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Self-Collimation in Planar Photonic Crystals
Jeremy Witzens, Marko Lončar, and Axel Scherer

Abstract—We analyze, in three dimensions, the dispersion prop-
erties of dielectric slabs perforated with two-dimensional photonic
crystals (PCs) of square symmetry. The band diagrams are calcu-
lated for all -vectors in the first Brillouin zone, and not only along
the characteristic high-symmetry directions. We have analyzed the
equal-frequency contours of the first two bands, and we found that
the square lattice planar photonic crystal is a good candidate for
the self-collimation of light beams. We map out the group veloc-
ities for the second band of a square lattice planar PC and show
that the group velocity is the highest in the region of maximum
self-collimation. Such a self-collimated beam is predicted to show
beating patterns due to the specific shape of the equal-frequency
contours. A geometrical transformation maps the region of the first
and second photonic bands where self-collimation takes place one
onto the other and gives additional insights on the structural simi-
larities of self-collimation in those two bands.

Index Terms—Autocollimation, finite difference time domain
(FDTD), planar photonic crystals, self-collimation.

I. INTRODUCTION

I N recent years, photonic crystals [1] (PCs) have attracted a
lot of attention due to their ability to control the flow of light

on a very small length scale. One class of PCs, planar photonic

crystals [2] (PPCs), represent particularly promising structures

for integrated optics due to the fact that their planar fabrication
allows the use of conventional microelectronics patterning tech-

niques. A PPC is an optically thin dielectric slab perforated with

a two-dimensional (2-D) lattice of holes. Light is confined in the

slab in the vertical direction by means of total internal reflection

and in the lateral direction by distributed Bragg reflection, due
to the presence of the 2-D lattice of holes [3], [4]. Most of the

initial research done on PPC structures was focused on the use

of the photonic bandgap (PBG) of the PC devices, in order to

trap light. It was shown that by creating different types of de-
fects in the PPC it is possible to make lasers [5] and waveguides

[6], as well as coupled photonic devices [7], [8].

On the other hand, there has been a growing interest in the

very interesting dispersion characteristics of PCs [9], [10]. Phe-
nomena like superprism [11] and self-collimation [12] have al-

ready been observed in the case of a three-dimensional (3-D)

”autocloned” PC structure [13]. Recently, there has been an ef-

fort to implement those phenomena in PPCs [14]–[17]. Those
are important results since the fabrication of PPCs [6] allows an

easy integration of different devices on a single chip. The super-

prism effect has been investigated theoretically and experimen-
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tally in PPCs [16], [17] and a paper by Notomi [14] explores the

conceptual framework to understand dispersion in PCs. In this

paper we investigate self-collimation in PPCs and show novel
effects such as beating patterns, as well as the possibility to

transfer a self-collimated beam between two types of PCs with

low distortion and low losses.

II. 3-D FINITE DIFFERENCE TIME-DOMAIN ANALYSIS OF

SELF-COLLIMATION IN A SQUARE LATTICE PPC

The structure that we are considering here is a silicon slab (re-

fractive index ) of thickness and patterned

with a two-dimensional (2-D) square lattice of holes of radius
, where is the periodicity of the lattice. The slab is

surrounded by air on both sides. We have used a three-dimen-

sional (3-D) finite difference time-domain (3-D FDTD) code

[18] to analyze one unit cell of the structure by applying ap-
propriate boundary conditions to the sides of the computational

domain, as indicated in the Fig. 1(a). The discretization used in

our 3-D FDTD algorithm was 30 computation points per lat-

tice period . We have analyzed only one half of the structure
in the vertical direction by applying the mirror boundary condi-

tion at the center of the slab (slab half thickness was

computational points). By choosing the type of mirror symmetry

(even or odd), we could select between TE-like (vertically even)
or TM-like (vertically odd) eigenmodes of the PPC. Mur’s ab-

sorbing boundary conditions [18] were applied at 100 computa-

tional points away from the surface of the slab, yielding a com-

putational domain of cubic cells. More details on

the band diagram analysis of PPCs using the FDTD method can
be found in previous publications [6].

The starting point for the investigation of any PPC-based de-

vice is the calculation of a dispersion diagram for the modes sup-
ported in the PPC. In Fig. 1(b) we show such a band diagram for

the case of a square lattice PPC, obtained by using 3-D FDTD.

The band diagram is calculated only along the high-symmetry

directions in the first Brillouin zone (I BZ), and the light cone is

represented by the gray region. Only the modes that lie outside
the light cone (i.e., below the light line) are guided in the PPC

by total internal reflection, i.e., without any losses other than ab-

sorption, scattering, and imperfect lithography. In other words,

only modes outside the light cone are lossless in the ideal PPC.
We can see that this structure has a small bandgap. However, the

width of the bandgap is not what concerns us here. We instead

hope to find unusual phenomena associated with the difference

between the dispersion diagram of this structure and the disper-
sion diagram of an unpatterned slab. In order to do so, we have

to calculate the full band diagram for all - vectors in the I BZ,

and not only along , XM, and directions [15].

