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Abstract This paper discusses self-concordant functions on smooth manifolds. In
Euclidean space, such functions are utilized extensively as barrier functions in interior-
point methods for polynomial time optimization algorithms. Here, the self-concordant
function is carefully defined on a differential manifold in such a way that the properties
of self-concordant functions in Euclidean space are preserved. A Newton decrement is
defined and analyzed for this class of functions. Based on this, a damped Newton algo-
rithm is proposed for the optimization of self-concordant functions. Under reasonable
technical assumptions such as geodesic completeness of the manifold, this algorithm
is guaranteed to fall in any given small neighborhood of the optimal solution in a finite
number of steps. The existence and uniqueness of the optimal solution is also proved in
this paper. Hence, the optimal solution is a global one. Furthermore, it ensures a qua-
dratic convergence within a neighborhood of the minimal point. This neighborhood
can be specified in terms of the Newton decrement. The computational complex-
ity bound of the proposed approach is also given explicitly. This complexity bound is
shown to be of the order O(− ln(ε)), where ε is the desired precision. Some interesting
optimization problems are given to illustrate the proposed concept and algorithm.
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1 Introduction

Self-concordant functions play an important role in the powerful interior-point poly-
nomial algorithms for convex programing in Euclidean space. Following the work of
Nesterov and Nemirovskii [1], many articles have been published using this type of
function to construct barrier functions for interior-point algorithms. For example (see
[2,3]). The idea of interior-point methods is to force the constraints of the optimi-
zation problem to be satisfied using a barrier penalty function in a composite cost
function. This barrier function is relatively flat in the interior of the feasible region
yet approaches to infinity in approaching the boundary. As the coefficient of the bar-
rier function in the composite cost function converges to zero, the minimal point of
the composite cost function converges to that of the original minimization problem.
Self-concordant functions are a class of functions such that the third-order derivative
is bounded by the cube of the square root of the second-order derivative, possibly
with a constant scaling factor. The main advantage of using such a class of functions as
barrier functions is that the computational complexity of the minimization problem
of the constructed composite function is very low so that the original minimization
problem can be solved in an amount of time that is a polynomial of the required
precision.

The notion of a self-concordant function has deep roots in geometry. In [4], it
is shown that a Riemannian metric can be rendered by a self-concordant barrier
function. Such a metric gives a good explanation of the optimal direction for optimi-
zation algorithms. As such, it can provide guidance for the construction of efficient
interior-point methods. In this aspect, the optimal path is along a geodesic defined
by the Riemannian metric. This path is not a straight line in Euclidean space. In-
deed, optimization problems in Euclidean space can often be better understood with
the structure of appropriately associated Riemannian manifolds (see [5] for many
meaningful examples).

In fact, many optimization problems can also be better posed on manifolds rather
than in Euclidean space. For example, optimization problems associated with orthog-
onal matrices, such as algorithms for the computation of eigenvalues and singular
values, or Oja’s flow in neural network pattern classification algorithms (see [5–8]),
to list a few. On the other hand, optimization methods such as the steepest de-
scent method, the Newton method, and other related methods can be extended to
Riemannian manifolds (see [5,6,9]). It is natural to ask, what are the self-concordant
functions and the associated interior-point methods on manifolds? Such a ques-
tion can be justified by practical importance or by theoretical completeness. The
self-concordant concept has been applied in [10] with analysis restricted to a loga-
rithm cost function optimized on a manifold. However, polynomial complexity is not
available in that case. In this paper, we will give a useful definition of a self-concordant
function on a manifold and give a thorough study of such.

One of the advantages of solving minimization problems on manifolds is, as pointed
out in [6], the reduction of the dimensions of the problems, compared to solving the
original problems in their ambient Euclidean spaces. A typical intrinsic approach for
minimization is based on the computation of geodesics and covariant differentials,
which might be expansive. However, there are many meaningful cases where the
computation can be very simple. One of the examples is the real compact semisimple
Lie group endowed with its natural Riemannian metric. In such a case the geodesic
and parallel transportation can be computed by matrix exponentiation, whose rich
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set of nice properties provide convenience in analysis and development of efficient
algorithms (see [6,11]). Many particular classes of minimization problems in this cat-
egory such as those on Orthogonal groups or Stiefel manifolds are studied in [5].
Another simple but non-trivial case is the sphere, where the geodesic and parallel
transportation can be computed via trigonometric functions and vector calculation.

This paper is organized as follows: notations and assumptions are listed in Sect. 2.
In Sect. 3, the self-concordant function is defined to preserve as many nice proper-
ties of the original version in Euclidean space as possible. To facilitate the analysis
and understanding of the elegantly proposed damped Newton method, the Newton
decrement is defined and analyzed in Sect. 4. Then, the existence and uniqueness
of the optimal solution are proved and a damped Newton algorithm is proposed in
Sect. 5. It is shown that this algorithm has a similar convergence property and compu-
tational complexity to the algorithm for self-concordant functions in Euclidean space
proposed in [12]. Two interesting examples are included to illustrate the proposed
concept and approach in this paper in the last section.

2 Assumptions and notations

In this paper, notations will be listed in the following paragraph. Definitions and other
details of the concepts and related results used will not be included. Please refer to
[11] for more details.

