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Self-Configuring Localization Systems: Design and
Experimental Evaluation

NIRUPAMA BULUSU†

University of California at Los Angeles

JOHN HEIDEMANN

University of Southern California/Information Sciences Institute

DEBORAH ESTRIN and TOMMY TRAN

University of California at Los Angeles

Embedded networked sensors promise to revolutionize the way we interact with our physical envi-

ronment and require scalable, ad hoc deployable and energy-efficient node localization/positioning.
This paper describes the motivation, design, implementation and experimental evaluation (on

sharply resource-constrained devices) of a self-configuring localization system using radio beacons.

We identify beacon density as an important parameter in determining localization quality, which
saturates at a transition density. We develop algorithms to improve localization quality by (i)
automating placement of new beacons at low densities (HEAP) and (ii) rotating functionality

among redundant beacons while increasing system lifetime at high densities (STROBE).

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Architecture and

Design—wireless communication; C.3 [Special-purpose and Application-Based Systems]: Real-time and em-

bedded systems; C.4 [Performance of Systems]: Design Studies

General Terms: Algorithms, Design, Experimentation, Measurement, Performance, Reliability

Additional Key Words and Phrases: location, localization, self-configuration, sensor networks

1. INTRODUCTION

Recent technological advances have fostered the emergence of small, low-power devices

that integrate micro-sensing and actuation with on-board processing and wireless com-

munications capabilities. When deployed in large numbers and embedded deeply within

large-scale physical systems, these devices gain the ability to measure aspects of the phys-

ical environment in unprecedented detail. Through distributed coordination, pervasive net-

works of micro-sensors and actuators promise to revolutionize the way we understand and

construct complex physical systems [Estrin et al. 1999].
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There are many potential applications of sensor networks: physiological monitoring;

environmental monitoring (air, water, soil, chemistry); condition based maintenance; smart

spaces; military surveillance; precision agriculture; transportation; factory instrumentation

and inventory tracking. In this paper, we focus on densely distributed, physically coupled

and wireless sensor networks.

Three characteristics distinguish wireless networked embedded computing systems (or

wireless sensor networks) from traditional desktop based computing systems. First, indi-

vidual devices will be much smaller and cheaper and untethered. Consequently, they will

have modest processing and communications capabilities, and much limited energy on

board. Second, they will be more numerous. Finally, the ratio of devices per human will

be several orders of magnitude higher than in desktop computing. Such systems must be

able to operate unattended with minimal configuration and re-configuration requirements.

Such considerations mandate that these systems on the whole must be scalable, ad hoc

deployable and energy-efficient.

Localization may be defined as the problem of estimating the spatial relationships among

objects. Localization is fundamental to coordination amongst various embedded networked

sensors as these systems are tightly coupled to the physical world. Because sensor data are

intrinsically associated with the physical context of the phenomena being sensed, spa-

tial coordinates are often a natural way to name data. Spatial coordinates are also em-

ployed by collaborative signal processing algorithms (e.g. beamforming) that combine

data from multiple sensor nodes for such tasks as target tracking. Furthermore, geo-

graphic assistance in ad hoc routing promises significant reductions in energy consump-

tion [Karp and Kung 2000; Xu et al. 2001]. However, existing localization systems such

as GPS[Hofmann-Wellenhoff et al. 1997] may be used in some nodes, but cannot always

meet the operational (low power), environmental (indoors) and cost constraints of all the

deployed nodes.

Localization has been studied for many years as a classical problem in many disciplines

(and under many names!), including the robot localization problem in mobile robotics [Thrun et al. 2001],

the motion tracking problem in virtual reality systems [Welch et al. 1999], in navigation

systems (VOR [VOR ] and the Global Positioning System (GPS)[Hofmann-Wellenhoff et al. 1997])

and identifying user location in cellular networks (RadioCamera [US Wireless Corporation ]).

When engineering localization systems for these applications, environmental depen-

dence has proven to be a major challenge. The nature of the environment (such as in-

doors or outdoors, temperature, pressure, weather, objects and various sources of inter-

ference) influences not only the characteristics of the sensors used for localization but

also the magnitude and type of measurement errors. Traditionally, this has been ad-

dressed through extensive environment-specific calibration and configuration of the cen-

trally controlled, tightly coupled localization system (as in HiBall [Welch et al. 1999],

Radar [Bahl and Padmanabhan 2000] and RadioCamera [US Wireless Corporation ]) and

the use of sophisticated, memory and compute-intensive probabilistic position-estimation

algorithms (such as Monte Carlo Localization [Thrun et al. 2001]).

These approaches are however not suited for large scale sensor networks. Sensor net-

works require node localization, but as mentioned previously, under far severe node-level

resource constraints (limited energy, bandwidth, memory and processing) and system level

operational constraints. Localization approaches that can reconcile the needs of large ad

hoc, sensor networks are wireless and distributed such as [Bulusu et al. 2000], Cricket

ACM Transactions on Embedded Computer Systems, Vol. TBD, No. TBD, TBD 20TBD.
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[Priyantha et al. 2000], AHLoS [Savvides et al. 2001], [Girod 2000] and SpotON [Hightower et al. 2000]

and lack centralized coordination and control. Our thesis is that such a localization system

must also self-configure, i.e., autonomously measure and adapt its properties to environ-

mental conditions (rather than rely on design-time pre-configuration or manual reconfig-

uration) in order to achieve ad hoc deployment and robust, unattended operation in any

environment.

In sensor networks, node localization can leverage having a few nodes at known po-

sitions (also known as beacons) and compute the positions of other nodes relative to the

coordinate system defined by the beacons; or nodes can form a completely independent

coordinate system. For reasons we describe in Section 3 we chose an approach based on

beacons. In this paper, we describe the motivation, design, implementation and evaluation

of a self-configuring localization system based on beacons. Our key contributions are as

follows.

—To address beacon deployment issues, we introduce the novel concept of self-configuring

beacon networks.

—We identify density as an important parameter in characterizing localization quality, de-

velop a methodology and propose two algorithms for system self-configuration based

on beacon density. For sparse and medium density deployments, we propose the HEAP

algorithm to detect regions with poor localization, and select candidate points for plac-

ing new beacons. For dense beacon deployments, we propose the STROBE algorithm.

STROBE enables densely deployed beacons to coordinate without self-interference and

opportunistically conserve energy.

—We also evaluate and demonstrate the effectiveness of our solutions. We use simulations

to explore in detail the implications of several design choices. We present the measured

performance of an implementation of a radio based localization system that demon-

strates that the granularity of localization improves by adding beacons at points selected

by the HEAP algorithm. We also verify and validate the simulated performance of the

STROBE algorithm using experimental emulations.

2. BACKGROUND

Localization is by nature an interdisciplinary problem involving several areas of computer

science and relevant to many kinds of engineering systems. Consequently, research has

proceeded on both the systems and algorithmic fronts in computer science. In this section,

we review why state-of-the-art developments in these areas do not meet the requirements

and motivate our approach.