Fig. 2(a) shows such a dispersion diagram for the first two
bands [black circles in the Fig. 1(b)] for all -vectors in the I
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(a)

(b)

Fig. 1. (a) Schematic view of the Si slab patterned with a 2-D square lattice
of holes. External light is incident on the slab at an angle �. Unit cell of the PC,
with boundary conditions used in the 3-D FDTD calculation, is also indicated.
(b) Band diagram for TE-like (vertically even) modes of the square lattice PPC.
The gray region represents the light cone. Inset shows high-symmetry points in
the first Brillouin zone.

Fig. 2. (a) The dispersion, !(k), relation (band-diagram) for the first two
bands of the square PPC, calculated for all k-vectors in the first Brillouin zone.
The light cone is represented as unshaded mesh. (b) The equifrequency contours
for the first and (c) second bands. The vectors represent the gradient of frequency
as the function of k and k (group velocity).

BZ. The band diagram was calculated from 325 equally spaced

points in 1/8 of the I BZ [shaded region in the inset of the

Fig. 3. The dispersion of the first two bands supported in the unpatterned
Si slab. The light cone is represented as unshaded mesh. The equifrequency
contours in the case of unpatterned slab are circles (shown for a=� = 0:2774,
0.3041, 0.3309.) since all in-plane directions are equivalent.

Fig. 1(b)], the data was then fitted using polynomial of the fifth

order, and finally mapped into the entire I BZ. The light cone

is represented by the unshaded mesh. From Fig. 2(a), we con-
clude that the first band is below the light cone (guided) in

the whole frequency range, while the second band is guided

only for normalized frequencies . Furthermore,

the 2nd band is almost flat and therefore light in that frequency
range will be slowed down significantly. In Fig. 2(b) and (c), we

plot the equifrequency contours of the first and second bands.

is indicated by vectors along the equifrequency contours.

Those vectors are oriented toward the point in the case of the

second band—an indication that the band is folded back into
the first Brillouin zone. In addition, equifrequency contours of

the second band are almost perfect squares in the frequency

range where the second band is guided. This is very different

from the unpatterned Si slab, where equifrequency contours of

the guided modes are circles [Fig. 3]. This modification of the
equifrequency contours from circles to squares leads to colli-

mation-like effects in privileged directions ( ). We describe

below this collimation effect that is intrinsic to this photonic

crystal and is called self-collimation.

In Fig. 4(a), we again show equifrequency contours of the
second band of the square lattice PPC but this time only for fre-

quencies that lie outside the light cone— .

The light cone, for , is represented by a dashed

circle. It can be seen that the equifrequency contours can be ap-
proximated by squares for . The energy of

the excited mode will propagate with a group velocity that can

be calculated as

(1)
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(a) (b)

Fig. 4. (a) The equifrequency contours of the second band of a square
lattice PPC. Only the region outside of the light cone is shown [
a=� 2 (0:273; 0:306)]. The light cone, for a=� = 0:306, is represented by
the dashed circle. The light of frequency a=� = 0:3 is self-collimated and
propagates in the direction (in the real space) indicated by the gray color. (b)
Equifrequency contours of the unpatterned Si slab are circles. Light diverges
at the angles shown in the gray color.

It is useful to reformulate this equation in terms of normalized

frequency and normalized -vector ( ), as band dia-

grams are usually shown in those dimensionless units.

. The direction of propagation (in the real space)

will be perpendicular to the equifrequency contour (in -space).

Therefore, if we consider light incoming from an unpatterned
slab onto a PPC with a range of -vectors so that is between

and [Fig. 4(a)], light in the PPC will propagate along the

-axis direction ( ), as indicated by the gray color in Fig. 4(a).

In other words, the light beam in the PPC can be self-collimated.

This property of square PPCs is entirely due to the fact that
equifrequency contours for the second band look like squares.

In contrast to the PPC case, equifrequency contours of an un-

patterned Si slab are circles [Fig. 4(b)]. When such a slab is ex-

cited with a range of components, light in the slab diverges,
as schematically indicated by the gray region in Fig. 4(b).

