
1-4244-1506-3/08/$25.00 ©2008 IEEE

Self-configuration of an Adaptive TDMA wireless communication protocol for

teams of mobile robots

Frederico Santos

DEE - ISEC

Inst. Politécnico de Coimbra, Portugal

fred@isec.pt

Luı́s Almeida, Luı́s Seabra Lopes

IEETA - DETI

Universidade de Aveiro, Portugal

{lda, lsl}@ua.pt

Abstract

Interest on using mobile autonomous agents has been

growing, recently, due to their capacity to cooperate for

diverse purposes, from rescue to demining and security.

However, such cooperation requires the exchange of state

data that is time sensitive while achieving timeliness with

RF communication is intrinsically difficult due to the ope-

ness of the medium. This paper describes a communica-

tion layer that improves the timeliness of periodic data

exchanges among the team reducing the chances of lost

packets caused by collisions between team members. In

particular, the paper extends a previous proposal for an

adaptive TDMA protocol with new self-configuration ca-

pabilities according to the current number of active team

members. This feature further reduces the likelyhood of

collisions within the team. Several experimental results

with an actual system implementation show the effective-

ness of the proposed solution.

1 Introduction

Coordinating several autonomous mobile robotic

agents in order to achieve a common goal has been an

active topic of research for more than a decade [8]. This

problem can be found in many robotic applications, ei-

ther for military or civil purposes, such as search and res-

cue in catastrophic situations, demining or maneuvers in

contaminated areas. The technical problem of building an

infrastructure to support the perception integration for a

team of robots and subsequent coordinated action is com-

mon to the above applications. One initiative that was

created to promote research in this field is RoboCup [5]

where several autonomous robots have to play soccer to-

gether as a team, to win a match against another team of

autonomous robots.

Currently, the requirements posed on such teams of au-

tonomous robotic agents have evolved in two directions.

On one hand, robots must move faster and with accurate

trajectories to close the gap with the dynamics of the pro-

cesses they interact with, e.g., a ball can move very fast.

On the other hand, robots must interact more in order to

develop coordinated actions more efficiently, e.g., only the

robot closer to the ball should try to get it while other

robots should move to appropriate positions. The former

requirement demands for tight closed-loop motion control

while the latter demands for an appropriate communica-

tion system that allows building a global knowledge base

to support cooperation.

In this paper we describe the wireless communica-

tion layer of the robotic agents that constitute the CAM-

BADA middle-size robotic soccer team of the University

of Aveiro, Portugal. The software architecture is based on

a real-time database [1] in which the state values of other

agents are updated transparently to the application, using

the proposed communication layer. This paper focuses on

the protocol that dynamically adapts to the conditions of

the communication channel and to the current number of

active agents in the team. The main contribution of the

paper is the self-configuration capability with respect to

the number of active team members. The protocol fol-

lows a modified TDMA approach, called adaptive TDMA

[7], which synchronizes on message receptions and does

not require clock synchronization. Moreover, the protocol

is designed to cope with uncontrolled load in the channel

generated by nodes external to the team. The mechanism

described in this paper reconfigures the TDMA round au-

tomatically and in a fully distributed way according to the

current number of active agents with the purpose of mini-

mizing the possibility of collisions among team members.

The paper is structured as follows, Section 2 briefly

presents the computing and communication architecture

of the team. Section 3 presents the core of the pa-

per, mainly in Subsection 3.2 that describes the self-

reconfiguration mechanisms of the protocol. Section 4

presents an experimental validation of the devised mech-

anisms. Section 5 addresses other features and possible

lines for future work that would enhance the framework.

Finally, Section 6 discusses some related work and Sec-

tion 7 concludes the paper.

2 Computing/Communication Architecture

The computing architecture of the robotic agents is il-

lustrated in Figure 1. It is a hierarchical two-tier archi-

1197

tecture. The higher level (tier 2) is built around a main

processing unit that handles the external communication

with other agents, the local vision system and the robot

behavior. A distributed low-level sensing/actuating sys-

tem (tier 1) handles robot attitude, odometry, kicking and

power monitoring. Tier 1 is out of the scope of this paper.