2.1 Systems

The design of a localization system is largely influenced by application requirements - such

as the requirement highly accurate or real time position estimation. The system can be

either tightly coupled (beacons that are wired to a centralized controller and placed at fixed

positions) or loosely coupled (beacons that are wireless and coordinate in a completely

decentralized manner with no central control).

2.1.1 Tightly coupled systems. There are many tightly coupled systems such as the

ActiveBat [Ward et al. 1997] developed for sentient computing applications and the HiBall

ACM Transactions on Embedded Computer Systems, Vol. TBD, No. TBD, TBD 20TBD.
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Table I. Notation used in this paper to describe localization and beacon placement algorithms.

SYMBOL NAME DEFINITION

B Beacon A device that knows its position.

(and is presumed to be static.)

C Client A device whose position is unknown.

(can be static or mobile.)

BP Beacon Placement An assigned placement of beacons.

N Total number of deployed beacons.

A Area Total area in which beacons are deployed.

position(B) Position of a beacon B.

Range Range Nominal transmission range of the beacons.

ρ Beacon Deployment Density Number of beacons per unit area.

µ Beacons Per Neighborhood Number of beacons present in a nominal

or Beacons Per Nominal radio transmission coverage area

Radio Coverage Area (bpnrca) of π · Range2.

ρ =
N

A
(1)

µ = ρ · π · Range2 (2)

Tracker [Welch et al. 1999] designed for virtual reality applications. These applications

have high accuracy and real-time tracking requirements.

Problems of time synchronization and coordination amongst beacons are easily resolved

because these systems are wired and have a centralized controller. These systems therefore

achieve high accuracy. But the drawback is that the centralized position estimation limits

the number of devices these systems can simultaneously track (HiBall). Secondly, wiring

significantly impedes deployment. A key research challenge in these systems is achieving

similar granularity outdoors where deployment cannot be controlled and wiring may be

infeasible.

2.1.2 Loosely coupled systems. Motivated by deployment concerns, recently proposed

localization systems [Bulusu et al. 2000], Cricket [Priyantha et al. 2000] and AHLoS

[Savvides et al. 2001] are decentralized and completely wireless. They sacrifice the ac-

curacy of tightly coupled systems for ease of deployment, and scalability to large numbers

of devices. They rely on a system of beacons, each of which periodically transmits an

advertisement containing its position. Clients compute their position based on the adver-

tisements they receive.

Because beacons are wireless and deployed in an ad hoc manner, beacon coverage is

not guaranteed. Due to the lack of centralized control, there is no explicit coordination

amongst beacons. Thus beacons can contend and self-interfere when emitting a signal

(radio, acoustic etc.). These problems need to be addressed.

2.2 Algorithms

Algorithmic developments in localization focus on two complementary problems - robust

position estimation, and optimal node placement.

2.2.1 Position estimation. In the field of mobile robotics, localization has been re-

ferred to as “the most fundamental problem to providing a mobile robot with autonomous

ACM Transactions on Embedded Computer Systems, Vol. TBD, No. TBD, TBD 20TBD.
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capabilities” [Cox 1991]. Environmental obstructions such as walls, moving people and

objects, can greatly interfere with the sensing capabilities of a mobile robot. Consequently,

the focus here lies on robust position estimation in real-time through probabilistic localiza-

tion techniques that account for unpredictable sensing error.

An interesting development in probabilistic localization algorithms for mobile robot

navigation has been Monte Carlo Localization (MCL) [Thrun et al. 2001]. MCL algo-

rithms represent a robot’s belief by a set of weighted hypotheses (samples), which approx-

imate the posterior under a common Bayesian formulation of the localization problem.

These algorithms are computationally efficient, versatile, resource-adaptive and robust un-

der a range of circumstances. However, these algorithms have been designed to localize

a single mobile robot (with PC-class computational hardware) with respect to its environ-

ment. Consequently, they have not addressed issues of scalability or hardware constraints.

Doherty has proposed convex optimization techniques [Doherty et al. 2001] for solving

the position estimation problem in sensor networks in an off-line, centralized manner. The

advantage of this approach is that it requires very few references (or beacons) since all sys-

tem constraints are solved globally. However, this algorithm is not very robust to failures -

when there are ambiguities in measurements.

Savvides et al have explored iterative techniques for robust position estimation in sen-

sor networks [Savvides et al. 2000] . Iterative techniques incur additional energy costs in

communication, and are not guaranteed to be completely fault tolerant.

2.2.2 Optimal Placement. Optimal placement problems have been studied in various

contexts by researchers including facility location [Charikar et al. 1999] and pursuit eva-

sion problems in robotics [Guibas et al. 2000].

In robotics, the classical Art gallery problem formulation has been used by researchers

to address questions of placement. In the “art-gallery” analogy, the robot’s goal is to move

from one position to another to maximize visual coverage of its surroundings, as a human

might try to do in a gallery. A complementary set of approaches addresses the pursuit-

evasion problem in which a robot tries to move so as to evade observation or capture by

mobile trackers. However these approaches are based on modeling the environment as a

polygon and are best suited for vision-based localization systems. They account for neither

the noise nor the wide variety of terrain conditions one would expect to encounter for ad

hoc sensor networks.

Facility Location [Charikar et al. 1999] problems are a well known class of theoretical

computer science problems and have been the subject of extensive research over the past

thirty-five years. In these facility location problems, there is a set of locations, where

the cost of building a facility at location i is f(i); furthermore, there is a set of client

locations (such as stores) that require to be serviced by a facility, and if a client at location

j is assigned to a facility at location i, a cost of c(i, j) is incurred. The objective is to

determine a set of locations at which to open facilities, so as to minimize the total facility

and assignment costs. Since these problems are NP-hard, it is unlikely that there exist

efficient algorithms to find optimal solutions. Instead, the focus has been on designing

algorithms that are guaranteed to find solutions within a particular factor of the optimum.

Solutions are based on linear relaxations to the natural integer programming formulations

that yield extremely good lower bounds. Unfortunately, these algorithms do not provide

proper cost models to represent beacon connectivity.

Researchers have recognized that these systems will be deployed at large in an ad

ACM Transactions on Embedded Computer Systems, Vol. TBD, No. TBD, TBD 20TBD.
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hoc fashion, without controlling the placement of each and every node. Instead, they

have focused on developing techniques to identify problems in a deployed sensor field.

Meguerdichian et al [Meguerdichian et al. 2001] have also proposed algorithms for cov-

erage in wireless ad hoc sensor networks given global knowledge of node positions using

Voronoi diagrams [Aurenhammer 1991] to compute maximal breach paths and find gaps.

The techniques developed for system deployment through optimal node placement are

a) not scalable to very large sensor networks, b) not suitable for rapid deployment and c)

not generalizable to a variety of environments and systems, suffering unknown and unpre-

dictable radio propagation vagaries. It is virtually impossible to adapt to such terrain and

propagation uncertainties and compute a satisfying beacon placement to achieve uniform

localization granularity across the terrain using a purely algorithmic approach.

2.3 Summary

Despite these state of the art developments in systems and algorithms, a fundamental chal-

lenge remains. How can we achieve robust localization under the following conditions?

