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Abstract. A coalition in a graph G = (V, E) consists of two disjoint sets V1 and V2
of vertices, such that neither V1 nor V2 is a dominating set, but the union V1 ∪ V2
is a dominating set of G. A coalition partition in a graph G of order n = |V | is
a vertex partition π = {V1, V2, . . . , Vk} such that every set Vi either is a dominating
set consisting of a single vertex of degree n − 1, or is not a dominating set but
forms a coalition with another set Vj which is not a dominating set. Associated with
every coalition partition π of a graph G is a graph called the coalition graph of G
with respect to π, denoted CG(G, π), the vertices of which correspond one-to-one with
the sets V1, V2, . . . , Vk of π and two vertices are adjacent in CG(G, π) if and only if
their corresponding sets in π form a coalition. The singleton partition π1 of the vertex
set of G is a partition of order |V |, that is, each vertex of G is in a singleton set
of the partition. A graph G is called a self-coalition graph if G is isomorphic to its
coalition graph CG(G, π1), where π1 is the singleton partition of G. In this paper, we
characterize self-coalition graphs.
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1. INTRODUCTION

Motivated by the real-world concept of a coalition, that is, two entities joining to-
gether for joint action, coalitions in graphs were introduced by the authors in [1] and
studied in [2–4]. In this paper, we characterize self-coalition graphs, which were first
defined in [4]. Before presenting the definition of self-coalition graphs, we need some
other definitions and terminology.

Let G = (V, E) be a graph and G be the complement of G. The open neighborhood
of a vertex v ∈ V is the set N(v) = {u | uv ∈ E} and its closed neighborhood is
N [v] = N(v) ∪ {v}. Each vertex u ∈ N(v) is called a neighbor of v, and |N(v)| is the
degree of v, denoted deg(v). In a graph G of order n = |V |, a vertex of degree n − 1
is called a dominating vertex, while a vertex of degree 0 is an isolated vertex or just
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an isolate. The minimum degree of a vertex in G is denoted by δ(G) and the maximum
degree by ∆(G). For a set S of vertices, we denote the subgraph induced by S by G[S].
A non-empty subset X ⊆ V is called a singleton set if |X| = 1 or a non-singleton set
if |X| ≥ 2. For an integer k, we use the standard notation i ∈ [k] to mean that i is an
integer and 1 ≤ i ≤ k.

A vertex cover in G is a set of vertices that covers all the edges of G. A set S of
vertices is called independent if no two vertices in S are adjacent in G. The vertex
independence number α(G) is the maximum cardinality of an independent set of
vertices in G, and the vertex cover number β(G) is the minimum cardinality of a vertex
cover of G. A set S ⊆ V is a dominating set of a graph G if every vertex in V − S is
adjacent to at least one vertex in S. The domination number of a graph G, denoted
γ(G), is the minimum cardinality of any dominating set of G, and a dominating set of
cardinality γ(G) is called a γ-set of G. If X and Y are sets of vertices, we say that
[X, Y ] is full if all possible edges between the vertices of X and the vertices of Y exist.

The diameter diam(G) of a connected graph G is the maximum distance between
two vertices in G. We denote the family of paths, cycles, and complete graphs of order
n by Pn, Cn, and Kn, respectively, and the complete bipartite graph having r vertices
in one partite set and s vertices in the other by Kr,s. The union G ∪ H of two disjoint
graphs G and H is the disconnected graph composed of a copy of G and a copy of H.
The join G + H of two vertex-disjoint graphs G and H is the graph obtained from the
union of G and H by adding every possible edge between the vertices of V (G) and
the vertices of V (H).

The concept of coalitions in graphs was introduced by the authors in 2020 [1] as
follows.

Definition 1.1. A coalition in a graph G consists of two disjoint sets V1 and V2
of vertices, where neither V1 nor V2 is a dominating set but the union V1 ∪ V2 is
a dominating set of G. We say that the sets V1 and V2 form a coalition and are
coalition partners.