Figure 1. CAMBADA robotic architecture

The main processing unit is currently implemented on

a laptop with a built-in wireless interface. The laptop runs

the Linux operating system with the timeliness support

necessary for time-stamping, periodic transmissions and

task temporal synchronization provided by a specially de-

veloped user-level real-time scheduler, the Pman – Pro-

cess Manager [6]. This approach provides sufficient time-

liness support for soft real-time applications, such as mul-

tiple robot coordination, and allows profiting from the bet-

ter development support provided by general purpose op-

erating systems [3].

The team agents communicate with each other by

means of an IEEE 802.11b wireless network as depicted

in Figure 2. The communication is managed, i.e., using an

Access Point (AP), and it is constrained to using a single

channel shared by, at least, both teams in each game. In or-

der to improve the timeliness of the communications, our

team uses a further transmission control protocol that min-

imizes collisions of transmissions within the team. Each

robot regularly broadcasts its own data while the remain-

ing ones receive such data and update their local struc-

tures. Beyond the robotic agents, there is also a coaching

and monitoring station connected to the team that allows

following the evolution of the robots status on-line and is-

suing high level team coordination commands.

Figure 2. Communications environment

3 Communication Among Agents

As mentioned in Section 2, agents communicate

through the AP using an IEEE 802.11 network, sharing

a single channel with the opposing team. This raises sev-

eral difficulties because the presence of uncontrolled traf-

fic in the channel is unavoidable. Conversely, there are

also some benefits in terms of consistency in the team,

which is enforced by the AP. An agent is considered reach-

able by the team when it has an active link with the AP

and unreachable otherwise. This is a realistic application

in many application scenarios. For example, for teams

of surveillance robots within large indor spaces, such as

malls, it is normally feasible to provide an AP that guar-

antees the radio coverage of all robots. In demining appli-

cations, or even search and rescue, it is possible to place

the AP on top of one of the robots deployed near the cen-

ter of the operations area that will provide coverage for

the other ones. In all these cases, it is also impossible to

control the access to the channel and thus the technical

solutions adopted must cope with such circumstance.

3.1 Adaptive TDMA

Since the load in the network cannot be totally con-

trolled by the team, the only alternative left is to adapt

to the current channel conditions and reduce access col-

lisions among team members. This is achieved using an

adaptive TDMA transmission control as proposed in [7].

The TDMA round period is set off-line and called team

update period (Ttup), setting the responsiveness and the

temporal resolution of the global communication. It is,

thus, an application requirement. Ttup is divided equally

by the number of team members generating the TDMA

slot structure. With equal slots, if the agents transmit at

the begining of their slots, their transmissions are sepa-

rated as much as possible (Figure 3). The target inter-slot

period can be computed as

Txwin =
Ttup

N
(1)

where N is the number of team agents. Normally each

robot will only use a fraction of its slot and the unused

part constitutes leeway to accommodate the uncontrolled

load. When the respective TDMA slot comes, all currently

scheduled transmissions are piggybacked on one single

802.11 frame and sent to the channel. The presence of

uncontrolled load may lead to a delay (δ) of the packet

reception. Each agent uses this delay to compute its next

transmission instant, thus adapting the effective TDMA

round period (Figure 4).

Figure 3. TDMA round

When a robot j transmits at time tj,now it sets its own

transmission instant tj,next = tj,now+Ttup, i.e. one round

after. However, it continues monitoring the arrival of the

frames from the other robots. When the frame from robot

i arrives, the delay δi of the effective reception instant with

1198

Figure 4. Adaptive TDMA round

respect to the expected instant is calculated. If this delay

is within a validity window [0, ∆], with ∆ being a global

configuration parameter, the next transmission instant is

delayed according to the longest such delay among the

frames received in one round (Figure 4), i.e.,

tj,next = tj,now + Ttup + max(δi)i=0..N−1,i6=j∧δi≤∆

On the other hand, if the reception instant is outside

that validity window, then δi is set to 0 and does not con-

tribute to update tj,next.