—Scalability is paramount and motivates localization systems that are loosely coupled on

the global scale such as [Bulusu et al. 2000] and [Priyantha et al. 2000].

—Computational and hardware resources are modest and preclude more sophisticated po-

sition estimation algorithms such as [Thrun et al. 2001].

—System and environment conditions vary greatly over time and space and preclude

design-time pre-configuration algorithms such as [Meguerdichian et al. 2001].

As we discussed in the introduction, one key distinguishing characteristic of sensor net-

works is the extremely high ratio of devices per human and the consequent need for robust,

unattended operation. Consequently, making localization self-configuring in response to

environmental and system conditions becomes very important. In the next Section, we

develop our methodology for making localization self-configuring.

3. SELF-CONFIGURING BEACON NETWORKS

In this Section, we describe our intuition for self-configuring beacon networks and develop

our beacon density-based methodology for achieving it.

3.1 Using Beacons for Localization

Our localization system described in Appendix A uses beacons. Besides our approach, sev-

eral proposed localization systems rely on beacons [Priyantha et al. 2000], [Ward et al. 1997],

[Welch et al. 1999]. Localization systems using some beacons have two advantages over

localization systems with no beacons. First, having beacons spatially distributed through-

out the geographical region lets devices compute their location in a scalable, decentral-

ized manner. Second, even when the application permits off-line, centralized position-

estimation algorithms (as in [Doherty et al. 2001]), both the convergence and estimation

accuracy can be significantly improved by having some nodes as beacons [Doherty et al. 2001].

These beacons constitute the underlying infrastructure of the localization system. There

are two major configuration and deployment concerns when beacons are used.

—Beacon Configuration. Each beacon needs to be configured with its spatial coordinates

during deployment. Automating this process is important for large scale and highly

dense beacon deployment. In an outdoor setting, we assume that beacons can infer their

ACM Transactions on Embedded Computer Systems, Vol. TBD, No. TBD, TBD 20TBD.
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position through GPS. In an indoor setting, we believe that initial beacon placement will

be structured. Only a few beacons will need to have their positions assigned manually,

the rest can exploit this structure (for example, in a rectangular grid) in beacon place-

ment to infer their coordinates. This is the approach used in fact in the HiBall tracker

[Welch et al. 1999].

—Beacon Placement. How many beacons do we need? Where should they be placed?

The beacon density and placement are important in influencing the overall localization

quality. Uniformly dense placement is good and has its benefits, it is not adequate.

3.2 Impact of Beacon Density

We start by considering the impact of beacon density on the quality of localization in these

systems.

3.2.1 Characterizing Beacon Density. A classical notion of node density is the de-

ployment density.

Beacon deployment density ρ. denotes the number of beacons per unit area.

ρ =
N

A
(3)

However, this definition does not abstract away the effect of the nominal communication

(radio transmission) radius on the perceived density. We have come up with a new density

metric that encapsulates the effect of the radio transmission range.

Beacons per neighborhood µ. (also referred to as beacons per nominal radio coverage

area bpnrca) denotes the number of beacons that exist in a nominal radio transmission

coverage area (π ·Range2).

µ = ρ · π ·Range2 (4)

3.2.2 Impact of Density on Localization Granularity. For a given beacon placement

BP in a square terrain of area A = Side × Side and 0 < step≪ Side. Let us the define

the point P (k, l) as follows:

P (k, l) = (k · step, l · step) ∀ 0 ≤ k, l ≤ Side

step
(5)

The quality of localization in the terrain can be characterized in terms of statistical met-

rics such as the mean and median localization error over various points in the terrain,

defined as follows.

MeanErr(BP) =
Σ

Side
step

k=0
Σ

Side
step

l=0
LEBP(P (k, l))

(Side
step

+ 1)2
(6)

MedianErr(BP) = median(LEBP(P (k, l))) ∀ 0 ≤ k, l ≤ Side

step
(7)

Figure 1 plots the mean localization error as a function of beacon density. Regardless of

actual beacon placement, the localization granularity saturates at a certain threshold beacon

density µthresh (6 in this case). 1

1The saturation density for localization in 2 dimensions can be expected to differ from localization in 3 dimen-

sions.

ACM Transactions on Embedded Computer Systems, Vol. TBD, No. TBD, TBD 20TBD.
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Fig. 1. Mean localization error vs. Beacons per nominal radio coverage area. Localization granularity saturates

at a certain number of beacons per neighborhood, around 6 in our case. (Graph based on simulations of 1000

random topologies per beacon density.)

3.2.3 Impact of Density on Channel Contention and Self-Interference. Consider a CSMA-

like underlying media access protocol for sensor networks. One example of such a media

access protocol is SMAC [Ye et al. 2002].

Let us assume the beacons per nominal radio coverage area is µ. Assume that any given

instant, the probability of a beacon transmitting an advertisement packet is p. If TX is the

transmission time of an advertisement packet and each beaconing interval is T then

p =
TX

T
(8)

Let psuccess denote the probability that the packet is successfully received without any

interference. Let pcollision denote the probability of collision in the wireless system. We

can model the channel contention as follows.

Let X indicate the number of beacons that will try to transmit a packet.

psuccess = Pr(X = 1) (9)

= p · (1− p)
µ

(10)

pcollision = 1− psuccess (11)

This shows us that the probability of packet collision increases exponentially with the

beacon density µ. Thus, we cannot simultaneously increase beacon density and maintain

the same system responsiveness for localization. 2

2In order to maintain the same collision probability pcollision at a higher beacon density, we need to significantly

reduce the packet transmission probability p. Since the transmission time of a beacon advertisement packet TX

is fixed, this means that we must correspondingly increase the beaconing interval T . Since the sampling time of

a client for its location computation (defined in Appendix A) is directly proportional to T , this means that there

is a corresponding increase in location computation latency.

ACM Transactions on Embedded Computer Systems, Vol. TBD, No. TBD, TBD 20TBD.
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3.2.4 Two Assertions about Beacon Density. Thus, we can make two assertions about

beacon density in the context of proximity-based localization systems with localized loca-

tion computation (Chapter A).

(1) Regardless of actual beacon placement, the localization granularity saturates at a cer-

tain threshold beacon density µthresh.

(2) As the beacon density increases, the probability of collisions among competing bea-

cons vying for the same transmission slot increases.

At low and medium beacon densities, the quality of localization suffers due to poor

placement of beacons due to various environment and calibration-dependent vagaries in

radio signal propagation. For example, different radio transmitters operating at the same

power level may have different effective radio transmission ranges if they are not cali-

brated. Moreover, the same transmitter may experience varying transmission ranges de-

pending on its environment (indoors vs. outdoors). A radio transmitter may have an

anisotropic radio coverage pattern, determined by its environment and the obstacles in the

environment. Unfortunately, we cannot predict and address these problems at design-time.

This motivates run-time self-configuration of the localization system.

3.3 Two Forms of Self-Configuration

Since different problems arise at different beacon densities, beacon density should motivate

the approach to self-configuration. In Sections 4.1 and 4.2, we discuss the following two

forms of self-configuration.