We consider a PC with a cleaved edge along the plane

and a light beam incident on the edge with an angle [Fig. 1(a)].
In our previous analysis we assumed that, for a given frequency,

is within one of the horizontal sides of the equifrequency

“squares” [Fig. 4(a)]. However, the component in the PC is

determined by the wavelength of the incident light as well as the
angle of incidence [Fig. 1(a)]. Therefore, we have to find the

range of for which our assumption is valid. For an unpatterned

slab, the relation between and would be given by Snell’s

law, i.e., simply the conservation of the transverse -vector com-
ponent ( ). In the case of an interface with a PC, is only con-

served modulo the reciprocal lattice basis vectors (the transverse

component of all generated harmonics are of the form

where is the transverse -vector component of the incoming
beam, is an integer, and ). Indeed, at the air–Si in-

terface, is conserved, but multiple reflections in between the

air holes and between the air holes and the PC edge complicate
the problem. However, since the PC is a periodic structure, it

conserves modulo the reciprocal lattice basis vectors. Thus,

neither the air–Si interface at the PC edge nor the multiple re-

flections between air holes can introduce Fourier components
other than those that belong to the Bloch mode indexed by the

transverse -vector component. In other words, is conserved

in the first Brillouin zone.

In our case, the boundary is in the plane, and there-
fore and are conserved. can be expressed as

. In order for to belong to a horizontal side

of an equifrequency square, it has to satisfy , where

is the normalized length of the side of the square minus
the rounded corners and is a function of normalized frequency.

Combining these two expressions, we obtain

(2)

We will show that if the equifrequency contours were perfect

squares, inequality (2) would be verified for all equifrequency
contours below the light cone. We call the projection of the

corner of the square on the axis. Then the range of com-

ponents corresponding to self-collimated Bloch modes propa-

gating in the direction spans . Because the equifrequency
contour is assumed to be a perfect square, is equal to the dis-

tance between the origin of the plot and the center of the side

of the square . Because the equifrequency contour is

below the light cone,

(3)

Inequality (2) is then satisfied for any angle . That is, for any in-

cident angle, light in the frequency range

can be self-collimated within the PPC and propagate along the
-axis direction (in real space).

However, this would only be true if the equifrequency con-

tours were perfect squares. Since the equifrequency squares are

rounded at the corners, we have to assume a more conservative
value for [Fig. 4(a)]. Then, the

left-hand side of (2) becomes

(4)

and . Therefore, the square lattice

PPC acts as a self-collimator for incident angles and

. The amount of light that is coupled into

the slab depends on the incident angle. Also, the group velocity
of a PC Bloch mode depends both on the normalized frequency

and on the -vector and is calculated to be in the range

( is the speed of light in vacuum) for

and .
In order to verify the predictions that self-collimation is pos-

sible in a square lattice PPC, we have used a 3-D FDTD mod-

eling on such a structure. Fig. 5 shows the field evolution (

component) in an unpatterned (a) and patterned [(b) and (c)] Si
slab. The structures were excited with a dipole source placed at
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(a) (b) (c)

Fig. 5. Evolution of the B component of the EM-field excited in the (a) unpatterned slab and (b), (c) slab patterned with a square lattice PPC. The figure in (c)
has been rotated and rescaled to show structural similarities between self-collimation in the first and second bands. Structures were excited with dipole sources
(with E component) at frequencies (a) a=� = 0:295, (b) a=� = 0:295, and (c) a=� = 0:2086. Self-collimation can be observed in case (b) as predicted. In
this case, light is radiated predominantly along �X directions and correspond to modes of the second band. Radiation in y-axis direction is stronger because the
structure was excited with E field only. In case (c), light is radiated mostly in the �M direction and corresponds to modes of the first band.

the center of the slab. In the case of the unpatterned slab, the
characteristic dipole radiation, with spherical wavefronts, is ob-

served [Fig. 5(a)]. The PPC structure shown in Fig. 5(b) was

excited with a dipole source with a frequency ( )

chosen to be in the frequency region of the second band where
equifrequency contours are squares [Fig. 4(a)]. Because of that,

it is expected that light is radiated predominantly in the four

directions, that are perpendicular to the four sides of the

equi-frequency “squares.” Indeed, the 3-D FDTD simulation of

the structure [Fig. 5(b)] shows such a behavior. We conclude
that the square lattice PPC has modified the radiation pattern

of the dipole source in the way predicted by the above anal-

ysis of equifrequency contours. It is also important to notice

that this interesting phenomena is taking place outside the light
cone. Therefore, the light is self-collimated as it propagates in

the ideal PPC without any losses. Self-collimation can also be

obtained by exciting the first band, this time light propagates in

the direction, as shown in Fig. 5(c). This figure has been
rotated by 45 and rescaled by in order to show struc-

tural similarities between self-collimation in the first and second

bands.

In summary, based on a 3-D FDTD analysis, we have found a
range of parameters, PC geometry as well as frequency and inci-

dent angle of light, for which self-collimation can be observed.