The practical effect of the adaptation in the protocol is

that the transmission instant of a frame in each round may

be delayed up to ∆ with respect to the predefined round

period Ttup. Therefore, the effective round period will

vary within [Ttup, Ttup + ∆].
When a robot does not receive any frame in a round

within the respective validity windows, it updates tj,next

using a robot specific configuration parameter βj in the

following way:

tj,next = tj,now + Ttup + ∆ + βj

with 0 < βj < ∆ and βj 6= βi for j 6= i

This robot specific parameter is used to force different

effective transmission periods, generating a sliding rela-

tive phase thus preventing a possible situation in which the

robots could all remain transmitting but unsynchronized,

i.e. outside the validity windows of each other, and with

the same period Ttup. By imposing different periods in

this situation we force the robots to resynchronize within

a limited number of rounds because the transmissions will

eventually fall within the validity windows of each other.

The effectiveness of the adaptive TDMA approach has

been experimentally validated and presented in [7].

3.2 Dynamic reconfiguration of the TDMA round

One of the limitations of the adaptive TDMA protocol

as proposed in [7] is that the number of team members

was fixed, even when the agents were not active, caus-

ing the use of Txwin values smaller than needed, i.e., the

slots were unnecessarily short since some of them were

not used. Note that a smaller Txwin reduces the leeway

to accomodate delays caused by the uncontrolled traffic

and thus increases the probability of loss of synchroniza-

tion and of collisions within the team. Therefore, a self-

configuration capability is added to the protocol, to cope

with variable number of team members. This is the spe-

cific mechanism proposed in this paper, which supports

the dynamic insertion / removal of agents in the protocol

in a fully distributed way. Currently, the Ttup period is

still constant but it is divided by the number of running

agents at each instant, designated K , with K ≤ N , max-

imizing the inter-slot separation between agents Txwin at

each moment.

Txwin =
Ttup

K
(2)

The validity window used in the TDMA adaptation also

becomes a function ofK , i.e.,∆K = Txwin×ǫ, 0 < ǫ < 1
where ǫ is a configuration parameter.

However, the number of active team members K is a

global variable that must be consistent so that the TDMA

round is divided in the same number of slots in all agents.

To support the synchronous adaptation of the current num-

ber of active team members a membership vector was

added to the frame transmitted by each agent in each

round, containing its perception of the team status (see

Figure 5). The number of fields in the membership vector

is the maximum number of team mates N , defined off-

line.

One important aspect concerns the slots and nodes

identification. In the previous adaptive-TDMA mecha-

nism, each node had a unique ID (j = 0..N − 1) that was
also used as slot ID. However, with the reconfiguration

mechanism, the slots are dynamic and thus such direct ID

mapping cannot be used. Thus, within this protocol the

nodes are identified by a dynamic ID that corresponds to

the ID of the slot they are assinged to (k = 0..K − 1). A
simple rule is used to map the static unique node ID to a

dynamic slot ID. The currently lowest static ID among the

running robots is assigned slot 0, the following static ID

is assigned to slot 1 and so on until the highest static ID

among the running robots that is assigned to slot K − 1.
This assignment is carried out every time there is a change

in the slots structure, i.e., every time a robot joins or leaves

the group.

Figure 5. Dissemination of the membership

vectors

The dynamic insertion / removal of agents is carried

out in a distributed way based on the dissemination of the

membership vectors. To manage this process, each agent

runs the state machine presented in Figure 6 for each of the

potential team members. For each agent the implemented

state machine has 4 states:

1199

Figure 6. State-machine for capturing the state of another agent

• Not running – The agent is not powered up or is un-

reachable, i.e., not associated with the wireless AP;

• Insert – The agent started transmitting but has not

yet been detected by all the current team mates. In

this state the agent has no slot yet in the TDMA round

and thus it is transmitting out of phase;

• Running – The agent has been detected by all team

members and its own slot in the TDMA round has

been created. All agents resynchronize and continue

transmitting in their new slots;

• Remove – The agent is not transmitting or its mes-

sage was not received, e.g., due to an error.