M A smooth manifold
TpM Tangent space of M at point p
TM tangent bundle of M
T�pM 1-forms of M at point p
T�M dual bundle of TM
∇ An affine connection defined on M
∇ i

X the ith order covariant differentials with respect to the vector field X, based
on the affine connection ∇, where i is an integer

exppX Exponential map of vector field X based on the parallel transform defined
using the affine connection ∇

Xpq The tangent vector field of the shortest geodesic connecting point p and q on
M, where the geodesic parameter is 0 at p and 1 at q

tτ Parallel transform on M, where the affine connection is determined accord-
ing to the context.

In this paper, our purpose is to show how the self-concordant function can be
extended to non-Euclidean space. The discussion is not intended for the most general
cases to avoid unnecessary details. As such, we make the following assumptions:

Assumption 1

(1) The affine connection is symmetric, meaning that

∇Y∇X(f ) = ∇X∇Y(f ),

for any vector field X, Y and function f . A very interesting example of the symmetric
connection is the Riemannian connection.
(2) The smooth manifold M of interest is geodesic complete. Furthermore, the geo-
desic between two points is unique.
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3 Self-concordant functions

Let M be a smooth manifold of finite dimension and ∇ a symmetric affine connection
defined on it. Assume that M is geodesic complete in this paper to focus on the main
ideas rather than how general the proposed concept and method can be applied. Con-
sider a function defined on M: f : M → R, which has an open domain, a closed map,
meaning that {(f (P), P), P ∈ dom(f )} is a closed set in the product manifold � × M,
and is at least three times differentiable.

Definition 1 f is a self-concordant function with respect to ∇ if and only if the follow-
ing condition holds:

∣
∣
∣∇3

Xf (p)
∣
∣
∣≤ Mf

[

∇2
Xf (p)

]3/2
, ∀X ∈ TpM, p ∈ M, (1)

where Mf is a positive constant associated with f .

As noticed in [1], if a function f is self-concordant with the constant Mf , then the
function M−2

f f is self-concordant with the constant 1. It can also be directly checked
by simple computation. As such, we assume Mf = 2 for the rest of this paper.

Also notice that the second covariant differential of a self-concordant function is
a positive semi-definite mapping, meaning that it is symmetric with respect to two
tangent vectors and its value is always non-negative. For the simplicity of the analysis
in this paper, we only consider those functions that satisfy the following assumption:

Assumption 2

∇2
Xf (p) > 0, ∀p ∈ dom(f ), X ∈ TpM.

Then, the second-order covariant differentials can be used to define a Dikin-type
ellipsoid W◦(p; r) as follows:

Definition 2 For any p ∈ dom(f ), and r > 0,

W◦(p; r) :=
{

q ∈ M |
[

∇2
Xpq

f (p)
]1/2

< r
}

,

where Xpq is the vector field defined by the geodesic connecting the points p and q.

The definition of self-concordant function is based on second-order and third-order
covariant differentials with respect to the same vector field X. However, it is equiva-
lent to the case where they are calculated with respect to different vector fields. More
specifically, the following property holds:

Property 1 If f is a self-concordant function defined on M, then, the following inequal-
ity holds:

∣
∣∇X1∇X2∇X3 f (p)

∣
∣ ≤ Mf

[

∇2
X1

f (p)
]1/2 [∇2

X2
f (p)

]1/2 [∇2
X3

f (p)
]1/2

,

∀X1, X2, X3 ∈ TpM. (2)

This property comes from the linearity of the mapping

∇2
df : TpM × TpM → R, and

∇3
df : TpM × TpM × TpM → R,
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defined by

∇2
df (X1, X2) := ∇X1∇X2 f (P), and

∇3
df (X1, X2, X3) := ∇X1∇X2∇X3 f (p),

respectively, for any X1, X2, X3 ∈ TpM.

Proof The following proof is inspired by that in ([1], Proposition 9.1). However, it
should be pointed out that, the trilinear property of the third-order differentials is not
required in our proof.

By assumption the affine connection is symmetric. Therefore, the manifold is tor-
sion free. With a slight misuse of notions, for a given tangent vector X at p, we
let X also denote the vector field generated by X using parallel transportation in
a neighborhood of p where a geodesic starting from p along the direction X exists
uniquely. In this case, it is easy to see that [Xi, Xj] = 0, i �= j. Hence the corresponding
second-order covariant differentials is symmetric, meaning

∇Xi∇Xj f (p) = ∇Xj∇Xi f (p), i, j = 1, 2, 3.