The next section is dedicated to phenomena that are more com-

putationally intensive to explore. To this purpose, we first show
that it is possible to adequately simulate self-collimation in a

PPC through 2-D FDTD simulations. We then proceed with a

more detailed analysis of equifrequency contours and validate

our conclusions with corresponding 2-D FDTD simulations.

III. EXTENSIVE ANALYSIS OF SELF-COLLIMATION BASED ON

2-D FDTD

We have further extended our analysis based on the full dis-

persion diagram of a 2-D square lattice PC, here again obtained

through the FDTD simulation of a unit cell. Because of the sig-

nificantly less time-intensive calculations, we could achieve a

much finer frequency resolution. We use the band diagram ob-

tained through 2-D FDTD to set up 2-D simulations of self-col-

limated beams over much larger areas than was possible with

the 3-D simulations and show phenomena that can only be seen

after a long propagation distance. We increase the number of

time steps per simulation to 2 and map 630 equally spaced

points in the irreducible Brillouin zone. The discretization is 45

points per lattice period, amounting to 2025 points per unit cell.

A. Applicability of a 2-D FDTD Analysis to PPCs

In order to accurately predict the frequencies of the bands of

a PPC 3-D structure using 2-D calculations, it is desirable to

use the effective index method in a 2-D simulation [Fig. 6(a)].

However, we find that there is a tradeoff between minimum dis-

tortion of the shape of the bands ( ) and best overall

frequency overlap ( ). It can be seen that while the

bands resulting of an effective index of 2.7 are roughly in the

same frequency range as the bands of the 3-D PPC of index 3.5,

their shape is highly distorted. Therefore, we propose an alter-

native method in which the same index is used as in the 3-D

case ( ), resulting in minimally distorted bands, and then

constant frequency offset is added [Fig. 6(b)]. A constant nor-

malized frequency offset of 0.0533 results in the best overlap be-

tween 2-D and 3-D calculations. For normalized frequencies be-

tween 0.15 and 0.35, there is a very close overlap. We conclude

that we can adequately predict the self-collimation or the super-

prism behavior of the PPC through 2-D simulations by adding

a constant frequency offset. In the following two sections, 2-D

FDTD simulations were used for this purpose. In order to relate

it to a 3-D PPC, the frequency offset must be added to all re-

ported frequencies.

B. Group Velocity and Group Velocity Dispersion

The maximum group velocity in the second band is calculated

to be 0.276 times the speed of light and is reached in the region

of strong self-collimation, where the equifrequency contours are

squares with maximally flat sides [Fig. 7]. This region also cor-

responds to a local minimum of the group velocity dispersion

(GVD), as the group velocity goes through its maximum value.

Thus, a self-collimated beam in that regime (minimum spatial

pulse dispersion) would also have maximum group velocity and
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(a) (b)

Fig. 6. (a) The band-diagram for TE-like (vertically even) modes of the square lattice PPC with index 3.5 (dots) and the TE modes for the 2-D square lattice
PC (circles) with an effective index of 2.7. (b) The band diagram for TE-like modes of the square lattice PPC with index 3.5 (dots) and the TE modes for the 2-D
square lattice PC (circles) with an index of 3.5 and an added frequency offset of 0.0533.

Fig. 7. The equifrequency contours of the second TE-like band (dashed lines)
and the isocurves for group velocity (continuous line). The group velocity is
given in a fraction of the vacuum speed of light. The contours of constant group
velocity are ragged because they correspond to the numerical differentiation of
the raw data.

minimum GVD (temporal pulse dispersion). This is for a nor-

malized frequency and a normalized -vector

in the direction. It correspond to an effec-

tive index of 1.096, thus, if this PC mode had the same - in

the 3-D PPC, it would be below the light cone. However, in the

case of a 3-D planar photonic crystal, the frequency is shifted

up (in the case of the PPC analyzed in the previous section by

0.0533). This mode is then situated inside the light cone and is

leaky. That is why in the 3-D analysis the maximum for non-

leaky modes was found to be 0.25 instead of 0.276 predicted by

2-D calculation. In other words, in a PPC as described in the

above section, we need to use a nonoptimum mode in terms of

GVD, maximizing and strongest self-collimation in order to

stay below the light cone or we would have to accept a finite

amount of losses because of leaky modes. In order to make a ra-

tional design decision, those losses need to be further evaluated.

As those modes remain close to the boundary of the light cone,

and most of the power of those modes is contained in higher

order harmonics that are outside the light cone, losses could be

relatively low.

In the fiber optics literature, the GVD is given by as

(5)

The pulse broadening (time) is given by

(6)

where is the propagation distance and is the pulsewidth

in . We multiplied by the propagation time in order

to get the pulse broadening in units of distance, then we divided

by to get the pulse broadening in units of time. In terms of

the pulsewidth (time) is given by

(7)

where is correctly defined because in a fiber.