Definition 1.2. A coalition partition, henceforth called a c-partition, in a graph G is
a vertex partition π = {V1, V2, . . . , Vk} such that every set Vi of π is either a singleton
dominating set, or is not a dominating set but forms a coalition with another set
Vj in π.

It was proven in [1] that every graph has a c-partition. Note that if G has no
dominating vertex, then no set Vi in a c-partition is a dominating set, and hence must
form a coalition with another set Vj in the partition. Naturally associated with each
coalition partition is a coalition graph defined in [4] as follows.

Definition 1.3. Let G be a graph with a c-partition π = {V1, V2, . . . , Vk}. The
coalition graph CG(G, π) of G is the graph with vertex set V1, V2, . . . , Vk, corresponding
one-to-one with the sets of π, and two vertices Vi and Vj are adjacent in CG(G, π) if
and only if the sets Vi and Vj are coalition partners in π, that is, neither Vi nor Vj is
a dominating set of G, but Vi ∪ Vj is a dominating set of G.
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The path P4 = (v1, v2, v3, v4) with the c-partition π = {{v1, v2}, {v3, v4}} yields
the coalition graph CG(P4, π) ≃ K2, for example. In [3], the authors show that there
are only finitely many coalition graphs of paths and finitely many coalition graphs of
cycles, and they determine all such coalition graphs. On the other hand, the authors
also show in [3] that there are infinitely many coalition graphs of trees and they
characterize these coalition graphs.

The c-partitions of interest in this paper are singleton partitions defined as follows.

Definition 1.4. The singleton partition of a graph G with vertex set {v1, v2, . . . , vn}
is the partition π1 = {V1, V2, . . . , Vn}, where for i ∈ [n], Vi = {vi}. We shall use the
notation π1 throughout to denote the singleton partition of any graph G.

Abusing notation slightly, if G is a graph with vertex set {v1, v2, . . . , vn} and
singleton c-partition π1 = {{v1}, {v2}, . . . , {vn}}, we refer to a vertex {vi} of CG(G, π1)
simply as vi. That is, for simplicity we use the same labels for a vertex of G and its
corresponding vertex in CG(G, π1). We also say that CG(G, π1) is a singleton coalition
graph.

Note that the singleton partition π1 is not always a c-partition, as can be seen
with a path Pn for n ≥ 6, since no set of π1 containing an endvertex of Pn forms
a coalition with another set of π1. For examples of graphs whose singleton partition π1
is a c-partition, consider the cycle C4 for which CG(C4, π1) ≃ K4, and the cycle C5 for
which CG(C5, π1) ≃ C5. Note that C5 is isomorphic to its singleton coalition graph.
Clearly, the only way a graph G can be isomorphic to one of its coalition graphs is if
both graphs have the same order, implying that the partition yielding the coalition
graph is the singleton partition as formally stated below.

Definition 1.5. A graph G is called a self-coalition graph if for the singleton c-partition
π1 of G, CG(G, π1) ≃ G.

Examples of self-coalition graphs include the trivial graph K1, the cycle C5, and the
complete bipartite graph Kr,s for 3 ≤ r ≤ s. More generally, we observe the following.

Observation 1.6. For the multipartite graph G = Kn1,n2,...,nk
with ni ≥ 3 for all

i ∈ [k], CG(G, π1) ≃ G.