—At low and medium densities: Are the deployed beacons enough to guarantee good

localization quality throughout the terrain? How do we ensure this? If they are not

enough, how can we add beacons to improve the quality of localization.

—At high densities: How do we coordinate densely deployed beacons so as to reduce

channel contention while best exploiting the spatial diversity and redundancy of densely-

deployed beacons?

4. ALGORITHMS

In this Section, we describe the design of HEAP and STROBE, two algorithms for self-

configuration for medium and dense beacon deployments respectively.

4.1 HEAP Design

At low and medium densities, beacons deployed in an ad hoc manner for localization may

not be sufficient to ensure robust localization throughout the terrain. The goal of HEAP

is incremental beacon placement i.e., to discover places to add a few new beacons to

maximize improvement in localization, rather than to completely re-deploy the beacon

field.

4.1.1 Overview and Design Rationale. The HEAP approach to incremental beacon

placement is based on system measurements. In HEAP, the wireless network consists of

three entities: Node, Beacon and a Placer. A high-level overview of the algorithm is as

follows:

—Individual beacons must determine suitable candidate points for adding new beacons

within their local neighborhood (for example, within a region of radius r around the

ACM Transactions on Embedded Computer Systems, Vol. TBD, No. TBD, TBD 20TBD.
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Beacon

Node

Central Site

Fig. 2. Information flow for HEAP. Data is transmitted from beacons to the placer, with in network aggregation

at intermediate nodes.

beacon). To accomplish this, beacons exchange neighborhood information with each

other.

—Because new beacons need to be physically deployed, a controlling agency is needed.

The placer deploys new beacons.

—Beacons must send their candidate points to the placer. Intermediate nodes aggregate

and relay data from the beacons to the placer. 3

Information flow in HEAP is illustrated in Figure 2. In HEAP, a central placer is required

only because we assume incremental node deployment from a single agency (we selected

this definition for comparison with prior central algorithms [Bulusu et al. 2001]). HEAP

employs distributed, in-network processing to select placement sites. A fully distributed

variation on the HEAP algorithm would allow an aggregation node to deploy additional

beacons if improvement exceeded some threshold.

4.1.2 Algorithms. Several data dissemination mechanisms (LEACH [Heinzelman et al. 2000]

and Directed Diffusion[Intanagonwiwat et al. 2000]), and ad hoc routing protocols [Royer and Toh 1999]

have been proposed in the research literature.

Information flow in HEAP can be set up using any of these protocols. Once this is in

place, the three entities Beacon, Node and Placer execute their parts.

Beacon B : A beacon exchanges information and learns to estimate its beacon neigh-

borhood. It then selects a candidate point and sends it to its parent node.

Node N : An intermediate node in the hierarchy receives candidate points from all its

neighbor beacons and child nodes. It selects and forwards one of these candidate points to

its parent node.

3In systems where the placer is fixed and located far from energy-constrained beacons, hop-by-hop com-

munication rather than direct long range communication to the destination site is preferable for energy-

efficiency. Furthermore, it is infeasible to transmit all data across the network, even hop-by-hop. By per-

forming local computation to reduce data before transmission, orders of magnitude energy savings can be ob-

tained [Pottie and Kaiser 2000].

ACM Transactions on Embedded Computer Systems, Vol. TBD, No. TBD, TBD 20TBD.
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Placer P : The placer receives candidate points from all its neighboring beacons and

child nodes. It eliminates any candidate points that do not satisfy constraints and selects

good points for adding new beacons.

4.1.3 Neighborhood Estimation. Before a beacon in HEAP can select a candidate

point, it needs to estimate its beacon neighborhood to the number of hops appropriate to its

candidate point selection algorithm. To accomplish this, Beacon B executes the algorithm

BeaconNeighborhood ( B,NumHops ). In this algorithm, beacons include information

about other beacons in their neighborhood of a certain scope in their advertisements. A

beacon iterates NumHops times, increasing its scope by 1 each time.

Algorithm BeaconNeighborhood ( B, NumHops )
Input: B — A beacon.

NumHops — The Number of hops (or the scope) to which neighborhood

must be computed.

Output: A set of all beacons within NumHops of beacon B.

Step 0. NumPhases← NumHops

Step 1. Phase← 1

Step 2. Neighborhood ( 0 )← position ( B )

Step 3. while (Phase ≤ NumHops) do

BROADCAST ( B, Phase− 1, Neighborhood ( Phase− 1 ))
Listen to broadcasts of other beacons’

Phase− 1 neighborhoods.

Neighborhood ( Phase ) is the union of all the

Phase− 1 neighborhoods heard during this period.

Phase← Phase + 1

Step 4. Return Neighborhood ( NumHops )

We consider HEAP-GRID, a simple algorithm for selecting candidate points, that ex-

tends the basic GRID algorithm proposed in [Bulusu et al. 2001]. We also experimented

with HEAP-MAX, the HEAP distributed algorithm with the MAX evaluation function in

[Bulusu et al. 2001] (which selects the point with the maximum localization error as a can-

didate point), but do not report on it here because the HEAP-GRID function gives better

improvements in localization quality with respect to the mean and median localization

error.

4.1.4 Candidate Point Selection. The HEAP-GRID algorithm for candidate point selec-

tion, illustrated in Figure 3 learns the neighborhood of a beacon, but with a larger scope

of 4 hops. Its approach is to simulate the cumulative localization error over each grid for

several uniformly separated points in its neighborhood. It divides the neighborhood into a

few square grids, and picks the grid center with the highest error as a candidate point. This

is based on the observation that adding a new beacon affects its nearby area, not just the

point where it is placed.

Algorithm HEAP −GRID(B)
Input: B - A beacon.

Output: A candidate point where a new beacon could be added.
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Fig. 3. Illustration of the HEAP-GRID algorithm. Beacon B determines candidates points in its neighborhood, in

this case a square of side 3 · Range based on the locations of its neighbor beacons.
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Step 0. NeighborSet← BeaconNeighborhood(B, 4)

Step 1. side← 3 ·Range
Q← position(B) = (XB , YB)
Consider a square S with side side and center Q.

Step 2. Divide S into NG partially overlapping grids as follows.

Step 2.1. gridSide = 2 ·Range
Let the side of each grid be gridSide.

Each grid encloses the radio reachability region of its center.

Step 2.2. For 1 ≤ i, j ≤
√

NG, the grid G(i, j) is defined by its center Gc(i, j).

Gc(i, j) = (GCX(i, j), GCY (i, j)) where

GCX(i, j) = XB −
(side− gridSide)

2
+

(i− 1)× (side− gridSide)√
NG − 1

GCY (i, j) = YB −
(side− gridSide)

2
+

(j − 1)× (side− gridSide)√
NG − 1

)

Step 3. For each grid G(i, j), compute the cumulative localization error CE(i, j)
for the grid G(i, j) as follows.

Step 3.1. Divide the grid into squares of size step× step.