As such, it can be directly checked that

∇X1∇X2∇X3 f (p) = ∇X2∇X1∇X3 f (p),

∇X1∇X2∇X3 f (p) = ∇X1∇X3∇X2 f (p).
(3)

Adopting the reasoning process in Proposition 9.1.1 in [1, p 361], we only need to
show that the extremal value of the function:

W(X1, X2, X3) := | ∇X1∇X2∇X3 f (p) |,
∀Xi ∈ TM(p), ∇2

Xi
f (p) = 1, i = 1, 2, 3 (4)

is achieved at a triple vector in the form of (Z, Z, Z).
Assume the contrary, let (X�, Y�, Z�) be an extremal point of W. By Lemma 9.1.2

in [1] one knows that there exists a unit vector X�
1 , meaning its second covariant differ-

ential of f is 1, in the direction X� + Y� such that (X�
1 , X�

1 , Z�) achieves the extreme.
By the same method in this lemma, one can show that there exists a unit vector Y�

1 in
the one dimensional linear space spanned by X�

1 + Z� such that (X�
1 , Y�

1 , Y�
1) achieves

the extremal value. By using this method iteratively, one constructs a sequence of
vectors in �n × �n × �n :

{(X�, Y�, Z�), (X�
1 , X�

1 , Z�), (X�
1 , Y�

1 , Y�
1), (X

�
2 , X�

2 , Y�
1), (X

�
2 , Y�

2 , Y�
2), . . .},

where the vector in the middle is always in the one-dimensional linear space spanned
by the summation of two different vectors in the previous triple and either the first or
the last vector is the same as the middle. By the assumption that ∇2

Xf (p) > 0 for all
tangent vector X, one can show that this sequence is convergent to a vector triple in
the form of (Z�, Z�, Z�). Hence this property is proved. 	


A self-concordant function also has the following interesting property:

Property 2 ∀p ∈ dom(f ) ⊆ M, W◦(p; 1) ⊆ dom(f ).

This property gives a safe bound for the line search along geodesics for optimiza-
tion problems so that the search will always be in the admissible domain. We need the
following lemma to prove it:
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Lemma 1 Given that f is a self-concordant function defined on a smooth manifold M
and X a vector field on M, define a function φ(t) : � → � as follows:

φ(t) :=
[

∇2
τpexpp(tX)X

f (expptX)
]−1/2

, (5)

where τpq is the parallel transportation from the point p to the point q and expp(X) is
the exponential map of the vector field X at p. Then, the following results hold:

(1) | φ′(t) |≤ 1.
(2) If φ(0) > 0, then, (−φ(0),φ(0)) ⊆ dom(φ).

Proof It can be calculated that

φ′(t) = −
d
dt

[

∇2
τpexpp(tX)X

f (expptX)
]

2
[

∇2
τpexpp(tX)X

f (expptX)
]3/2

= −
∇3
τpexpp(tX)X

f (expptX)

2
[

∇2
τpexpp(tX)X

f (expptX)
]3/2 .

The claim (1) follows directly from the definition of self-concordant function.
Assume the cliam (2) is not true. Since φ(0) > 0, because of the continuity of

∇2
τpexpp(tX)

f (expptX), there is a symmetric neighborhood of 0 in the definition domain

of φ. Let (−t̄, t̄) denote the largest of such symmetric neighborhoods. Then, at least
one of the two end points is not in dom(φ). Without loss of generality, assume t̄ is this
point and t̄ < φ(0). Because φ(t) ≥ φ(0)− | t |, we have

∇2
τpexpp(tX)

f (expptX) <
1

(φ(0)− | t |)2 ≤ 1
(φ(0)− t̄)2

< +∞, ∀t ∈ (−t̄, t̄).

Hence,

lim
t→t̄−0

∇2
τpexpp(tX)X

f (expptX) = ∇2
τpexpp(t̄X)

Xf (exppt̄X)

= 1
[φ(0)− ‖t̄‖]2 < +∞.

The existence of f (exppt̄X) comes from the assumption that f has a closed map and
the fact that

f (expptX) =
t∫

0

⎡

⎣

s∫

0

∇2
τpexpp(νX)

f (exppνX)dν + ∇Xf (X)

⎤

⎦ds < +∞.

Therefore, φ(t̄) is well-defined, which is contradiction to the assumption we made. As
such, (2) holds.

Now we can prove Property 2.

Proof Notice, from Lemma 1, that for any vector field X ∈ TM,

{expp(tX) | | t |2< φ2(0)} ⊆ dom(f ).
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On the other hand,

{expp(tX) || t |2< φ2(0)} =
{

expp(tX) || t |2< 1

∇2
Xf (p)

}

=
{

expptX || t |2
(

∇2
Xf (p)

)

< 1
}

= W◦(p; 1).

This completes the proof. 	


In the following, two groups of properties will be given to reveal the relationship
between two different points on a geodesic. They are delicate characteristics of self-
concordant functions. In fact, they are the foundation for the polynomial complexity
of self-concordant functions.

Property 3 For any p, q ∈ dom(f ), such that there is a geodesic contained in the defi-
nition domain of f connecting the points p and q, if f is a self-concordant function, the
following results hold:

[

∇2
Xpq(q)f (q)

]1/2 ≥
[

∇2
Xpq(p)

f (p)
]1/2

1 +
[

∇2
Xpq(p)

f (p)
]1/2

, (6)

∇Xpq(q)f (q)− ∇Xpq(p)f (p) ≥
∇2

Xpq(p)
f (p)

1 +
[

∇2
Xpq(p)

f (p)
]1/2

, (7)

f (q) ≥ f (p)+ ∇Xpq(p)f (p)+
[

∇2
Xpq(p)f (p)

]1/2

− ln

(

1 +
[

∇2
Xpq(p)f (p)

]1/2
)

. (8)