When a new agent arrives, it starts to transmit its peri-

odic information in an unsynchronized mode. In this mode

all the agents, including the new one, continue updating its

membership vector with the received frames. At this mo-

ment the new agent transmits its state as Insert. The Txwin

value, however, is not yet adapted and thus the new agent

has no slot in the round and thus no dynamic ID. When all

current team members agree on the existance of the new

agent, i.e., they all detected its transmissions, the number

of active team members K is updated, so as the inter-slot

periodTxwin, the dynamic IDs are reassigned and the state

of the new agent is changed to Running. The protocol en-

ters then in the scan mode in which all agents, except the

one using slot 0, use a slightly longer update period (see

Tnext below) to rotate their relative phase in the round un-

til they find their slots. Once they find them, and from

then on, all team members are again synchronized. Agent

0 (dynamic) is used as the reference TDMA round with

which the others synchronize. This is important to avoid

cliques, i.e., unsynchronized subgroups of nodes that are

synchronized internally to each subgroup.

Tnext = Tnow + Ttup + ∆k + βk

with βk =
{0, k = 0
β, k ≥ 1

(3)

In this equation, β is a configuration parameter that sets

the speed of phase rotation within the scan mode. The

time to reach synchronization depends on β and on the

instant within the TDMA round in which the node starts

scanning for its assigned slot. The number of rounds to

synchronize should vary uniformly between 0, when the

node, by chance, starts scanning exactly in the slot that

was assinged to it, and a certain upper bound, R, that de-

pends directly on β as follows:

R ≤

⌈

Ttup

β

⌉

(4)

This is illustrated in Figure 7. Note that this expression

is rather pessimistic since it assumes that the adaptive-

TDMA mechanisms is constantly rotating at the maxi-

mum period of Ttup+∆K , which would only occur under

very strong uncontrolled load. However, when the uncon-

trolled load is low, the actual TDMA roundwill be close to

Ttup and thus the maximumR will be closer to
Ttup−∆K

β
.

The state machine of the joining agent, used at startup

by all robots, is rather simple and it is depicted in Fig-

ure 8. Basically, a joining agent initially enters the Start

state and waits for a given number of roundswithout trans-

mitting, currently 10 and using a preconfiguredTtup. This

period of time allows the agent to determine whether there

is a team already operating in the area and learn some of

its operational parameters such as the actual Ttup, N and

K . After such period it enters the Insert state in which

it starts transmitting its data periodically but not synchro-

nized with the team (note there is no slot yet created in the

TDMA round for this node). Eventually the joining agent

will receive at least one transmission from another team

1200

Figure 7. Phase rotation to achieve synchronization

member with a membership vector indicating that it has

been acknowledged as a Running agent, meaning that the

TDMA round has been reconfigured with a new slot. At

this point, the agent enters in the Running state and stays

there.

Figure 8. State machine of a joining agent

The removal of an absent agent uses a similar process.

When in the previous rounds, currently in the last 5, no

reception from an agent is detected, the state of that agent

is changed to Remove. When all other running team mem-

bers have also marked the agent as Remove then the agent

is considered as Not Running, the number of active mem-

bers K is decremented, the inter-slot period Txwin is in-

creased and the dynamic IDs reassigned. Again, the pro-

tocol enters in the scan mode until each agent finds its

respective new slot.

Figure 9 shows an example of the reconfiguration pro-

cess within the Adaptive TDMA protocol caused by the

inclusion of a new agent in the team. Note that the ar-

rows denote the instants of transmission and the blocks

after transmissions are the respective membership vectors

(represented with a larger scale to improve readability).

• A, B – Two team members (agents 0 and 1) are syn-

chronized and transmitting their membership vectors

with: agent 0 – Running (R), agent 1 – Running and

agent 2 – Not running (N). The inter-slot interval is

Txwin =
Ttup

2
;

• C – A new member (agent 2) starts transmitting in

Insert (I) state, without slot;

• D, E – Agent 0 and 1, in their last Ttup sense the new

agent and update their membership vector, changing

agent 2’s state to Insert;

• F – Agent 2 changes in its membership vector the

states of agents 0 and 1 to Running;

• G – At this moment agent 2 is considered to be Run-

ning and the inter-slot interval is updated to Txwin =
Ttup

3
;