Step 3.2. ∀ 0 ≤ k, l ≤ ( gridSide
step

),

let P (k, l) = (PX(k, l), PY (k, l))
be the point in the region that corresponds to a square corner.

PX(k, l) = GCX(i, j)− gridSide/2 + k · step
PY (k, l) = GCY (i, j)− gridSide/2 + l · step

Step 3.3. Estimate localization error at each point P (k, l) as follows.

Let χ be the set of all beacons in NeighborSet that are within distance

Range of P (k, l).
LE(P (k, l))← EstimateLocalizationError(P (k, l), χ)

Step 3.4.

CE(i, j) ← Σ
k=

gridSide

step

k=0
Σ

l=
gridSide

step

l=0
LE(P (k, l))

Step 4. Return (Gc(p, q), S(p, q)) of the grid G(p, q) with maximum cumulative local-

ization error as the selected candidate point.

Although HEAP-GRID is by no means the only possible algorithm, it is representative

of the effectiveness attainable with a localized algorithm.

4.1.5 Error Estimation. One of the aspects of candidate point selection by a beacon is

to estimate localization error at various points based on its knowledge of the beacon neigh-

borhood. This error estimation is the domain-specific part of beacon placement, one can

substitute the procedure below for connectivity based localization with other procedures.

Algorithm EstimateLocalizationError(P, χ)
Input: P — a point in 2 dimensional space.
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χ — a set of beacons within radio range Range of point P .

Output: An estimate of localization error at point P .

Step 0. χ
′ ← {(position(B), Range ) | B ∈ χ }

Step 1. Pest ← LocalizationFromConnectivity(χ
′

)

Step 2. ǫ← LocalizationError(P, Pest)

Step 3. Return ǫ.

4.1.6 Summary. We have presented HEAP, our low-complexity algorithm for self-

configuration at low and medium beacon densities. HEAP uses the design principle of

localized algorithms. HEAP is a general framework. The only aspect of HEAP that is

domain specific is the error estimation function described in Section 4.1.5.

4.2 STROBE Design

In the previous subsection, we described the HEAP approach. However, a key requirement

for large scale sensor networks is robust, unattended operation. Here we would begin with a

very dense beacon deployment initially, and then rotate functionality amongst beacons (by

turning them on and off) to maximize lifetime. STROBE stands for Selectively TuRning

Off BEacons. The goal of the STROBE algorithm is for beacons to cooperatively achieve

such an adaptive operational density without diminishing the localization granularity.

4.2.1 Design Rationale. For beacon deployment densities µactual much greater than

the saturation threshold µthresh, tuning the operational beacon density can provide several

advantages without diminishing localization granularity. First, the duty cycles of individ-

ual beacons can be reduced without diminishing localization granularity, thus increasing

system lifetime. Second, with fewer operational beacons at any instant, the overall number

of beacon transmissions are reduced, thereby reducing the probability of self-interference

amongst beacons. Finally, a higher percentage of beacons could remain active in noisier

obstructed parts of the terrain, whereas a smaller percentage of beacons may need to be

active in unobstructed terrain, achieving similar localization granularity and the adaptive

self-configuration that motivates this work.

We have made some assumptions in the design of STROBE. We state these assumptions

and discuss their implications below.

—Beacons are static and compute their position only once. Therefore, we can ignore

both the computational and communication energy for continuous position estimation

of beacons (for example, GPS acquisition overhead).

—Clients may be mobile and need to update their positions continuously. Therefore, bea-

cons need to remain active throughout the system lifetime. 4 This motivates the need for

a continuous or periodically adaptive algorithm like STROBE.

—The interval between successive beacon transmissions remains fixed during the system

lifetime. While this is not inherently necessary, it considerably simplifies our design and

analysis.

Our goals for STROBE are to: (1) Maintain uniform localization granularity across the

system and over time. (2) Maximize system lifetime by minimizing energy usage at each

4If the ratio of clients to beacons is very small, then these systems could be triggered.
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Fig. 4. State Transition Diagram for STROBE. Beacons can switch from Voting to Designated (D) or Sleep states

and vice versa.

beacon as well as load balancing energy usage across beacons. (3) Minimize convergence

time of the beacon infrastructure from an initial state to an energy-efficient state. In the

initial state, all the beacons are active. In the energy-efficient state, only the threshold

level of beacons needed to maintain the desired localization granularity are active. After

convergence to a steady state, the system should not deviate significantly from it.

4.2.2 STROBE Duty Cycle. Typically, each beacon transmits one position advertise-

ment in a beaconing interval TB and sleeps for the remainder of the interval. Each position

advertisement has four fields:

beacon identifier, beacon position, sequence number, beacon status

Beacon status is usually set to be UP.

In STROBE, a beacon can be in one of three states - Voting (V), Designated (D) and

Sleep (SL). The state transition diagram is depicted in Figure 4. All beacons start out in

theVoting state, wherein, a beacon turns on its radio and broadcasts position advertisements

every TB seconds and also listens for advertisements from its neighboring beacons. When

a beacon node entersVoting state, it sets a timer for TV seconds. When the timer fires,

it evaluates whether it should go to sleep based on a decision making process explained

in Section4.2.3. If so, it broadcasts an advertisement with State set to be DOWN and

transitions to the Sleep (SL) state. Otherwise, it transitions to the Designated (D) state. A

beacon node in sleep state wakes up after a sleep time TSL and transitions back toVoting

(V) state. A beacon node in Designated (D) state periodically advertises at intervals TB

for a time TD and then transitions back toVoting (V) state. A beacon node in sleep state

wakes up after a sleep time TSL and transitions back toVoting (V) state.

DistinctVoting and Designated (D) states are necessary in order to avoid the overhead

incurred due to receiving advertisement messages from other neighbor beacons when in

the Voting state. Three important parameters of STROBE that influence its energy usage

and system lifetime are TV , TD, and TSL.

4.2.3 Beacon Decision Making. During the Voting (V) state, a beacon evaluates ζ,

the number of currently active beacons that are its neighbors.

ζ = |Bup −Bdown| (12)
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where Bup is the set of all beacons it heard from whose most recent advertised state is UP

and Bdown those whose most recent advertised state is DOWN.

This means that the number of active beacons in its neighborhood, including itself is

ζ +1. Let µthresh be the threshold number of beacons in any given neighborhood at which

the localization granularity saturates.

If (ζ +1) ≤ µthresh, then it has to remain active. If (ζ +1) > µthresh, then its transition

probability p to the Designated state is given by:

p =
(µthresh − 1)

ζ
(13)

With probability (1− p) it transitions to the Sleep state.

Note that this is a very simple decision making approach, influenced only by the number

of currently active neighbors ζ.

More sophisticated approaches could incorporate information such as energy reserve of

a beacon and its neighbors, as well as bias a beacon’s current estimate of ζ based on a

previous history of measurements. However this would require beacons to maintain some

additional state.