Proof Let φ(t) be the same function defined in Lemma 1, where one can see that
φ(1) ≤ φ(0) + 1. This is equivalent to (6) taking into account that φ(0) =
[∇2

Xpq(p)
f (p)]−1/2, and φ(1) = [∇2

Xpq(q)
f (q)]−1/2. Furthermore,

∇Xpq(q)f (q)− ∇Xpq(p)f (p) =
1∫

0

∇2
Xpq(expptXpq)

f (expptXpq)dt,

=
1∫

0

1
t2

∇2
tXpq(expptXpq)

f (expptXpq)dt, (9)

which leads to (7) using the inequality (6).
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For the inequality (8), notice that:

f (q)− f (p)− ∇Xpq f (p) =
1∫

0

(∇Xpq(expptXpq)f
(

expptXpq

)

− ∇Xpq(p)f (p))dt

=
1∫

0

1
t

[

∇tXpq(expptXpq)f
(

expptXpq

)

− ∇tXpq(p)f (p)
]

dt

≥
1∫

0

∇2
tXpq(p)

f (p)

t(1 + [∇2
tXpq

(p)]1/2)
dt.

Let r = [∇2
Xpq(p)

f (p)]1/2. The last integral becomes

1∫

0

tr2

1 + tr
dt = r − ln(1 + r),

which leads to the inequality (8) by replacing r with its original form.

Property 4 For any p ∈ dom(f ), q ∈ W◦(p; 1), and X ∈ TM, there holds:

(1 − [∇2
Xpq(p)f (p)]1/2)2∇2

X(p)f (p) ≤ ∇2
X(q)f (q) ≤ ∇2

X(p)f (p)
(

1 −
[

∇2
Xpq(p)

f (p)
]1/2

)2 ,

(10)

∇Xpq(q)f (q)− ∇Xpq(p)f (p) ≤
∇2

Xpq(p)
f (p)

1 −
[

∇2
Xpq(p)

f (p)
]1/2

, (11)

f (q) ≤ f (p)+ ∇Xpq(p)f (p)−
[

∇2
Xpq(p)f (p)

]1/2 − ln(1 −
[

∇2
Xpq(p)f (p)

]1/2
).

(12)

Proof Let ψ(t) be a function defined in the following form:

ψ(t) = ∇2
X(expptXpq)

f (expptXpq).

Then, its derivative satisfies

| ψ ′(t) | = | ∇Xpq(expptXpq)∇2
X(expptXpq)

f (expptXpq) |
≤ 2 | ∇2

Xpq(expptXpq)
f (expptXpq) |1/2 ψ(t)

= 2
t

| ∇2
tXpq(expptXpq)

f (expptXpq) |1/2 ψ(t)

≤ 2
t

t
[

∇2
Xpq(p)

f (p)
]1/2

1 − t
[

∇2
Xpq(p)

f (p)
]1/2

ψ(t). (13)
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Here the last part is obtained by applying φ(1) ≥ φ(0)− 1 from Lemma 1. Integrating
both sides of the inequality (13), one obtains

(1 − [∇2
Xpq(p)f (p)]1/2)2 ≤ ψ(1)

ψ(0)
≤ 1
(

1 −
[

∇2
Xpq(p)

f (p)
]1/2

)2 ,

which is equivalent to the inequality (10).
Combining the inequality (10) and the formula (9), one obtains

∇Xpq(q)f (q)− ∇Xpq(p)f (p) ≤
1∫

0

1
t2

∇2
tXpq(p)

f (p)
(

1 −
[

∇2
tXpq(p)

f (p)
]1/2

)2 dt

=
∇2

Xpq(p)
f (p)

1 −
[

∇2
Xpq(p)

f (p)
]1/2

,

which proves the inequality (11).
Combining this result and using the same technique as that used in the proof of the

last property, there holds:

f (q)− f (p)− ∇Xpq f (p) =
∫ 1

0
∇Xpq(expptXpq)f (expptXpq)dt − ∇Xpq f (p)

=
∫ 1

0

{
1
t
[∇tXpq(expptXpq)f (expptXpq)] − ∇Xpq f (p)

}

dt

≤
∫ 1

0

∇2
tXpq

f (p)

t(1 − [∇2
tXpq

f (p)]1/2)
dt

= −
[

∇2
Xpq(p)f (p)

]1/2 − ln

(

1 −
[

∇2
Xpq(p)f (p)

]1/2
)

.

As such, the inequality (12) is obtained by a simple transformation of this inequality.
	