2. MAIN RESULTS

Our main result characterizes the self-coalition graphs. We let F be the family of
graphs that is defined recursively from the following rules:

1. The complete bipartite graphs Kr,s, where 3 ≤ r ≤ s, are in F .
2. The graphs, denoted G2k+1, that can be obtained from an odd complete graph

K2k+1, for k ≥ 2, by removing the edges of a spanning cycle C2k+1 are in F .
3. If F is in F , then so is the join F + Kp, for any p ≥ 3.
4. If F is in F , then so is the join F + G2k+1, for any k ≥ 2.
5. No graph is in F unless it is obtained from a finite number of applications of Rules

1, 2, 3, and 4.
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Note that C5 ∈ F since C5 ≃ G5, that is, the cycle C5 can be obtained by removing
the edges of a spanning cycle from the complete graph K5. Also, the family of complete
multipartite graphs Kn1,n2,...,nk

, where ni ≥ 3 for all i ∈ [k], is a subfamily of F since
these graphs can be constructed from the graph Kn1,n2 by repeated applications of
Rule 3.

By Observation 1.6, the complete multipartite graphs having partites sets of
cardinality three or more are self-coalition graphs. We observe that the graphs G2k+1
are also, so the graphs described in Rules 1 and 2 are self-coalition graphs. We state
this straightforward observation.
Observation 2.1. If G ≃ Kr,s, for 3 ≤ r ≤ s, or G ≃ G2k+1, for k ≥ 2, then
CG(G, π1) ≃ G.

We are now ready to present our main result, which characterizes the self-coalition
graphs. We shall prove the following theorem in Section 4.
Theorem 2.2. A graph G is a self-coalition graph if and only if G is the trivial
graph K1 or G ∈ F .

3. PRELIMINARY RESULTS

In this section, we develop some useful properties of self-coalition graphs. The first
property we prove applies to any graph G and any c-partition of G. Recall that the
vertex cover number and the vertex independence number of a graph G are denoted
by β(G) and α(G), respectively.
Proposition 3.1. For a graph G with minimum degree δ(G) and c-partition π,

β(CG(G, π)) ≤ δ(G) + 1.

Proof. Let G with a graph with c-partition π = {V1, V2, . . . , Vk}. Let u be a vertex of
minimum degree in G. Furthermore, let π′ be the subset of π, such that Vi ∈ π′ if and
only if Vi contains a vertex of N [u]. Hence, |π′| ≤ |N [u]| = δ(G) + 1. Now consider an
arbitrary edge ViVj in CG(G, π). Since the set Vi ∪ Vj is a dominating set of G, at
least one of Vi and Vj contains a vertex from N [u] in G. Thus, at least one of Vi and
Vj is in π′. Hence, π′ is a vertex cover of CG(G, π). □

Considering the singleton c-partition of a graph G, we have the following corollaries.
Corollary 3.2. Let G = (V, E) be a graph with singleton c-partition π1. For any
vertex u ∈ V and set U = NG[u], the set U is a vertex cover of CG(G, π1), while
V (G) − U is an independent set in CG(G, π1).
Corollary 3.3. For a graph G with order n, minimum degree δ(G), and singleton
c-partition π1,

α(CG(G, π1)) ≥ n − δ(G) − 1.

We next prove another useful property of graphs and their singleton coalition
graphs.
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Proposition 3.4. Let G be a graph with singleton c-partition π1. If S is an independent
set in G and |S| ≥ 3, then the same set S of vertices is an independent set in CG(G, π1).

Proof. Let S be an independent set in G, with |S| ≥ 3. No pair of vertices in S
dominates G because the pair does not dominate the other vertices in S. Hence,
their corresponding singleton sets in π1 do not form a coalition. It follows that S is
independent in CG(G, π1).

We conclude this section by turning our attention to self-coalition graphs. A graph
G is called γ-excellent if every vertex of G is in some γ-set of G.

Proposition 3.5. If G is a self-coalition graph of order n ≥ 2 and size m, then each
of the following holds:

(a) γ(G) = 2,
(b) G is a γ-excellent graph,
(c) G has exactly m minimum dominating sets,
(d) G is connected,
(e) diam(G) = 2,
(f) 2 ≤ δ(G) ≤ ∆(G) ≤ n − 2.

Proof. Assume that G is a self-coalition graph of order n ≥ 2 and size m. By definition,
G ≃ CG(G, π1).