4.2.4 Summary. We have presented STROBE, our algorithm for self-configuration at

high beacon densities. The quality of proximity-based localization saturates at a certain

beacon density. STROBE builds on this observation to rotate functionality amongst re-

dundant beacons and extend system lifetime. We described the duty cycle of beacons in

STROBE, and its decision making approach. We presented our justification for choosing

three states in STROBE and the relative time periods for each state via energy usage anal-

ysis. Like HEAP, STROBE is also a general approach. The only aspect of STROBE that

is domain specific is the decision making function.

5. EVALUATION

We have presented the design of two algorithms, HEAP and STROBE. In this Section,

we evaluate these algorithms using both simulations and experiment and discuss the im-

plications of our findings. We use the Berkeley Rene mote testbed for our experiments,

described in Appendix A.2. Our measurement techniques and tools are described in Ap-

pendix B.

5.1 HEAP Evaluation

In this subsection, we report on some results from a performance evaluation of our HEAP

algorithm.

5.1.1 Simulations. We use simulations to explore, in some detail, the implications of

several design choices.

Goals, Metrics and Methodology. Our goals in conducting this evaluation were two-

fold: (i) Compare HEAP-GRID performance to a completely Random algorithm as well as

to a centralized algorithm (GRID) with global knowledge of beacon positions and terrain or

connectivity conditions. (ii) Understand the impact of noise caused by propagation losses

and terrain features on the beacon placement algorithms.

We choose the following two metrics to analyze the performance of our algorithms.

These metrics are statistics evaluated by sampling the localization error at all step× step
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Table II. Terrain-influenced Shadowing Model Parameters

PARAMETER DEFINITION VALUE

λ Wavelength 0.333m

β1 Path loss exponent(unobstructed) 2

β2 Path loss exponent (obstructed) 4

σdB Standard deviation of noise 5

Pt Transmitted Power 660mW

square corners obtained by subdividing the region.

(1) Improvement in mean localization error M1 computes the difference between mean

localization error at all measured points in the terrain before and after the beacon node

is added. This metric indicates the overall impact of adding a beacon to quality of

localization in the entire terrain. For a given beacon placement BP , recall that

MeanErr(BP) =
Σ

Side
step

k=0
Σ

Side
step

l=0
LEBP(P (k, l))

(Side
step

+ 1)2

where P (k, l) = (k · step, l · step)

M1 = MeanErr(BP init)−MeanErr(BPfinal) (14)

(2) Improvement in median error M2 computes the difference between the median local-

ization error at all the measured points in the terrain before and after the beacon node

is added. This metric indicates the improvement due to adding a beacon on the quality

of localization at the top 50% of the points with the highest localization error at the

terrain.

M2 = MedianErr(BP init)−MedianErr(BPfinal) (15)

We study these metrics as a function of beacon density. In addition, we assume step = 1m.

To understand how HEAP copes with noisy radio propagation, we evaluated HEAP

for both (i) ideal radio propagation conditions and (ii) a terrain based shadowing model

(uses a bitmap of the terrain). We ported the latter from Arena/ns [Ye et al. 2001] to our

simulations. The experiments were carried out in a simulated square terrain of side 100m.

From Figure 6 we can see that the environment contains both obstructions and good

terrain, so the terrain based propagation model is quite appropriate. The various propaga-

tion model parameters we chose is summarized in Table II. The values of β and σdB are

chosen from the ranges of their typical values [Rappaport 1996]. The terrain-based shad-

owing model has different values of β for line of sight and non line of sight respectively.

Pt, the transmit power is selected from [Kaiser 2000] and Pthresh, the receiving thresh-

old is set to be the receive power at the nominal radio range Range using Friis free space

model [Rappaport 1996]. These do not necessarily reflect the details of real environments,

but are representative of a range of environments in which our algorithms may be used.

Impact of beacon density. To compare the performance of HEAP, our localized algo-

rithm for various beacon densities with GRID, the centralized measurement based algo-

rithm described in [Bulusu et al. 2001], we conducted the following simulation experi-

ment. We varied the number of beacons, N from 20 to 80 in increments of 20. The

nominal radio transmission range of a beacon R = 15m. Correspondingly, µ, the number

of beacons per nominal radio coverage area (bpnrca) varies from 1.41 to 5.64.
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Fig. 5. Performance comparison of HEAP with centralized algorithms for the mean and median localization

granularity metrics vs. density.

We generated 1000 different beacon fields per beacon density. Each beacon field is gen-

erated by randomly placing the beacons in the 100m× 100m square terrain. Performance

metrics for each algorithm and beacon density are averaged over the 1000 beacon fields.

To characterize the stability of our results, all graphs include 95 percentile confidence in-

tervals.

Figure 5 plots the improvements in the mean and median localization errors as a function

of beacon deployment density for both ideal radio propagation model and the terrain based

shadowing model.

With ideal radio propagation, both algorithms perform well for low densities (< 3 bpnrca),

but GRID has the potential for significant improvements. For all the three algorithms,

the metric M1 (improvement in mean localization error) decreases rapidly for densities

≥ 3 bpnrca, and saturates for densities ≥ 6 bpnrca. The gain in median localization

error (metric M2), for GRID relative to HEAP-GRID is considerably lower than metric

M1. Because HEAP-GRID selects candidate points only in the local neighborhood, it is

unlikely to identify noisy points as well as the centralized algorithm does. Its worst case

improvement, and consequently, mean improvement M1 tends to be much smaller.

The trend exhibited by metric M2 for ideal radio propagation is further exemplified for

the terrain-influenced shadowing model for radio propagation, as Figure 5 shows. In the
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Fig. 6. Candidate points selected in 20 runs of HEAP uniform placement for the ideal case and for a terrain with

a wall in the middle. Candidate points shift closer to the center when there is a wall in the middle.

terrain case, for low densities, the total number of noisy points far exceeds the ideal case.

GRID which instruments the whole terrain leverages this and posts higher gains in mean

error by substantially improving a large number of bad points. HEAP-GRID focuses on

moderately bad points and therefore improvement is relatively lower. The median error

improvements for the terrain case for HEAP are also much better for higher densities.

Although the gain for HEAP does not equal the centralized algorithm, both are compa-

rable. Moreover, HEAP is distributed and therefore much more scalable.

Impact of terrain features. To qualitatively evaluate the effectiveness of HEAP in select-

ing good candidate points in a noisy terrain, we conducted a second simulation experiment

wherein initial beacon placement is always uniform, varying the number of beacons N and

the transmission range R. N = 25, 36, 49, 64, 81 and 100. R = 15m, 20m, and 25m. In

each case, HEAP is run to determine the candidate points for two scenarios (a) an ideal

terrain with no obstacles and (b) a terrain with a wall in the middle shown in Figure 6. In

Figure 6, each point represents a new placed beacon from one simulation run. The right

plot adds a wall (shown in grey) as terrain. A simple boundary constraint is applied to

remove algorithm bias towards candidate points at the corners of the terrain.

In the ideal case, HEAP-GRID selects candidate points closer to the periphery of the

region enclosed by the boundary constraint. This is because it selects the center of the grid

with the highest cumulative localization error, and in the ideal case such grids are more

likely to be located at the edges of the terrain (even with uniform beacon placement and

the boundary constraint). For the terrain, the candidate points shift closer to the center near

the wall. The actual points selected depend on the beacon density, range and positions of

the beacons relative to the wall.