4 Newton decrement

Consider the following auxiliary quadratic cost defined on TpM :

Nf ,p(X) := f (p)+ ∇Xf (p)+ 1
2
∇2

Xf (p). (14)

Definition 3 The Newton decrement XN(f , p) is defined as the minimal solution to
the auxiliary cost function given by (14). More specifically,

XN(f , p) := arg min
X∈TpM

Nf ,p(X). (15)

Similar to the case in Euclidean space, the Newton decrement can be characterized
in many ways. The following theorem summaries its properties.
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Theorem 1 Let f : M → R be a self-concordant function, p, a given point in dom(f ) ⊆
M, and XN, its Newton decrement defined at p. The following results hold:

∇XN ∇Xf (p) = −∇Xf (p), ∀X ∈ TpM, (16)
√

∇2
XN

f (p) = max
{

∇Xf (p)|X ∈ TpM, ∇2
Xf (p) ≤ 1

}

. (17)

Furthermore, if the quadratic form ∇2
µ : TpM → T�M(p), defined by:

∇2
µ(X) = ∇2

Xµ, ∀X ∈ TpM

for a given µ ∈ T�M(p), is of full rank, then

XN = −(∇2
df )

−1df . (18)

Proof Since p is a given point on the manifold M, the claimed results can be con-
verted into their local representation in Euclidean space. More specifically, consider
the following quadratic function:

q(x) := 1
2

x�Ax + b�x + c,

where A ∈ Rn × Rn, A� = A, b ∈ Rn, c ∈ R. (19)

Let x� denote the optimal point. Then, the gradient of q at x� must be a zero vector. i.e.,

y�(Ax� + b) = 0, ∀y ∈ Rn.

This is the local representation of (16).
The case where ∇2

µ is isomorphic is corresponding to the case where A is
non-degenerate. Then, x� = −A−1b, which is the local representation of (18).

On the other hand,

| y�b | = | y�Ax� |=| y�A1/2A1/2x� |
≤ (y�Ay)1/2((x�)�Ax�)1/2,

where the equality holds if and only if y = x�. As such,

max{y�b|y ∈ Rn, y�Ay ≤ 1} = max

{

y�b
√

y�Ay
|y ∈ Rn

}

=
√

(x�)�Ax�.

This is the local representation of (17). Therefore, the proof is complete.

5 A damped newton algorithm for self-concordant functions

Consider now the minimization problem of self-concordant functions on a smooth
manifold. First, let us establish the existence of the minimal point:

Theorem 2 Let λf (p) be defined as follows:

λf (p) := max
X∈TpM

| ∇Xf (p) |
√

∇2
Xf (p)

for p ∈ dom(f ). (20)
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If λf (p) < 1 for some p ∈ dom(f ), then there exists a unique point p�f ∈ dom(f ) such
that

f (p�f ) = min{f (p) | p ∈ dom(f )}.
Proof Let p0 is a point such thatλf (p0) < 1. For any q ∈ dom(f ) such that f (q) < f (p0),
from (8) we have

f (q) ≥ f (p0)− λf (p0)[∇2
Xp0q

f (p0)]1/2

+
[

∇2
Xp0q

f (p0)
]1/2 − ln

(

1 +
[

∇2
Xp0q

f (p0)
]1/2

)

.

Hence,

ln

(

1 +
[

∇2
Xp0q

f (p0)
]1/2

)

[

∇2
Xp0q

f (p0)
]1/2

≥ 1 − λ.

Since

lim
t→+∞

ln(1 + t)
t

= 0,

there exists a constant c > 0, such that
[

∇2
Xp0q

f (p0)
]1/2 ≤ c. (21)

Hence these Xp0q contained in the compact set defined by inequality (21). Consider
the map from the any tangent vector X to its geodesic exp(X). This map is continu-
ous by the definition of geodesic. This indicates the image of compact set defined by
inequality (21) is also compact. Therefore, a minimal point exists.

On the other hand, let p� denote a minimal point. Then,

f (q) ≥ f (p�)+ [∇2
Xp�q

f (p�)]1/2 − ln(1 + [∇2
Xp�q

f (p�)]1/2)

> f (p�), ∀q ∈ dom(f ), q �= p�. (22)

The uniqueness is proved.

Consider the following damped Newton method:

Algorithm 1 (Damped Newton algorithm)
Step 0: Find a feasible point p0 ∈ dom(f ).
Step k: pk = exppk−1

1
1+λf (pk−1)

XN ,

where exppk−1
tXN is the exponential map of the Newton decrement at pk−1.

The following theorem establishes the convergence properties of the proposed
damped Newton algorithm:

Theorem 3 Let the minimal point of f (p) be denoted as p�, and p is any admissible
point in W◦(p�; 1).

(1) The following inequality holds:
[

∇2
Xpp�

f (p)
]1/2 ≤ λf (p)

1 − λf (p)
. (23)
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(2) If λf (p) < 1, then

0 ≤ f (p)− f (p�) ≤ −λf (p)− ln(1 − λf (p)). (24)

(3) For the proposed Damped Newton Method algorithm, there holds:

f (p�) ≤ f (pk) ≤ f (pk−1)− (λf (pk−1)− ln(1 + λf (pk−1))). (25)

Proof

(1) Let [∇2
Xpp�

f (p)]1/2 be denoted as r(p). In view of (7) and (11) we have:

r2

1 − r
≥ −∇Xpp� f (p) ≥ r2(p)

1 + r(p)
≥ 0. (26)

On the other hand, there holds

| ∇Xpp� f (p) |≤ λf (p)r(p)

by the definition of λf (p). Therefore,

λf (p) ≥ r(p)
1 + r(p)

,

where r can be solved as follows:

r(p) ≤ λf (p)

1 − λf (p)
,

which is (23).
(2) Based on (8) and the inequality (23) obtained above, one has:

f (p�)− f (p) ≥ ∇Xpp� f (p)+ r(p)− ln(1 + r(p))

≥ r(p)− ln(1 + r(p))− λf (p)r(p). (27)

Let an auxiliary function g(x, y) be defined as:

g(x, y) = x − ln(1 + x)− xy + y − ln(1 − y),

∀x ≥ 0, 1 > y ≥ 0.

