil },T
Ts ={N2}, T’ {N4}.

For

we have

Mi,j,i - j,i,j 1,..., 5

M12 {N3},M13 }, M14 O,M5 }, M23 },
M24 }, M25 }, M34 }, M35 {N4}, M45 }

and the pairs of output nodes

(nl, n3), (nl, n4), (nl, ns), (n2, n3), (n2, n4), (n2, ns),
(n3, n4) and (n4, ns)

are graphically unidirectionally independent.
If we would like to determine not only the

graphically unidirectionally independent pairs of
outputs, the cases Mi, y (, i.e. M1,2 {N3} and
M3,5-- {N4} have to be considered in more detail.

Since we have

dy dy2
F1,2;3 3 (x) "z3 (x)(yl (x) @ y2(x)) X3X4 0

and

dy3 dy5
F3,5;4 z4 (x)" z4 (x)(y3(x) q) ys(x)) 0,

the outputs Y3 and Ys are unidirectionally indepen-
dent and the outputs Y and Y2 are not unidi-
rectionally independent.
Now we describe how (maximal) sets of indepen-

dent outputs can be determined. To this end we
draw a first dependency graph G= (N 1, gl). The
nodes N of G are the outputs y,..., Yn of the
considered circuit fe. Two nodes Yi,Y N are con-
nected by an edge if the pair of nodes is (graphi-
cally) independent. Every group of independent
outputs corresponds to a complete subgraph ofG 1,
i.e. a clique ofG1. The determination of a complete
subgraph is a standard problem of graph theory.

In a similar way, we determine sets of unidi-
rectionally independent outputs. We draw a second
dependency graph G2 N2 N2Q..N_ V2) The nodes of
G2 are again the outputs Y 1,. Yn of the considered
circuit fe. Two nodes Yi,Yj EN2 are connected by an
edge if these nodes are (graphically) unidirection-
ally independent. Every group of unidirectionally
independent outputs corresponds to a complete
subgraph of__G2, i.e. a clique of__G2. In the following
example we restrict ourself to the graphically
independent and graphically unidirectionally inde-
pendent outputs.
The graph G of graphically independent pairs

of outputs of fe is given in Fig. 4. The three possible
maximal complete subgraphs consist of the nodes

nl and ns, n2 and n5 and n4 and ns. Fig. 5 shows
the graph G2 of the graphically unidirectionally

FIGURE 4 Graph of independent outputs.

FIGURE 5 Graph of unidirectionally independent outputs.
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Yl

Y2

Y3

Y4

Y5

SCC1

Ull

U12

TRC

U1

U2

v21
v22

Vl1

SCP u22

FIGURE 6 Self-checking circuit of the example of Fig. 1.

independent outputs of ft. The maximal com-
plete subgraphs ofG2 consist of the sets of nodes
{nl, n4, ns}, {nl, n3, n4}, {n2, n3, n4}, {n3, n4, ns} and
{n2, n4, ns}.
We choose the set Y1 {n2,ns} of graphically

independent outputs and the set Y2 {nl, n3, n4} of
graphically unidirectionally independent outputs.
To the set Y1 {Y2, Ys} of graphically independent
outputs a single parity bit vl,v =--(Y2 (R) Ys) is
added. Thus we have Y1 {Y2, Ys, Vl }.
To the outputs Yl, Y3, Y4 of the group Y2 two

additional outputs v21,v22 are added to form a
Beger code with three information bits and two
control bits. All the additional outputs vl ,v2 and

v22 can be jointly implemented. The outputs Y2, Ys,
and Vl of the group Y1 are checked by a self-
checking parity checker SCP. The group Y2 is
checked by a self-checking Berger code checker

SCC 1. The outputs of the SCC and the SCP are
compacted by a self-checking two-rail-checker
TRC as shown in Fig. 6.
The resulting circuit is self-checking.