Since π1 is a singleton c-partition of G, every element of π1 either contains a domi-
nating vertex or is a coalition partner with another singleton set of π1. Hence, γ(G) ≤ 2.
Assume that γ(G) = 1. Then G has a dominating vertex v, and so, v is an isolate
in CG(G, π1). Since G ≃ CG(G, π1), G has an isolated vertex. But it is not possible
for G to have both a dominating vertex and an isolated vertex if n ≥ 2. Thus, G has
no dominating vertex, that is, γ(G) ≥ 2 and so γ(G) = 2. This proves (a). Further,
G has no dominating vertex, so G has maximum degree ∆(G) ≤ n − 2, proving the
upper bound of (f). Moreover, every singleton set of π1 is in a coalition with another
singleton set of π1, implying that every vertex of G is in a γ-set of G and (b) holds.

Note that two vertices are in a γ-set of G if and only if the vertices corresponding to
their singleton sets in CG(G, π1) are adjacent. Thus, the number of edges in CG(G, π1)
is precisely the number of γ-sets of G. Since G ≃ CG(G, π1), G has exactly m γ-sets,
proving (c).

To prove (d), suppose that G is disconnected. Since γ(G) = 2 and every vertex of G
is in a γ-set of G, it follows that G ≃ Kr ∪ Ks for 1 ≤ r ≤ s. But CG(Kr ∪ Ks, π1) ≃
Kr,s, contradicting that G ≃ CG(G, π1). Hence, G is connected.

To prove (e), suppose to the contrary that diam(G) ̸= 2. Since G has no dominating
vertex, G is not complete and so diam(G) ̸= 1, that is, diam(G) ≥ 3. Let u, v ∈ V
where d(u, v) = diam(G). Suppose first that diam(G) ≥ 4. Let u2 be a vertex at
distance 2 from u on a (u, v)-path. Now {u2, x} dominates G for some x ∈ V . But x
must be in N [u] to dominate u and x must be in N [v] to dominate v, a contradiction
since N [u] ∩ N [v] = ∅. Thus, diam(G) ≤ 3. It suffices to prove that diam(G) ̸= 3. Let
A, B, and C denote the sets of vertices at distance 1, 2, and 3, respectively, from u
in G. Note that v ∈ C and none of A, B, and C is empty. By (a) and (b), γ(G) = 2
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and every vertex of G is in some γ-set. Thus, each vertex of B ∪ C must be in a
dominating set of G with a vertex from N [u] = {u} ∪ A to dominate u. But since no
vertex of {u} ∪ A is adjacent to a vertex in C in G, it follows that G[C] is complete
and [B, C] is full in G.

Now consider CG(G, π1). Note that no pair of vertices in B ∪ C dominates u in G,
so the vertices of B ∪ C form an independent set in CG(G, π1). Similarly, no two
vertices of A ∪ {u} dominate G, so A ∪ {u} is an independent set in CG(G, π1). Thus,
CG(G, π1) is a bipartite graph with non-empty partite sets A ∪ {u} and B ∪ C.

Since G ≃ CG(G, π1), it follows that G is bipartite. Thus, G has no odd cycles.
But since G[C] is complete and [B, C] is full in G, this implies that |C| = 1, otherwise
G has a triangle. Thus, C = {v}. Moreover, each of A and B is an independent set
in G. Now in CG(G, π1), uv is an edge since {u, v} dominates G.

If |A| ≥ 2 and |B| ≥ 2, then u is in only one γ-set, namely {u, v} of G and
similarly, v is in only the one γ-set {u, v} of G. Thus, the edge uv is a component of in
CG(G, π1), implying that CG(G, π1) is disconnected since n ≥ 4. But G is connected
and G ≃ CG(G, π1), a contradiction.