It can be easily checked that

g(x, 0) = x − ln(1 + x) ≥ 0

and

g(0, y) = y − ln(1 − y) ≥ 0.

If there is a point (x0, y0) such that g(x0, y0) < 0, this function must have a mini-
mal interior point. The gradient will be zero at such a point. However, it can be
calculated that

∂g
∂x

|(x0,y0)= 1 − 1
1 + x0

− y0 = 0,

∂g
∂y

|(x0,y0)= −x0 + 1 + 1
1 − y0

= 0.
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The solution to this system of equations satisfies

(1 − y0)(1 + x0) = 1.

As such, at the minimal point there holds:

g(x0, y0) = x0 − x0y0 + y0 = x0(1 − y0)+ y0 > 0,

which is a contradiction. Therefore, the minimum, if it exists, is achieved at the
boundary. Hence,

g(x, y) ≥ 0, ∀x ≥ 0, 1 > y ≥ 0.

Applying this inequality to (27), we obtain the right side of the inequality (24).
(3) It is clear that pk+1 ∈ W◦(pk, 1) since

∇2
1

1+λf (pk)
XN

f (pk)
(4.4)=

[
1

1 + λf (pk)

]2

λf (pk)
2 < 1.

Applying (12), there holds

f (pk+1) ≤ f (pk)+ 1
1 + λf (pk)

∇XN f (pk)− 1
1 + λf (pk)

[∇2
XN

f (pk)]1/2

− ln

(

1 − 1
1 + λf (pk)

[∇2
XN

f (pk)]1/2
)

= f (pk)− λf (pk)+ ln(1 + λf (pk))

by the definition of λf (pk) and the results in Theorem 1. Therefore, the inequality
(25) is proved.

Notice that the two functions

λ− ln(1 + λ), ∀λ ∈ (0, +∞)

and

−λ− ln(1 − λ), ∀λ ∈ (0, 1)

are positive and monotonically increasing. The results proved in Theorem 3 have
already given a set of error bounds for the function f (p) and estimation of the
variable point p based on λf (p). More specifically, the inequality (25) implies the
following results:

Corollary 1 For the Damped Newton algorithm, the λf (pk) is bounded as follows:

λf (pk)− ln(1 + λf (pk)) ≤ f (pk)− f (p�). (28)

Furthermore, for a given precision ε > 0, the number of iterations, denoted as N,
required such that λf (pN) < ε is less than or equal to f (p0)−f (p�)

ε−ln(1+ε) .

For the convergence rate, the following theorem reveals the quadratic convergence
and the computational complexity of the damped Newton algorithm proposed in this
paper.
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Theorem 4 For the damped Newton algorithm proposed in this paper, the following
result holds:

λf (pk+1) ≤ 2λ2
f (pk). (29)

Proof For a vector field X ∈ TM, construct an auxiliary function ψ(t) as follows:

ψ(t) := ∇Xf (exppk
tXN(pk)), ∀t ∈

(

0,
1

1 + λf (pk)

)

. (30)

Now, with a slight misuse of the notation that ignores the vector field adaptation:

ψ ′(t) = ∇XN(pk)∇Xf (exppk
tXN(pk)),

ψ ′′(t) = ∇2
XN

∇Xf (exppk
tXN(pk))

≤ 2∇2
XN

f (exppk
tXN(pk))[∇2

X f (exppk
tXN(pk))]1/2.

The last inequality is obtained in view of Property 1.
Notice that:

∇2
XN

f (exppk
tXN(pk)) = 1

t2
∇2

tXN
f (exppk

tXN(pk))

≤ 1
t2

∇2
tXN

f (pk)
(

1 −
[

∇2
tXN

f (pk)
]1/2

)2

=
λ2

f (pk)

(1 − tλf (pk))
2 (31)

by applying the inequality (10) and the fact that pk+1 ∈ W◦(pk, 1). Then, by applying
the left part of the inequality (10) we have

ψ ′′(t) ≤
2λ2

f (pk)

(

1 − tλf (pk)
)2

[

∇2
Xf (exppk

tXN(pk))
]1/2

≤
2λ2

f (pk)

(

1 − tλf (pk)
)2

1
1 − tλf (pk)

[∇2
Xf (pk)]1/2

=
2λ2

f (pk)

(

1 − tλf (pk)
)3 [∇2

Xf (pk)]1/2.
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Let 1
1+λf (pk)

be denoted as r. Then,

ψ(r) = ψ(0)+
r∫

0

ψ ′(τ )dτ

= ψ(0)+
r∫

0

{ψ ′(0)+
∫ τ

0
ψ ′′(t)dt}dτ

≤ ∇Xf (pk)+ r∇XN ∇Xf (pk)

+[∇2
Xf (pk)]1/2

r∫

0

τ∫

0

2λ2
f (pk)

(1 − tλf (pk))
3 dt dτ

= ∇Xf (pk)+ r∇XN ∇Xf (pk)+ [∇2
Xf (pk)]1/2

λ2
f (pk)r2

1 − λf (pk)r
.