However, in a PC and in the case of self-collimation, depends

both on and on the specific -vector on the equifrequency

contour. We can define a similar parameter in the case of a PC by

defining as the group velocity for the center point of the

side of the squarish equifrequency contour, i.e., for the central

-vector of the beam. Then

(8)

We take the gradient of the group velocity by , project the

gradient on the energy propagation direction by taking the scalar

product with , and divide by to convert the derivative

by in a derivative by . Again, this derivative is only defined

because we take a particular . We then define as

(9)

(10)

then gives the broadening for a pulse consisting of Bloch

modes with a range of ’s, but with . There is a second
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(a) (b)

(c)

Fig. 8. Isocurves for � =a � c (dimensionless normalized units) for the second band of a square lattice PC with r=a = 0:3. The group velocity calculated
previously was smoothed before further differentiation. (a) Isocurves for � =a � c from 0 to 10 (dimensionless normalized units) and (b) isocurves for � =a � c
from 10 to 100. (c) A 3-D plot of the same data, for better visualization.

temporal pulsewidth broadening mechanism that must be taken

into account. It is due to the change of group velocity of compo-

nents of the same frequency, but with different -vectors. This

time we must take into account the component of that is

transverse to the direction of propagation, . Then the

pulse broadening is given by

(11)

where is the transverse range of the pulse. The total

pulse broadening is then smaller than

(12)

(13)

This formula is suboptimum in that it assumes the maximum

gradient for the GVD in both the and directions, but it has

the merit to give a scalar to characterize GVD (instead of a 2 by

2 matrix). We than redefine as

(14)

As shown above, the group velocity is a function of normal-

ized frequency and normalized -vector, but is not. Thus,

is dependent on the scaling of the PC, but is independent

of the lattice parameter (Fig. 8).

C. Beating Patterns

Because the equifrequency contours are squares with rounded

corners and slightly concave sides, the group velocity has a

small angular divergence from the normal to the side of the

square, which leads to limited diffraction. There are only three

points along each side with a group velocity exactly perpendic-

ular to the side of the square [Fig. 9]. If we excite a self-col-

limated beam with a wide enough range of -vectors to cover
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Fig. 9. Zoom on one of the sides of the equifrequency contour’s “square” at
normalized frequency 0.2596. The arrows indicate the k-vectors for which the
group velocity is perfectly aligned to the y axis.

all of those three Bloch modes and all the Bloch modes in be-

tween, we expect the self-collimated beam to be dominated by

those three components after a finite propagation distance. This

can, for example, be achieved with a dipole source, a narrow

waveguide, or a light spot from a lens with high numerical aper-

ture. On the other hand, a collimated Gaussian beam from free

space will have a narrow range of -vectors, so that at most

one of the three perfectly collimated Bloch modes will be ex-

cited. This is important, because in the first case interference

between the three main components will create an interference

pattern, while in the latter there will be no such pattern. We ver-

ified this by taking the spatial Fourier transform of the field in

a region of periods, centered around the self-collimated

beam ( ) after propagating for 400 periods. The

self-collimated beam was excited by a dipole source centered

on one of the holes. The three perfectly collimated components

are strongly dominant [Fig. 10].

The central component has a slightly smaller value of than

the two other components. Thus, we expect to see a beating

pattern due to along the direction of propagation ( ). To

test this, we propagated a self-collimated beam of normalized

frequency 0.2596 (distributed 2-D FDTD). We could observe a

beating pattern with a beating length of about 1000 lattice pe-

riods (this corresponds to , for a

of 0.0093 taken from the equifrequency contour). In order to

confirm that the beating length can be related to , we propa-

gated a self-collimated beam of and found a beating

length of 133 periods (this corresponds to

for a of 0.057 taken from the equifrequency contour).

We also observed in both cases the appearance of side lobes.

(The beating lengths reported above are unambiguously defined

by the intensity profile at the center of the self-collimated beam.)

This is a transverse interference pattern due to the different

of the three perfectly collimated components. The transverse in-

terference pattern can only be seen if the self-collimated beam is

wide enough after significant broadening. As the continuum of

Bloch-modes that give the continuum of components respon-

sible for the finite beam width converges to the superposition of

three discrete modes, the beam broadens ( ) and

an interference pattern emerges. In the case of ,

this interference pattern has a width of and in

the case of a width of . A tiling

pattern is generated by the simultaneous effect of both interfer-

ences, beating along the direction of propagation and transverse

interference pattern. Because , the beating length in

the direction is much larger than the period of the transverse

interference pattern and the overall effect is one of a comb of

(a)

(b)