Hence, at least one of A and B has exactly one vertex. If both A and B have
cardinality 1, then n = 4 and G is the path P4. But P4 is not a self-coalition graph.
Hence, without loss of generality, we may assume that |A| = 1 and |B| ≥ 2. Let
A = {a}. By definition, the vertices of B are distance 2 from u in G, so a is adjacent
to every vertex of B. Now consider CG(G, π1). If b ∈ B, then in CG(G, π1), the
only neighbor of b is a, implying that CG(G, π1) has at least two vertices of degree 1
since |B| ≥ 2, while G has exactly one vertex, namely u, of degree 1. Again, we have
a contradiction since G ≃ CG(G, π1). Hence, diam(G) = 2, proving (e).

For the lower bound of (f), assume to the contrary that δ(G) < 2. Since G has
order n ≥ 2 and is connected, G has no isolated vertices, so δ(G) ≥ 1. Suppose that G
has a vertex v of degree 1 and let x be the neighbor of v in G. Since G has diameter 2,
every vertex that is not adjacent to v in G must be adjacent to x. But then x is
a dominating vertex in G, contradicting that γ(G) = 2. Thus, δ(G) ≥ 2.

4. PROOF OF THEOREM 2.2

In this section, we prove Theorem 2.2. We begin with two lemmas. For the join
G ≃ F + H, we use the notation V (F ) and V (H) to refer to these sets of vertices in
both G and CG(G, π1).

Lemma 4.1. Let G ≃ F +Kp, for some graph F and p ≥ 3. Then G is a self-coalition
graph if and only if F is a nontrivial self-coalition graph or F is the empty graph Kq,
for q ≥ 3.

Proof. Let G ≃ F + Kp, for some graph F and p ≥ 3. If F is the empty graph Kq

for q ≥ 3, then G is the complete bipartite graph Kp,q, where p, q ≥ 3, and G is
a self-coalition graph by Observation 2.1.

Next assume that F is a nontrivial self-coalition graph. By Proposition 3.5(a),
F has no dominating vertex, so G ≃ F + Kp for p ≥ 3 has no dominating ver-
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tex. Note that γ(G) = 2 and {f, h} is a γ-set of G, for every vertex f ∈ V (F )
and every vertex h ∈ V (Kp). Thus, [V (F ), V (Kp)] is full in CG(G, π1). Moreover,
by Proposition 3.4, any independent set of G having cardinality at least 3 is also an
independent set in CG(G, π1). Thus, V (Kp) is an independent set in CG(G, π1). It
follows that

CG(G, π1) ≃ CG(F, π1) + Kp ≃ F + Kp ≃ G,

and so G is a self-coalition graph.
For the converse, assume that G ≃ F + Kp, for p ≥ 3, is a self-coalition graph.

We must show that F is either a self-coalition graph or F ≃ Kq, for some q ≥ 3.
By Proposition 3.5(a), γ(G) = 2, and so {f, h} is a γ-set of G, for every f ∈ V (F )
and every vertex h ∈ V (Kp). Hence, [V (F ), V (Kp)] is full in CG(G, π1). Moreover,
by Proposition 3.4, any independent set of G having cardinality at least 3 is also an
independent set in CG(G, π1), so V (Kp) is also an independent set in CG(G, π1).

Since G has no dominating vertex, it follows that F has no dominating vertex
and F has order at least 2. If F has order 2, then V (F ) is a γ-set of G, implying
that the vertices of V (F ) are adjacent in CG(G, π1). But then each vertex of V (F ) is
a dominating vertex in CG(G, π1), a contradiction since CG(G, π1) ≃ G and G has
no dominating vertex. Thus, we may assume that F has order at least 3.

If F is the empty graph Kq, then the result holds. Henceforth, we may assume
that F has at least one edge. Since [V (F ), V (Kp)] is full in CG(G, π1) and V (Kp) is
an independent set in CG(G, π1), we deduce that the subgraph induced by V (F ) in
CG(G, π1) has at least one edge. Thus, there exist two vertices x, y ∈ V (F ) such that
{x, y} is a dominating set of G, and hence of F .