By using the (16) of the Newton decrement in Theorem 1, the last inequality results in:

ψ(r) ≤ (1 − r)∇Xf (pk)+
[

∇2
Xf (pk)

]1/2 λ2
f (pk)r2

1 − λf (pk)r

≤ (1 − r)λf (pk)
[

∇2
Xf (pk)

]1/2 +
[

∇2
Xf (pk)

]1/2 λ2
f (pk)r2

1 − λf (pk)r

=
2λ2

f (pk)

1 + λf (pk)

[

∇2
Xf (pk)

]1/2
,

where [∇2
Xf (pk)]1/2 can be estimated by the left part of the inequality (10). That is:

ψ(r) ≤
2λ2

f (pk)

1 + λf (pk)

1
1 − rλf (pk)

[∇2
X(exppk

rXN(pk))]1/2

= 2λ2
f (pk)[∇2

X(exppk
rXN(pk))]1/2.

Therefore,

λf (pk+1) = max
X∈TM(pk+1)

∇Xf (pk+1)
[∇2

Xf (pk+1)
]1/2

= max
X∈TM(pk+1)

ψ(r)
[

∇2
Xf (exppk

rXN(pk))
]1/2

≤ 2λ2
f (pk).

The proof is complete.

It is clear that λf (pk+1) < λf (pk) if λf (pk) <
1
2 . It can also be proved by simple

analysis that

−λ− ln(1 − λ) < λ, ∀λ ∈ (0, 1/2).
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Remark 1 Under the condition that λ(p) < 1, p ∈ M and starting from an admissible
initial point, the convergence results of the proposed damped Newton algorithm can
be summarized as:

(1) For not more than f (p0)−f (p�)
1/2−ln(3/2) steps λf (pk) will fall into the interval (0, 1/2).

(2) λf (pk) will monotonically and quadratically converge to zero starting from any
point pk0 such that λf (pk0) ∈ (0, 1/2).

(3) [∇2
Xpp�

f (p)]1/2 ≤ 2λf (p), ∀λf (p) ∈ (0, 1/2).

(4) 0 ≤ f (p)− f (p�) ≤ λf (p), ∀λf (p) ∈ (0, 1/2).
(5) For a given precision ε ∈ (0, 1/2), the maximal number of iterations such that

λf (pk) ≤ ε, is not more than

min

{
f (p0)− f (p�)
ε − ln(1 + ε)

, min
α∈(0,1/2)

(
f (p0)− f (p�)
α − ln(1 + α)

+ ln ε

ln α

)}

.

This amount is then bounded by

f (p0)− f (p�)
1/2 − ln(3)+ ln(2)

+ − ln ε

ln(2)
.

6 Illustrative examples

This section includes two simple examples to illustrate the proposed damped Newton
method:

Example 1

Consider the following optimization problem:

minimize f (x) := x1 + x2,

subject to: x1, x2 > 0, x = (x1, x2)
� ∈ H,

where H is a hyperbola satisfying x1x2 = 1. The Riemannian metric is defined as the
induced metric from the ambient Eucleadean space. Let TxH be the tangent space of
H at x. i. e., TxH = {αh|h = (−x1, x2),α ∈ R}. Then, the geodesic on the hyperbola
can be calculated as:

expx tX = Ax, (32)

where A =
(

e−αt 0
0 eαt

)

and X ∈ TxH. Hence, covariant differentials can be calculated

as follows:

∇Xf (x) = (−x1 + x2)α,

∇2
hf (X) = (x1 + x2)α

2,

∇3
hf (X) = (−x1 + x2)α

3.

It can be seen that ∇2
Xf (x) is positive definite. Then

(∇3
Xf (x)

)2

(∇2
Xf (x)

)3 = (x2 − x1)
2

(x1 + x2)3
≤ 1. (33)
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As such, f (x) is a self-concordant function.

Now we can apply the proposed damped Newton algorithm.

Algorithm 2 (Damped Newton algorithm)
step 0: Randomly generate a feasible initial point x0.
step k: Calculate the kth step according to:

xk = expxk−1

(
1

1 + λ(xk−1)
XN

)

= Ak−1xk−1,

where

Ak−1 =
⎛

⎝
e
− 1

1+λ(xk−1)
αk−1

0

0 e
1

1+λ(xk−1)
αk−1

⎞

⎠ ,

λ(xk−1) =
√

(xk−1
1 + xk−1

2 )α2

XN = αk−1
(

−xk−1
1 , xk−1

2

)T
, αk−1 = −xk−1

2 − xk−1
1

xk−1
1 + xk−1

2

.

The simultaion result is shown in Table 1.