Fig. 10. (a) The spatial Fourier transform of a self-collimated beam at
normalized frequency 0.2596 after 30 periods and (b) after 400 periods.
Three discrete components become dominant. The equifrequency contours are
overlaid.

side lobes that offsets by half the period of the transverse inter-

ference pattern every half longitudinal beating length. Fig. 11

shows the emerging lateral interference pattern as well as the

longitudinal beating. In order to correctly resolve the side lobes,

very wide PCs must be simulated. Because of computational

limitations we changed the discretization to 22 points per unit

cell for this calculation. This computational change introduced

a 1% frequency down shift of the bands (0.003 in units of nor-

malized frequency) around . Because the beating

length changes as , and approaches zero, the beating

length is very sensitive to frequency in this region.

It is important to take this beating into account if self-collima-

tion is to be used in real devices. For example, if the self-colli-

mated beam is to be coupled out to a waveguide, it is important

to know that the field might have a minimum at the center of

the self-collimated beam. Moreover, a self-collimated beam is

not like a waveguide mode that propagates unchanged down a

waveguide. The analogy would hold only for a self-collimated

beam corresponding to a perfectly flat equifrequency contour.
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(a) (b)

Fig. 11. (a) Self-collimated beam (a=� = 0:2596) after different propagation distances (top down: 30, 80, 130, 180, 230, 280 and 330 lattice periods). The
self-collimated beam broadens and a beating pattern appears. (b) Self-collimated beam (a=� = 0:25) after 220 lattice periods propagating down. The beating
pattern and the transverse interference pattern are clearly seen: the comb of lobes correspond to the transverse beating pattern, the offset of the comb between the
top and the bottom of the picture is due to the longitudinal beating. If a vertical line is drawn in the center of the figure, the intensity profile corresponds to beating
in the common terminology. Light on the sides of the beam corresponds to weakly self-collimated light that disperses out of the beam. Because of the broadening
of the beam, there are more lobes on the lower end of the picture. For both (a) and (b) we took 22 computation points per unit cell.

However, because the equi-frequency contours are only approx-

imately flat, a diffraction-limited length limits self-collimation

for a practical device.

So far we have analyzed self-collimation in the second band

of a square lattice PPC. However, light can also be self-colli-

mated in the first band of a square lattice PC, but in the

direction this time. In the next subsection, we will show that a

self-collimated beam can even be transmitted from the first band

to the second band with low losses and low distortion. We will

investigate structural similarities (in reciprocal space) between

self-collimation in the first and second bands.

D. Comparative Analysis of Self-Collimation in the First and

Second Bands

The first and second bands of a square lattice PPC seem to

have very different structures. Indeed, the group velocity points

out of the equifrequency contours in the first band, while in the

second band it points inside. Also, self-collimation takes place

in the direction in the first band and in the direction in

the second band. However, we can show that the two bands are

related by a simple transformation, consisting of a 45 rotation

and a rescaling. In particular, the regions where self-collima-

tion takes place, where the sides of the equifrequency contours

are flat, have the same structure in both bands. Indeed, the re-

ciprocal space transformation maps those two regions one onto

another, except for a slight frequency offset (0.007 in units of

normalized frequency).

In order to show this we will introduce a second PC (PC2),

that is in fact the same PC rescaled and rotated, and show sim-

ilarities between the two PCs. The transformation in real space

that maps PC1 on PC2 is the real space equivalent of the in-

verse space transformation mentioned previously. By showing

that the second band of PC1 overlaps with the first band of PC2,

we show that the second band of a square lattice PPC has the

same structure as the corresponding zone of the first band.

We define the second PC 2 (PC2) as a square lattice 2-D PC

with lattice constant (where a is the lattice period of pho-

tonic crystal 1), hole radius (where is the hole radius

of PC1), and with a lattice rotated by 45 in respect to photonic

crystal 1 (PC1). is conserved, the bands of PC2 are obtained

by rotating the bands of PC1 by 45 and the bands are rescaled

according to (15) and (16). The real space dimensions have also

been rescaled by , ant therefore the -vectors are rescaled

by . The area of the first Brillouin zone of PC2 is then twice

the area of the 1st Brillouin zone of PC1 [Fig. 12(b)]. It con-

tains both the first Brillouin zone and the second Brillouin zone

of PC1 (the second Brillouin zone of PC1 is composed by the

four“corners” of the Brillouin zone of PC2)

(15)

(16)

From here on, the first and second Brillouin zones will refer

to the first and second Brillouin zones of PC1. We can see from

Fig. 12(a) and (b) that the second band of PC1 overlays onto

the first band of PC2 in the second Brillouin zone. We can also

see from Fig. 12(c) that the first band of PC1 overlays with

the first band of PC2 in the first Brillouin zone. This is further

illustrated by Fig. 12(c), that shows the first and second bands
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(a)