Next we show that F has a singleton c-partition. Assume, to the contrary, that
F does not have a singleton c-partition. Then there exists a vertex u ∈ V (F ) that is
not in any dominating set of cardinality 2 of F . Thus, u ̸∈ {x, y}. Moreover, u has
no neighbors in V (F ) in CG(G, π1). Since G ≃ CG(G, π1), there is an isomorphism
ϕ between G and CG(G, π1), ϕ : G → CG(G, π1), such that u′ maps to u under ϕ.
In other words, there is a vertex u′ in G that has no neighbors in V (F ). It follows
that u′ ∈ {x, y}, say u′ = x, and u′ is not adjacent to y in F . Note that u′ ̸= u since
u ̸∈ {x, y}. Then y is adjacent to every vertex in V (F ) − {u′, y}, including u, in G.
Moreover, there are at least two vertices in V (F ) −{u′, y}, otherwise F has a singleton
c-partition.

Under ϕ, there is a vertex y∗ in CG(G, π1) such that ϕ(y) = y∗, that is, y∗ is
adjacent to every vertex of V (F ) except u in CG(G, π1). But since |V (F )| ≥ 4,
y∗ is adjacent to a vertex w ∈ V (F ) − {y∗, u, u′} in CG(G, π1), implying {y∗, w}
dominates G, a contradiction since neither y∗ nor w is adjacent to u′ in G.

Hence, we may assume that F has a singleton c-partition. Since G is a self-coalition
graph, CG(G, π1) ≃ G ≃ F + Kp. Note that any coalition of CG(F, π1) is a coalition
of CG(G, π1). Futher, since [V (F ), V (Kp)] is full in CG(G, π1), and V (Kp) is an
independent set in CG(G, π1), we have

CG(G, π1) ≃ CG(F, π1) + Kp ≃ F + Kp ≃ G.
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It follows that the subgraph of CG(G, π1) denoted by CG(F, π1) is indeed a coalition
graph of F and that CG(F, π1) ≃ F . Thus, F is a nontrivial self-coalition graph.

Lemma 4.2. Let G ≃ F + G2k+1, for some graph F and k ≥ 2. Then G
is a self-coalition graph if and only if F is the empty graph Kq for q ≥ 3 or F
is a nontrivial self-coalition graph.

Proof. First assume that F is a nontrivial self-coalition graph, and consider the
join G ≃ F + G2k+1, for k ≥ 2. Then CG(F, π1) ≃ F , and by Observation 2.1,
CG(G2k+1, π1) ≃ G2k+1. Note that for every u ∈ V (F ) and v ∈ V (G2k+1), {u, v} is
a dominating set of G, implying that [V (F ), V (G2k+1)] is full in CG(G, π1). Moreover,
any coalition of CG(F, π1) is a coalition of CG(G, π1). Thus,

CG(G, π1) ≃ CG(F, π1) + CG(G2k+1, π1) ≃ F + G2k+1 ≃ G.

Hence, G is a self-coalition graph.
For the converse, let G ≃ F +G2k+1, for k ≥ 2, and assume that G is a self-coalition

graph. We must show that F is either the empty graph Kq, for some q ≥ 3, or F is
a nontrivial self-coalition graph. By Proposition 3.5(a), G has no dominating vertex,
which implies that F has no dominating vertex. Using the same arguments used
in the proof of Lemma 4.1, we can show that F has order at least three and that
[V (F ), V (G2k+1)] is full in CG(G, π1). If F is the empty graph Kq for q ≥ 3, then the
result holds. Hence, we may assume that F has at least one edge. Again, the same
argument as in the proof of Lemma 4.1 shows that F has a singleton c-partition. And
by our previous comments,

CG(G, π1) ≃ CG(F, π1) + CG(G2k+1, π1) ≃ CG(F, π1) + G2k+1 ≃ F + G2k+1 ≃ G,

and so CG(F, π1) ≃ F . Thus, F is a nontrivial self-coalition graph, completing the
proof.