• H – Agent 0 takes the same action as in G, but since

it is the reference agent, the other agents will use this

instant time as reference to synchronize;

• I – Agent 2 switches its own state to Running, since

at least one team member considered it as Running,

but it is out of sync and it will use the extra delay β;

• J – Agent 1 denotes that it is out of sync and as in I

it will use the extra delay β;

• K – Agent 2 reaches its TDMA slot;

• L – In the last round agent 0 has not received any

information from agent 1 and changes its state to Re-

move (r). The lack of transmission from agent 1 in

a complete round is caused by the addition of β and

∆k over the base update period Ttup;

• M – Since instant L agent 0 receives again data from

agent 1 and adjusts it state back to Running. Note

that in Remove state the Txwin parameter is not up-

dated and from the point of view of the protocol, no

changes occur;

• N – Agent 1 reaches its TDMA slot and from now

all the agents are in their respective TDMA slots and

thus synchronized.

4 Experimental validation

In order to verify the effectiveness of the proposed self-

reconfiguration adaptive-TDMA protocol, several exper-

iments were carried out with an actual implementation.

The configuration parameters used (shown next) are rea-

sonable values but sensivity analsys of each of these pa-

rameters will be done in future work.

• N = 10

• Ttup = 100ms

1201

Figure 9. Timeline of the joining process for a new team member

Figure 10. Self-configuration of the slot time according to the number of running agents

• ǫ =
2

3
, thus ∆K =

Ttup

K
×

2

3

• β = 8% Ttup = 8ms

4.1 Normal operation

This experiment aims at showing the normal opera-

tion of the proposed protocol with the dynamic insertion

and removal of agents. Figure 10 shows a log of the ac-

tual self-reconfiguration process showing the time offset

of the reception of each agent packets with respect to the

start of the round in the reference agent 2 (dynamic ID 0).

It clearly shows the adaptation mechanism, with agent 4

joining at second 2, leaving at second 6, rejoining at sec-

ond 9 and leaving again at second 18. Similarly, agent 5

joins the team at second 13 and leaves at second 22. The

almost vertical traces that appear when a new agent arrives

show the scan mode, with the sliding relative phase.

4.2 Time to synchronize

In this experiment we verify the upper bound R for

the time that a robot takes to synchronize. In this case,

we used only two robots (K = 2), one permanently run-

ning and the other constantly forcing resynchronizations.

This was achieved with a script killing the communica-

tion process and restarting it again, after a random amount

of time, to guarantee an arbitrary start phase.In this case,

Equation 4 results in 13 rounds. This, however, is pes-

simistic as referred when explaining Equation 4, since

the two robots were alone in a relatively isolate area with

practically no uncontrolled traffic. Therefore, in this case

we can use the more accurate bound R ≤
Ttup−∆K

β
with

∆K = 33.3ms resulting in 9 rounds. Figure 11 shows

the histogram of the measured number of rounds needed

to synchronize after 1000 trials. As expected, the distri-

bution is approximately uniform and the significant max-

imum is 8 rounds, thus below the expected upper bound

R. There are a few occurrences of larger intervals to syn-

chronize that are caused by seldom packet losses and other

occasional uncontrolled delays.

Figure 11. Histogram of the time to synchro-

nize (in # of TDMA rounds)

4.3 Effectiveness of the self-reconfiguration

To assess the benefits of the proposed scheme we com-

pared it with the simple adaptive-TDMA as proposed in

[7]. Note that the benefits of the adaptive-TDMA ap-

proach with respect to unsynchronized communication

were already shown in that work. Moreover, we nearly

saturate the network with uncontrolled load, generated by

two external stations exchanging ping packets between

1202

themwith a rate of 1 every 10ms and with 1450 data bytes.

This caused a total load, measuredwith an external device,

slightly above 60%.

In the adaptive TDMA case we consider now 2 nodes

using two consecutive slots in a TDMA round with 10

slots. Figure 12 shows a a log of the difference between

each transmission from one agent to the preceeding trans-

mission from the other (inter-transmission delay). Since

the slots are consecutive, we expect this difference to be

about 10ms in one agent and 90ms in the other. Both inter-

vals can be longer as enforced by the round period adap-

tation mechanism. We see that the frequent large delays

caused by the uncontrolled load often bring the team out

of synchronization. During the run that lasted 2min, the

team stayed synchronized during only 50% of the time,

and 29 packets were lost (1,2% of total packets sent).