(b)

(c)

Fig. 12. Equifrequency contours of (a) the second band of PC1 and of (b)
the first band of PC2 and unit cells (insets). The dashed line in (b) shows the
first Brillouin zone of PC2. The shaded region corresponds to where the band
structures differ, and the white region to where they are the same. (c) The first
and second bands of PC1 (dots) and the first band of PC2 (circles). The first
band of PC2 is folded back into the first Brillouin zone of PC1. The labels X
and M refer to the high symmetry points of PC1 (the labels would need to be
interchanged for PC2, that has been rotated). The band structures of the two
photonic crystals are very close other than in the frequency domain around the
bandgap.

of PC1 (dots) and the first band of PC2 (squares) folded back in

the first Brillouin zone of PC1. The only frequency region where

the two band structures strongly differ is along XM direction of

PC1.

As already mentioned, the structural similarities between PC1

and PC2 arise from structural similarities between the first and

second bands of PC1. The transformation from PC1 to PC2 is

the real space equivalent to the transformation from the first to

the second band. One of the consequences of this structural simi-

larity is that a beam self-collimated in the first band with normal-

ized frequency will show exactly the same beating pattern

as a beam self-collimated in the second band with normalized

frequency , modulo a 45 rotation and a rescaling.

There is a slight frequency offset as PC1 and PC2 overlay

closely, but not perfectly. The equifrequency contour cor-

responding to the second band of PC2 at

overlays the equifrequency contour of the first band of PC1

at (2.7% offset). We can compensate this

frequency offset for by using a hole radius of

for PC2 instead of . In the

following discussion this hole radius compensation is applied.

We compare the width of a beam of normalized frequency

, self-collimated in the second band of PC1

( ), with the width of a beam of normalized frequency

, self-collimated in the first band

of a PC of same lattice period a and with . The

beams are excited by a dipole source predominantly radiating

in ( ) and the ( ) directions

and located in the center of one of the holes. The respective

rms of the beams [(17)] are and ,

respectively

(17)

rms

rms
(18)

The ratio between the beam widths [(18)] could lead to

the erroneous conclusion that self-collimation is significantly

stronger in the second band. However, if a beam of normalized

frequency were to be self-collimated in the

second band instead of the first, the PC would need to be

rescaled to a lattice constant of , rescaling the rms by

at the same time. Collimating a beam in the first band is thus

similar to collimating a beam in the second band. However it is

easier to fabricate a PC so that a given frequency is self-colli-

mated in the second band, as the lattice constant is times

larger, requiring less demanding lithography. These conclusions

can also be applied to a 3-D photonic crystal: in Fig. 5, we

showed a self-collimated beam in the 2nd band at

and in the first band at .

The second practical consequence is that a self-collimated

beam can be transmitted almost undistorted between photonic

crystals of type 1 and type 2, and PC1 and PC2 have a lattice

matched interface, as shown in Fig. 14. As they have the same

band structure in the second Brillouin zone of PC1, we could

be tempted to conclude that they have similar Bloch modes, and

thus a good interface. However, this is not necessarily true, since
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(a)

(b)

Fig. 13. (a) Spatial Fourier transform for a Bloch mode of PC1 and (b) for
the mode of PC2 that has approximately the same normalized frequency and
k-vector in the second Brillouin zone of PC1. Equifrequency contours in the
normalized frequency range 0.22 to 0.31 (second band of PC1) are overlaid.
It can be seen that the Bloch mode of PC1 differs from the Bloch mode of
PC2 in that it has components in the first Brillouin zone of PC1, however those
components only make up a small fraction of the power in the Bloch mode.

Bloch modes have more than one spatial Fourier component (see

Fig. 13). They are indexed by the Fourier component inside the

first Brillouin zone, but have Fourier components shifted from

the ”base” component by an integer number of reciprocal lattice

basis vectors ( , where and are integers,

, are the real space lattice vectors and

). This results from the general form of a Bloch

mode given as

(19)

where has the same periodicity as the PC (period

in and in ) and indexes the photonic band. Because of this

periodicity, the Fourier transform of has only com-

ponents in and in

(20)

(21)

Thus, having the same - in one Brillouin zone is not suf-

ficient for comparison. Modes of PC1 and PC2 with the same

-vector in the second Brillouin zone (of PC1) will differ in the

first Brillouin zone. The PC1 mode will have a Fourier compo-

nent in the first Brillouin zone of PC1 while the PC2 mode will

not. Both the first and second Brillouin zone of PC1 are within

the first Brillouin zone of PC2, thus a Bloch mode of PC1 has

two harmonics in the first Brillouin zone of PC2, while PC2 has

only one. However, the ratio between the power in the Fourier

component in the first Brillouin zone and the power in the har-

monic in the second Brillouin zone was calculated to be 0.057

for a typical self-collimated mode of PC1 (second band). This

means that even though modes of PC1 have harmonics in the

first Brillouin zone of PC1 and equivalent modes of PC2 have

not, this difference only includes a very small fraction of the

total power in the mode. A similar analysis has already been re-

ported for PC waveguides [19], [20].