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. Obviously, the trivial graph is a self-coalition graph. If G ∈ F ,
then Observation 2.1 together with Lemmas 4.1 and 4.2 show that G is a self-coalition
graph.

In order to prove the converse, we show, by induction on the order n of G, that if
G is an arbitrary nontrivial self-coalition graph, then G ∈ F . One can easily show by
inspection that the only nontrivial self-coalition graphs of order n ≤ 6 are the cycle
C5 = G5 and the complete bipartite graph K3,3. Thus, all self-coalition graphs having
order at most 6 are in F .

Assume that all nontrivial self-coalition graphs of order less than n are in F . Let
G be a self-coalition graph of order n ≥ 2, with vertices V = {u1, u2, . . . , un}. Label
the corresponding vertices of CG(G, π1) the same. It is important to note, however,
that this labeling does not necessarily preserve adjacencies.

By Proposition 3.5, we have that γ(G) = 2, every vertex of G is in a γ-set of G,
and

2 ≤ δ(G) = δ(CG(G, π1)) ≤ ∆(G) = ∆(CG(G, π1)) ≤ n − 2.



Self-coalition graphs 181

Let u be a vertex of minimum degree δ(G) in G, and let U = NG(u) =
{u1, u2, . . . , uδ}. Let X = V − NG[u] = {x1, x2, . . . , xt}. By Corollary 3.2, U ∪ {u} is
a vertex cover of CG(G, π1) and X is an independent set in CG(G, π1), although X
may not be an independent set in G. Consider the set of vertices X in CG(G, π1),
where t = |X| = n − (δ(G) + 1).

If |X| = 1, then since x1 is not adjacent to u in G and x1 must have at least δ(G)
neighbors in G, it follows that NG(x1) = U . Then {u} forms a coalition with every
other set of π1, that is, u is a dominating vertex in CG(G, π1). Since G ≃ CG(G, π1),
G also has a dominating vertex, contradicting Proposition 3.5(a). Thus, we may assume
that t = |X| ≥ 2.

Assume that t ≥ 3. Note that since G ≃ CG(G, π1), we may think of G as being
the singleton coalition graph of CG(G, π1). Since X is an independent set in CG(G, π1)
and |X| = t ≥ 3, Proposition 3.4 implies that X is also an independent set in G. Note
that no vertex in X is in a γ-set with u in G since such a set does not dominate X.
Thus, no vertex in X is adjacent to u in CG(G, π1), that is, X ∪ {u} is independent
in CG(G, π1). Since G ≃ CG(G, π1) and δ(G) = |U |, it follows that every vertex in
X ∪{u} is adjacent to every vertex of U , that is, [U, X ∪{u}] is full in CG(G, π1). Let F
be the subgraph induced by U in CG(G, π1). Therefore, G ≃ CG(G, π1) ≃ F + Kt+1,
where t+1 ≥ 4. By Lemma 4.1, F is the empty graph Kq for q ≥ 3 or F is a nontrivial
self-coalition graph. If F ≃ Kq, then G ≃ Kq,t+1, for q ≥ 3 and t + 1 ≥ 4, and so
G ∈ F . If F is a nontrivial self-coalition graph having order less than n, then, by our
inductive hypothesis, F ∈ F . Therefore, by Rule 3, G ≃ F + Kt+1 ∈ F , and the result
holds for t ≥ 3.

Henceforth, we may assume that t = 2. Thus, G has order n = δ(G) + 3. To
determine the graph G, we consider its complement G. Observe that

∆(G) = n − δ(G) − 1 = δ(G) + 3 − δ(G) − 1 = 2.

Since G has no dominating vertex, G has no isolated vertex, that is, 1 ≤ δ(G) ≤
∆(G) = 2. It follows that every component of G is either a nontrivial path or a cycle.
Note that if Y and Z are the vertex sets of two components of G, then [Y, Z] is
full in G.