Despite having to deal with erroneous information (poor neighborhood approximation,

idealized radio model etc.), the HEAP algorithms are able to select candidate points closer

to a terrain feature such as a wall. However, such a result may not be valid for very small

terrain objects, such as foliage.

5.1.2 Experimental Results. We also evaluated HEAP in a real environment to verify

its effectiveness. We deployed a localization system consisting of 16 beacons in an indoor

environment (see Figure 7), in the configuration shown in Figure 8. We chose an indoor

setting for this experiment because the radio propagation is not ideal indoors due to multi-

path effects, and therefore it provides us an interesting test case to study how well HEAP
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Fig. 7. Beacon deployment in the UCLA Laboratory for Embedded Collaborative Systems (LECS). Motes are

attached to the ceiling tiles.
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Fig. 8. The configuration in which beacons are placed in the LECS laboratory. Each + sign indicates a beacon.

16 beacons are uniformly located in a 24 × 24 feet square region, with adjacent beacons 8 feet apart.

helps the system adapt to its environmental conditions.

We varied the transmission power and frequency settings using software-enabled control

commands (see Appendix B). For each unique setting, we collected the following data:

—Beacon Connectivity Measurements: Each beacon measures its connectivity to other

beacons. We obtain the beacon network topology from the connectivity measurements

of all beacons.

—Localization Error Measurements: We measure localization error at various points in

the terrain by walking across the room and collecting data at spacings of 2 feet. For each

point, the localization error is averaged over several trials.

We found real experiments to be very valuable. We observed the following for our

experiment with 16 beacons:

—At the same physical point, the localization estimate varied over time.
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Fig. 9. Beacon Connectivity Graph in our experiment. Connectivity of each beacon is shown in a separate graph

and beacons are numbered. Connectivity between beacons is sometimes asymmetric (as in beacons 1 and 6), and

some beacons have a greater connectivity degree than others (compare 5 with 9). The corner beacon 4 has no

connectivity.

Table III. Control Parameters for the Beacon System

PARAMETER VALUE

Transmission Power/Potentiometer Setting 75

Beaconing Interval (seconds) 3

—The connectivity relation between two beacons varies over time.

Because candidate point selection in HEAP is based on beacon connectivity relations,

the connectivity graph provides us complete information to emulate the HEAP algorithm.

We deployed new beacons at candidate points selected by HEAP and recomputed the lo-

calization error at various points in the terrain.

Table III refers to the control settings used for the experiment whose results are shown

in Figures 9 and 10.

Figure 9 plots the Beacon Connectivity Graph. We can see that it is asymmetric, some

beacons have greater connectivity than the others. This connectivity graph was used to

emulate the HEAP algorithm.

Figure 10 displays the candidate point selected by HEAP to add a new beacon. We can

see that the candidate point is very close to the position of the failed beacon (beacon 4 in

Figure 9).
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Fig. 10. Candidate Point Selected by HEAP. The plus (+) sign indicate positions of beacons. The cross (X) sign

indicates the position of the candidate point selected by the HEAP algorithm.
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Fig. 11. A comparison of cumulative distribution function (CDF) of localization error before and after the beacon

is added at the candidate point selected by the HEAP algorithm.

We added a new beacon at the candidate point. Figure 11 plots the cumulative distribu-

tion function of the localization error before and after the new beacon was added. While

the median error remains the same, there is significant improvement in the 90 percentile er-

ror (drops almost 50% from 11 feet to 6 feet). This shows us that HEAP can be effective

in a real environment.

5.1.3 Discussion. From our design and evaluation of HEAP, we can draw the follow-

ing general lessons.
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(1) Our simulations show that localized and adaptive algorithms such as HEAP are ef-

fective in comparison to centralized adaptive algorithms such as GRID in addressing

beacon placement. This is because the relevance of information needed by a beacon

for algorithmic computation drops as a function of distance or number of hops to the

beacon.

(2) Our experimental results show that HEAP can benefit a real deployed localization

system. This proves that adaptive self-configuration to terrain and environment char-

acteristics based only on local coordination among beacons and without a system or

terrain model is both feasible and worthwhile.

(3) Proximity-based localization has a beacon density beyond which the benefit of addi-

tional beacons falls off. This observation suggests the STROBE algorithm targeting

high beacon densities, evaluated next. More generally, the study of performance as a

function of density is important for algorithms involving many nodes.

5.1.4 Summary. We presented detailed simulations to show that HEAP can achieve

results comparable to centralized adaptive algorithms. We presented experimental results

that demonstrated the benefits of HEAP in a real deployed localization system.

5.2 STROBE Evaluation

We have also conducted extensive evaluations of STROBE. We discuss our findings here.

5.2.1 Simulation Results.

Goals, Metrics and Methodology. Our goals in evaluating STROBE using simulations

are to answer the following questions:

—Is STROBE effective?

—How do various parameters affect its performance?

—How well does STROBE perform compared to the optimal case?

We use several metrics in our evaluation. We study the following metrics as a function

of time.

— % Beacons Active Pactive(t): Percentage of total beacons that are in either Voting (V)

or emph Designated (D) states at any given instant of time.

— % Beacons Alive Palive(t): Percentage of total beacons that possess energy reserves

greater than zero at any given instant of time.

— Median localization error of the terrain MedErr(t): at any given instant t can be

calculated by substituting BPactive(t) for BP in Equation 6, where BPactive(t) is the

placement of the set of beacons active at time t and step = 1m.

We use two other metrics.

— First node death: Time elapsed since the start before any single node in the terrain runs

out of energy (dies).

— System lifetime: Time elapsed since the start before the median localization error ex-

ceeds a n operational error threshold. (for example: 0.4 ·Range)

For our simulations, we choose an energy consumption model to mimic realistic sensor

radios [Kaiser 2000]. These parameters are also used in [Intanagonwiwat et al. 2000] and

are summarized in Table IV.
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Table IV. Energy Consumption Parameters Used in STROBE Evaluation.

POWER DISSIPATION RADIO OPERATION MODE VALUE

PX Transmit 660 mW

PR Receive 395 mW

PI Idle 35 mW

PS Sleep 0 mW

TD = TV
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Fig. 12. STROBE performance for two ratios of TD

TV
. Top Row TD

TV
= 1, Bottom Row

TD

TV
= 100. R = 20m, N = 100, TB = 1s, TV = 5TB , Φ = 10000J, Snapshot period =

100s.

Sensitivity to STROBE parameters. To study the sensitivity of STROBE performance

to its parameters, especially the rate of adaptation, TV

TD
, we simulated a terrain of area

100m×100m with 100 randomly placed beacons in the terrain. The nominal radio range is

20m. Thus the number of beacons per nominal radio coverage area is around 12 (µactual =
12, µthresh = 6). Each node has a starting energy of 10000J. Transmit time (TX ) of a

beacon advertisement is 0.025 seconds. Beaconing interval TB is set to be 1 second. TV is

set to be 5 seconds and TD is varied to be TV and 100TV .