Figure 12. Log of the time differences be-
tween transmissions with 2 nodes under

adaptive-TDMA

The same experiment was repeated using the self-

reconfiguration procedure where the protocol divided the

whole round in just two slots assigned to the two agents.

These slots were 5 times larger than those in the adaptive-

TDMA case thus creating a much larger leeway to acco-

modate the delays caused by the uncontrolled traffic. Fig-

ure 13 shows the corresponding log for this situation in

which we can see that both agents transmit with an aver-

age interval of 50ms and the team seldom lose synchro-

nization. Actually, the figure shows one of the rare cases

of such loss of synchronization and subsequent resync

(large peak at second 46). The team stayed synchronized

97% of the time and lost 7 packets, corresponding to 0.3%

of all sent packets.

Figure 13. Log of the time differences be-

tween transmissions with 2 nodes with the
self-reconfiguration process

5 Other features/issues

5.1 Asymetric bandwidth distribution

One interesting feature that is already supported in the

current protocol implementation is the possibility to as-

sign more than one slot to each agent. This can easily be

achieved by allowing an agent to use multiple static IDs.

The protocol, transparently, will consider each of these

IDs as a different virtual agent and assign the respective

real agent the corresponding number of slots. This mech-

anism has been tested and shown to work as expected.

5.2 Dynamic TDMA round period

The TDMA round period establishes the responsive-

ness and temporal resolution of the protocol. Thus, dur-

ing periods of intense team dynamism it could be inter-

esting to use a shorter value for Ttup while a larger value

could be adequate for periods of quietness, profiting from

less transmissions. The on-line adaptation of Ttup also re-

quires a consensus procedure, similarly to the membership

vector referred in Section 3. However, if there is a need

for a sudden change from a large to a short Ttup, the nodes

with such need can start transmitting asynchronously un-

til the consensus is achieved. This mechanism is currently

being implemented.

5.3 Ad-hoc mode

The use of an AP is an helpful and practical option to

simplify consensus amoung a set of distributed agents and

thus simplify their management and synchronization. It is

also easy to deploy since the AP can be carried by one of

the agents in the team. However, it might be beneficial to

avoid the AP, mainly in terms of fault-tolerance and chan-

nel and energy efficiency. Without the AP our protocol

becomes susceptible to cliques as soon as nodes start to

move apart creating connections with more than 1 hop.

We are currently working to prevent this by using dis-

tributed consensus techniques suited for ad-hoc networks.

6 Related work

In wireless communications (data or voice) it is com-

mon to use slot assignment. In [10, 4, 9], the authors pro-

pose using dynamic TDMA frameworks where slots in a

fixed round structure are assigned dynamically to nodes.

Moreover, these approaches are normally centralized with

a master collecting slot requests and assigning them dy-

namically.

In [2] the authors also do synchronization based on the

reception time instants of the transmission of other nodes

in a team. However, the protocol was not developed to

cope with uncontrolled load in the channel. In fact all

nodes must comply with RI-EDF for the protocol to work.

In IEEE 802.11e and ZigBee in synchronous mode,

hardware-based mechanisms are used to enforce synchro-

nization and support different levels of Quality of Service.

1203

However, specific network adapters need to be used, in-

creasing their cost and reducing their availability.

Finally, IEEE 802.11-DCF and ZigBee unsynchro-

nized mode are based on the well-known CSMA-CA tech-

nique which is well adapted to asynchronous communica-

tion, leading to an efficient use of the channel bandwidth.

However, under high loads, their performance degrades

because of collisions and their efficiency is reduced.

Non of these protocols is simultaneously fully dis-

tributed, synchronous, adaptive / reconfigurable and built

on top of widely available COTS network interfaces,

which our protocol is. Thus we believe it constitutes a

novel and efficient solution to the problem of supporting

the coordination of teams of mobile robots.