It is interesting to notice that the energy of the Bloch mode

propagates in the opposite direction than the -vector corre-

sponding to the small Fourier component in the first Brillouin

zone. Because the mode is referenced by this -vector, the group

velocity is negative in a formal way. However, it can be seen that

this has no real physical meaning as most of the power of the

Bloch mode is contained in harmonics with -vectors that point

in the same direction as the group velocity.

We did not conduct a quantitative analysis of what happens

to the power contained in the weak harmonic in the first Bril-

louin zone of PC1. However it is interesting to note that it has

the same component ( -vector component transverse to the

interface) as the dominant harmonics, and as such as the har-

monics of the Bloch mode in PC2. If we consider PC1 and PC2

as metamaterials with a boundary problem, conservation of the

transverse -vector component ( ) is not contradictory to the

transmittance of the weak component. Of course this is only a

qualitative analogy as PC1 and PC2 are mesoscopic structures.

Next, we simulated a beam propagating from crystal 1 to a

crystal of type 2. At the junction between PC1 and PC2, we

introduced an extra line defect that optimized the

rms of the self-collimated beam in PC2 after crossing the inter-

face. We found that in the best case the rms after the interface

was 1.07 times the rms before the interface (surprisingly this

is a smaller beam width than for a beam directly excited by a

dipole under the above conditions) and that 94% of the power

was transmitted. For a PC with slightly larger holes and an open

bandgap, this can provide a low-loss interface away from the

bandgap combined with the possibility to use the bandgap in

a reflector configuration. The interface between those two PCs

could be generalized to triangular lattice PCs by using a 30 ro-

tation and by rescaling the lattice period by .

IV. CONCLUSION

We have conducted a 3-D analysis of self-collimation and
gave a range of parameters that make it possible to experimen-
tally explore self-collimation in a planar photonic crystal. We



1256 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 8, NO. 6, NOVEMBER/DECEMBER 2002

(a) (b)

Fig. 14. (a) Self-collimated beam at frequency a=� = 0:2596 that propagates from PC1 (r=a = 0:3) to PC2 (r = 0:322=
p
2a). (b) rms of the self-collimated

beam in PC2 after crossing the boundary, after crossing the boundary. The rms of the beam is normalized by the rms before the interface.

showed how a 2-D analysis could be used to reproduce results
from 3-D PPCs by using a 2-D calculation with a frequency
offset. For the PC investigated in this paper, optimum self-col-
limation was found to take place inside the light cone and, thus,
in an intrinsically lossy region. In-depth analysis of self-col-
limation, based on analysis in the reciprocal space, was per-
formed. We showed the occurrence of beating patterns and beam
broadening that must be taken into account when designing de-
vices based on self-collimation. Finally we showed that it is
possible to make a low-loss interface between two square lat-
tice PCs with different orientations, again achieved by matching
the Bloch modes in reciprocal space. We suggested that this
interface might be used in integrated optics in order to build
multifunctional PBG structures. In a future publication, we will
address a way to interface self-collimation-based devices with
more conventional integrated optics.

ACKNOWLEDGMENT

The authors would like to acknowledge T. Baehr-Jones from

Luxtera, Inc., for the development of the distributed 3-D FDTD

code and to thank Luxtera, Inc., for making computing power

available.

REFERENCES

[1] E. Yablonovitch, “Inhibited sponaneous emission in solid-state physics
and electronics,” Phys. Rev. Lett., vol. 58, pp. 2059–2062, 1987.

[2] T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional pho-
tonic-bandgap structures operating at near infrared wavelengths,” Na-

ture, vol. 383, pp. 692–702, 1996.
[3] S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L.

A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev.

B, vol. 60, pp. 5751–5758, 1999.
[4] D. Labilloy, H. Benisty, and C. Weisbuch et al., “Quantitative mea-

surement of transmission, reflection, and diffraction of two-dimensional
photonic band gap structures at near-infrared wavelengths,” Phys. Rev.

Lett., vol. 79, p. 4147, 1997.

[5] O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brian, P. D. Dapkus,
and I. Kim, “Two-dimensional photonic band-gap defect mode laser,”
Science, vol. 284, pp. 1819–1821, 1999.

[6] veguiding in planar photonic crystalsM. Lončar, D. Nedeljković, T. Doll,
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