Example 2

Consider the following optimization problem:

min f (x) := −lnx1 − · · · − lnxn,

subject to :
{

x = (x1, x2, . . . , xn) ∈ Sn−1,
0 < x1, . . . , xn < 1,

(34)

where Sn−1 is the unit sphere with xTx = 1. Here, we define a Riemannian metric
as the induced metric from the ambient Euclidean space, i.e., < y, z >= yTz where

Table 1 The simulation result
for Example 1

Step k x f (x) λ(x)

0 (6.0000, 0.1667) 6.1667 2
1 (0.2525, 3.9601) 4.2126 2.3490
2 (2.9852, 0.3350) 3.3202 1.8064
3 (0.4208, 2.3762) 2.7971 1.4545
4 (1.9173, 0.5216) 2.4389 1.1692
5 (0.6487, 1.5417) 2.1903 0.8938
6 (1.2471, 0.8018) 2.0490 0.6034
7 (0.9379, 1.0662) 2.0041 0.3111
8 (1.0057, 0.9943) 2.0000 0.0906
9 (1.0000, 1.0000) 2.0000 0.0081
10 (1.0000, 1.0000) 2.0000 0.0001
11 (1.0000, 1.0000) 2.0000 0.0000
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y, z ∈ TxSn−1. Let x ∈ Sn−1 and h = (h1, h2, . . . , hn) ∈ TxSn−1 have unit length (if not,
we can normalize it). Then, the geodesic on the sphere is expx th = x cos(t)+ h sin(t),
and the parallel transportation along the geodesic τh = h cos(t)− x sin(t). Therefore,
the following covariant differentials can be calculated:

∇hf (x) = −h1

x1
− h2

x2
−, . . . , −hn

xn
,

∇2
hf (x) = h2

1

x2
1

+ h2
2

x2
2

+, . . . , +h2
n

x2
n

+ n,

∇3
hf (x) = −2

(

h3
1

x3
1

+ h1

x1
+ h3

2

x3
2

+ h2

x2
+, . . . , +h3

n

x3
n

+ hn

xn

)

The following procedure is to prove that the function f is self-concordant defined
on Sn−1.

It can be easily checked that for any h ∈ TxSn−1, the second covariant differentials
∇2

hf (x) are always positive.

Let y1 = h1
x1

, . . . , yn = hn
xn

, y = (y1, y2, . . . , yn)
T , b = ((y2

1+1), (y2
2+1), . . . , (y2

n+1))T .
Then, we have

Mf =
(∇3

hf (x)
)2

(∇2
hf (x))3

= 4
(

y3
1+, . . . , +y3

n + y1 + · · · + yn
)

(

y2
1 + · · · + y2

n + n
)3

= 4
(y1(y2

1 + 1)+ · · · + yn(y2
n + 1))2

((y2
1 + 1)+ · · · + (y2

n + 1))3

≤ 4‖y‖2‖b‖2

(

(y2
1 + 1)+ · · · + (y2

n + 1)
)2 (
(y2

1 + 1)+ · · · + (y2
n + 1)

)

≤ 4(y2
1 + · · · + y2

n)

(y2
1 + 1)+ · · · + (y2

n + 1)

≤ 4. (35)

Therefore, the function f is self-concordant function defined on Sn−1.
We apply the damped Newton algorithm on this problem. In particular, n = 10.

Figure 1 shows the results of the damped Newton method on function f , where x� is
the optimal solution and the logarithm function is 10-based.

The result clearly demonstrates the quadratic convergence of the proposed
algorithm.

To illustrate the advantage of the proposed algorithms on manifold, this optimi-
zation problem is also solved in Euclidean space using the Lagrangian multiplier
method [13], as a comparison example. Given the Lagrangian multiplier α ∈ R, the
Lagrangian form of the original problem is

L(x,α) = − ln x1 − · · · − ln xn + α(1 − xTx). (36)

Then, Newton method can be applied in Euclidean space to find the critical point
(x∗,α∗) of L. However, because the parametrization of problem in Euclidean space
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Fig. 1 The results of damped Newton method of Example 2

may not necessarily reflect its intrinsic global property, the efficiency and convergence
of the Newton method will depend on the choice of initial points, which cannot be
guaranteed. Figure 2 shows the simulation result obtained starting from a randomly
generated initial point. The performance is inferior to that shown in Fig. 1.

7 Conclusions

This paper reports our effort to generalize the definition and known results for
self-concordant functions in Euclidean space to manifolds. It lays a comparative
solid foundation to facilitate the construction of barrier functions for interior-point
algorithms on manifolds.

For the proposed self-concordant function defined on a general class of smooth
manifolds, a number of desirable properties are obtained. These include the feasibil-
ity of a Dikin-type ellipsoid and several inequalities that characterizes the similarity
between self-concordant functions and quadratic functions along the geodesics of the
manifold in various inequalities. Under the convexity condition on manifold defined
by second-order covariant differential, it is also shown that the optimal solution is
global.

A Newton decrement is defined for this specific class of functions. This concept is
analyzed in regard to the relationship between first-order covariant derivatives along
Newton direction and along general direction, and to the maximal ratio of the norm of
first-order covariant derivative and that of second-order derivative. The later facilitate
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Fig. 2 The results of Newton method in Euclidean space for Example 2

the definition of the index λf (p). With those theoretical preparation, the existence of
global optimal solution is shown when λf (p) < 1 holds for a point p.

A damped Newton algorithm is proposed. Its computational complexity is carefully
analyzed and precise bound is shown to be O(− ln(ε)).

Two simple but meaningful optimization problems are given to illustrate the effi-
ciency of the proposed concept and algorithm.
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