5. EXPERIMENTAL RESULTS

Table showes the experimental results for the
MCNC benchmarks.
The following abbreviations are used:

inp: number of inputs
out: number of outputs

pgio: number of pairs of graphically independent
outputs

pguo: number of pairs of graphically unidirection-
ally independent outputs

pio: number of pairs of independent outputs
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circuit inp out pgio

TABLE Experimental results

pguo pio puo go bB bP bT ao

2 3 4
cm138a 6 8
cu 14 11 33
cm162a 14 5
decod 5 16 27
ldd 9 19 29
apex7 49 37 361
z4ml 7 4
x2 10 7 3
c8 28 18 96
f51m 8 8
ttt2 24 21 105
vda 17 39 11
pml 16 13 63

5 6 7 8
28 28
54 33 54 2
3 4 4

120 27 120
79 61 171
522 379 555 12

3 6 3
14 4 15 4

152 96 152 2
5 7 4

116 128 148 7
17 169 343 14
68 69 74 2

puo: number of pairs of unidirectionally inde-
pendent outputs

go: number of groups of independent and
unidirectionally independent outputs

bB: number of additional bits for Berger Codes
bP: number of additional parity bits
bT: total number of additional bits (bT=

bB + bP)
ao: additional area overhead in percent of the

area of the original circuit

The pairs of graphically independent outputs
pgio (column 4) and the pairs of graphically
unidirectionally independent outputs pguo (col-
umn 5) are determined by use of the modified
generalized circuit graph. The pairs of independent
outputs pio (column 6) and the pairs of unidi-
rectionally independent outputs puo (column 7)
are determined according to (1) and (1’) respec-
tively where the corresponding Boolean derivations
have to be taken into account.
The Boolean derivations in (1) and (1’) are

computed by use of the program system MIS [17].
The corresponding Boolean functions are repre-
sented as BDD’s. Graphically (ufiidirectionally)
independent outputs are always (unidirectionally)
independent. Therefore, the number of pairs of
(unidirectionally) independent outputs is always
greater than or equal to the number of pairs of
graphically (unidirectionally) independent outputs.

9 10 11 12
4 4 15
5 5 75
5 5 107
5 5 <1
5 5 31
3 10 13 119

3 3 62
2 3 5 85
6 6 156
6 7 55
4 5 9 79
26 26 60
3 4 88

The minimal number ofmutually disjoint groups
of independent and unidirectionally independent
outputs go are given in column 8.
Groups of unidirectionally independent outputs

are monitored by Berger Codes. The number of
necessary additional bits bB is represented in
column 9. Groups of independent outputs are
checked by additional parity bits. The number of
additional parity bits bP is given in column 10. The
total number ofcheck bits bT (Berger code bits and
parity bits) is given in column 11 of Table I. The
area overhead of the additional circuit fc is shown
in the row 12 ofTable. The additional circuit fca was
sythesized by use of the structurally given circuit fc
in the following way: If the outputs of a group
Yi-- {Yi,..., Yihi} are independent a single addi-
tional output vi of the parity bit is determined by
connecting the outputs Yil,..., Yihi by XOR-gates.
If the outputs of a group Yj {yj,...,yjj} are
unidirectionally independent the outputs
{yj,..., yjj} are connected to a counter of zeros
to determine the additional bits of a Berger code.
Then all the outputs of the circuit fea are jointly
optimized by use of the standard MIS-algorithm
script.rugget.
The necessary computing time on a SUN Work-

station Spark 10 including the determination of
pairs of independent and unidirectionally indepen-
dent outputs, the determination of maximal com-
plete subgraphs and the synthesis of the additional
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circuit was in the range of 0.33 to 3376.46 seconds.
The average additional area overhead is 71%.

6. CONCLUSIONS

In this paper a new structure dependent method for
the design of self-checking and self-testing combi-
national circuits was proposed. Maximal groups of
independent outputs and unidirectionally indepen-
dent outputs are determined. It is shown how pairs
of (unidirectionally) independent outputs can
heuristically be determined by a simple graph-
theoretical algorithm. Maximal groups of (unidi-
rectionally) independent outputs can be computed
as cliques of a dependency graph, which is a
standard graph-theoretical problem. A single
parity bit is added to every group of independent
outputs. A few additional outputs are added to
every group of unidirectionally independent out-
puts in such a way that these groups of unidi-
rectionally independent outputs and the
corresponding additional outputs are elements of
a unidirectional error detecting code. This method
is explained in detail for a simple example. The
applicability of the proposed method is demon-
strated for the MCNC benchmarks.
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