We show that G has a component that is an odd cycle C2k+1, for some integer
k ≥ 2, by proving two claims.
Claim 1. Every component of G is a cycle.

Assume, to the contrary, that G has a path component. Among all path components,
let P = (v1, v2, . . . , vm), m ≥ 2, be a shortest path in G. If m = 2, then {v1, v2}
is a γ-set of of G, where each of v1 and v2 dominates every vertex in G − {v1, v2}.
Therefore, the singleton set {v1} is in a coalition with every other singleton set in π1,
implying that v1 is a dominating vertex in CG(G, π1). Since CG(G, π1) ≃ G, G has
a dominating vertex, contradicting Proposition 3.5(a).

Hence, we may assume that m ≥ 3. Observe that for every vertex vi on P in G,
{vi} forms a coalition in G with every other singleton set in π1 except for the vertices
at distance 2 from vi on P . In other words, vi is adjacent to every other vertex of
CG(G, π1) except for the vertices at distance 2 from it on P in G. It follows that
P ′ = (v1, v3, . . . , vw), where w = ⌊(2m + 1)/2⌋, is a path component of CG(G, π1).
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But since G ≃ CG(G, π1), and so G ≃ CG(G, π1), P ′ is a path component of G with
a shorter length than P , contradicting our choice of P . Hence, no component of the
graph G is a path, proving the claim.

As a result of Claim 1, we know that every component of G is a cycle.
Claim 2. G has a component that is an odd cycle.

Assume, to the contrary, that every component of G is an even cycle. Let
C = (x0, x1, . . . , x2k+1, x0), for k ≥ 1, be a component of smallest order among all
such even length cycle components of G. If C = C4, then each of the paths (x0, x2)
and (x1, x3) is a component of CG(G, π1). But since G ≃ CG(G, π1), it follows that
these paths are components in G, contradicting Claim 1.

Hence, we may assume that C has order at least 6. Using an argument similar
to the proof of Claim 1, the vertices in C in G result in two cycle components in
CG(G, π1), namely (x0, x2, . . . , x2k) and (x1, x3, x5, . . . , x2k+1). If these components
are even cycles, then CG(G, π1) has a smaller even cycle than G, contradicting that
G ≃ CG(G, π1). Therefore, both of these cycles have odd length and G has a component
that is an odd cycle.

It follows from Claim 2 that G has a component that is an odd cycle C2k+1 for some
k ≥ 1. If G has exactly one component, then G is the graph G2k+1. Since δ(G) ≥ 2,
it follows that k ≥ 2 and G ∈ F . Thus, we may assume that G has at least two
components and so G ≃ F + G2k+1 for some graph F .

If k = 1, then G ≃ F + K3. Lemma 4.1 implies that F is a nontrivial self-coalition
graph or F is the empty graph Kq, for q ≥ 3. If F is the empty graph Kq, for q ≥ 3,
then G ≃ Kq,3 and G ∈ F . If F is nontrivial self-coalition graph having order less than
n, then by our inductive hypothesis, F ∈ F . Therefore, by Rule 3, G ≃ F + K3 ∈ F .

Hence, k ≥ 2. By Lemma 4.2, F is the empty graph Kq for q ≥ 3 or F is a nontrivial
self-coalition graph. If F ≃ Kq, then G ≃ Kq + G2k+1 ≃ G2k+1 + Kq, for q ≥ 3. Since
G2k+1 ∈ F for k ≥ 2, we have G ∈ F by Rule 3. If F is nontrivial self-coalition graph
having order less than n, then by our inductive hypothesis, F ∈ F . Therefore, by
Rule 4, G ≃ F + G2k+1 ∈ F , completing the proof.

We conclude with the following corollary.
Corollary 4.3. A bipartite graph G is a self-coalition graph if and only if G ≃ Kr,s

for 3 ≤ r ≤ s.
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