7 Conclusion

Cooperating robots is a field currently generating large

interest in the research community. RoboCup is one ex-

ample of an initiative developed to foster research in that

area. This paper described the wireless communication

layer of the CAMBADA middle-size robotic soccer team

being developed at the University of Aveiro.

Earlier work from the authors led to the development of

a wireless communication protocol that reduces the prob-

ability of collisions among the team members. The proto-

col, called adaptive TDMA, adapts to the current channel

conditions, particularly accommodating periodic interfer-

ence patterns. In this paper the authors extended that pro-

tocol with on-line self-configuration capabilities that al-

low reconfiguring the slots structure of the TDMA round

to the actual number of active team members, further re-

ducing the collision probability. Several experiments are

shown that illustrate the effectiveness of the protocol. It is

worth noting that the protocol has actually been under use

for over one year in RoboCup competitions.

Future work includes the further dynamic reconfigura-

tion of the TDMA round interval, i.e., the team update

period, according to the instantaneous timeliness require-

ments imposed by dynamic environemnts. The changes

needed to operate under ad-hoc mode are also being ad-

dressed, which will allow operating without an AP and

increasing the efficiency in the use of the channel band-

width.

8 Acknowledgements

The authors would like to acknowledge the helpful dis-

cussions with Prof. Daniel Mossé in an earlier version of

this paper. This work was partially supported by the Eu-

ropean Comission through grant ArtistDesign ICT-NoE-

214373 and Portuguese Government through grant FCT -

SFRH/BD/29839/2006.

References

[1] L. Almeida, F. Santos, T. Facchinetti, P. Pedreiras,

V. Silva, and L. S. Lopes. Coordinating distributed au-

tonomous agents with a real-time database: The cambada

project. In C. Aykanat, T. Dayar, and I. Korpeoglu, ed-

itors, ISCIS, volume 3280 of Lecture Notes in Computer

Science, pages 876–886. Springer, 2004.

[2] T. L. Crenshaw, A. Tirumala, S. Hoke, and M. Caccamo.

A robust inplicit access protocol for real-time wireless col-

laboration. In Proceedings of the ECRTS’05 - Euromicro

Conference on Real-Time Systems, pages 177–186, Palma

de Mallorca, Spain, July 2005.

[3] K. Gopalan. Real-time support in general purpose operat-

ing systems. Technical report, 2001.

[4] A. Kanzaki, T. Uemukai, T. Hara, and S. Nishio. Dynamic

tdma slot assignment in ad hoc networks. In Proceedings

of the AIDA’96 - Advanced Information and Networking

Applications, pages 330–335, March 2003.

[5] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Os-

awa. Robocup: The robot world cup initiative. In Pro-

ceedings of the IJCAI-95 Workshop on Entertainment and

AI/Alife, Montreal, August 1995.

[6] P. Pedreiras and L. Almeida. Task management for soft

real-time applications based on general purpose operating

systems. In Proceedings of the 9th Brazilian Workshop on

Real-Time Systems, Belém, Brazil, May 2007.

[7] F. Santos, L. Almeida, P. Pedreiras, L. S. Lopes, and

T. Facchinetti. An adaptive tdma protocol for soft real-

time wireless communication among mobile autonomous

agents. In Proceedings of the WACERTS04 Workshop on

Architectures for Cooperative Embedded Real-Time Sys-

tems (in conjunction with RTSS2004 - 25th International

Symposium on Robotics and Automation), Lisbon, Portu-

gal, December 2004.

[8] G. Weiss. Multiagent Systems: A Modern Approach to

Distributed Artificial Intelligence. MIT Press, 1999.

[9] N. D.Wilson, R. Ganesh, K. Joseph, and D. Raychaudhuri.

Packet cdma versus dynamic tdma for multiple access in

an integrated voice/data pcn. IEEE Journal on Selected

Areas in Communications, 11(6):870–884, August 1993.

[10] C. D. Young. Usap: A unifying dynamic distributed multi-

channel tdma slot assignment protocol. In Proceedings of

the MILCOM’96 - Military Communications Conference,

volume 1, pages 235–239, October 1996.

1204