Figure 12 compares the performance of the STROBE algorithm for various ratios of
TD

TV
with respect to these metrics: median localization error, percentage of active beacons,

percentage of beacons alive at nodes. The simulation terminates when none of the nodes

has sufficient energy to either transmit or receive packets.

Increasing the ratio TD

TV
improves the system lifetime. For instance, the first node deaths

occur at 90000 seconds and 200000 seconds respectively for values of TD

TV
set to 1 and 100

(heuristically chosen). It also improves the time duration between the first node death tF

and the last node death tL. In addition it also minimizes the variations in median error over

small periods of time.

The median localization error over time is closely correlated to the percentage of beacons

alive. The step wise degradation (i.e., increase) in the median localization error after the

first node death mirrors the step wise decrease in the percentage of beacons alive over time.
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Fig. 13. STROBE performance for N=100, R=25m, TB = 0.5s, TV = 2TB , TD = 100TV ,

Φ=10000J.Lifetime of the algorithm using simple beaconing LB = 300000s. Snapshot

time = 100s.

A closer inspection of the terrain snapshots over time reveals that because beacons are

distributed uniformly in limited-size terrain, we see boundary conditions at the edges. For

boundary beacons, the observed neighborhood size is either close to or less than µthresh,

therefore they all tend to remain active and die first at approximately the same time. The

next phase occurs when the next set of beacons that die are the ones that were adjoining the

previous boundary beacons and are now the new boundary beacons, leading to a cascading

failure of nodes.

STROBE Benefits. Our second simulation experiment demonstrates STROBE benefits

for an applicable context (small beaconing interval, high beacon density). We simulate

a terrain with 100 beacons distributed uniformly at random in a 100m × 100m terrain.

The nominal radio range of these beacons is 25m. The corresponding beacons per neigh-

borhood µactual = 19 = 3.1µthresh. We choose a reasonably small beaconing interval,

TB = 0.5 seconds. We set the various STROBE parameters as follows: TB = 0.5s,

TV = 2TB , TD = 100TV , Φ=10000J. The lifetime of a beacon using simple beaconing

LB is

LB =
Φ

TB

(16)

In this case, LB = 300000s.

We omit our detailed analysis of STROBE energy usage due to space restrictions, but

the best case system lifetime in STROBE can be shown to be

LSTROBE =
µactualLB

µactual

PV
PD

−1

2+
TD
TV

+ µthresh

(17)

where µactual is the actual number of beacons per neighborhood, µthresh is the threshold

number of beacons per neighborhood for localization, PV and PD are the mean power

dissipated in the Voting and Designated states respectively.

Figure 13 plots the median localization error, percentage of active beacons and per-

centage of beacons alive as a function of time. Snapshots are taken every 100 seconds.

The degradation in median localization error as well as percentage of beacons alive over

time is considerably smoother than in our previous simulation experiment. In this case,

STROBE maintains a median localization error within 0.2 × Range for up to 200000

seconds, 0.3 × Range for up to 300000 seconds, and 0.5 × Range for up to 400000

seconds. Actual system lifetime (LSTROBE) is increased to around 450000 seconds or
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1.5LB . This is low compared to the best case lifetime predicted by our model substitut-

ing TD

TV
= 100 of 850000 seconds 2.8LB . That calculation assumes energy usage can be

load balanced effectively across beacons and that beacons are uniformly distributed in the

terrain. However, as we have seen boundary nodes tend to die first, causing a cascading

effect. To improve further on these lifetimes, beacons could perform edge detection to

identify boundary conditions and adjust their beaconing period TB to be higher compared

to other beacons. Alternatively, a higher density of beacons could be deployed near the

boundary.

STROBE transitions probabilistically from Voting (V) to Sleep (SL) states, causing a

higher percentage of beacons than the threshold percentage to remain active. Leveraging

auxiliary information may significantly improve this lifetime.

5.2.2 Experimental Results. We have also tried to evaluate STROBE experimentally.

This is slightly harder to do because we have to measure both the energy depletion at

different nodes over time and the degradation of localization quality at various points across

the terrain and over time (which requires manual intervention and is therefore not feasible

at a very fine grained time scale). Instead, the methodology we used was experimental

emulation.

—We collect real beacon connectivity data and play back this connectivity data in a custom

simulator to emulate the beacons’ decision making process in STROBE. In modeling the

behavior of a localization system, radio propagation is the hardest to model well, and

hence it is important to verify it using real data.

—Simulate power consumption over time using a radio energy model. Since radio commu-

nication dominates the power consumption of these nodes (as opposed to computation),

this provides us with a good approximation of energy usage. Moreover, by using the

same energy consumption model as our simulation, we can also validate the simulation.

—Emulate localization error in our connectivity based localization method using the con-

nectivity data. This allows us to analyze the degradation in localization quality at a very

fine-grained time scale.

Figure 14 plots the median localization error as a function of time (for both the experi-

ment and simulation). We notice that the system lifetime with experimental emulation is

comparable to idealized simulation, but the quality of localization is only slightly worse

(20%). Thus, our idealized simulations can be considered a good indicator of STROBE

performance. The localization quality is slightly worse in the experimental case because

we did not account for link asymmetry in initial design of the STROBE decision making.

Beacons can turn themselves off even when neighbor is a stray far-away beacon. To avoid

this, we may need a geographic filtering technique in the beacon decision making process.

5.2.3 Discussion. We can draw two general lessons from our design and evaluation of

STROBE.

(1) For density regimes above the threshold density, our example shows that a completely

localized algorithm like STROBE can extend the system lifetime 1.5 times without di-

minishing localization granularity with 3.1 times saturation density of nodes. Lifetime

gains can be improved further for higher beacon densities and energy dissipation rates

in active state, and by augmenting STROBE with boundary detection mechanisms.

ACM Transactions on Embedded Computer Systems, Vol. TBD, No. TBD, TBD 20TBD.



Self-Configuring Localization Systems: Design and Experimental Evaluation · 27

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

L
o

c
a

liz
a

ti
o

n
 E

rr
o

r 
(f

ra
c
ti
o

n
 o

f 
R

)

Time elapsed (in 100000 sec)

Experiment
Simulation

Fig. 14. A comparison of median localization error vs. time for the experimental emulation with the simulation

(2) Adaptation to terrain conditions and node availability invariably has an associated

measurement overhead. Therefore adaptive density should be applied only when the

benefit of adaptation greatly exceeds its overhead. Examples of this are high density

beacon deployment and high energy dissipation in active states. STROBE is not jus-

tifiable in contexts when beacons are already operating at a very low duty cycle or

when the deployment density is not high enough to provide enough interchangeable

beacons.

5.2.4 Summary. We presented detailed simulations to show that STROBE converges

quickly, maintains uniform localization quality in the terrain, and over time, and can signif-

icantly extend overall system lifetime. We also presented experimental results that validate

our simulation methodology.

5.3 Discussion

We have presented the design and evaluation of HEAP and STROBE. We now discuss

limitations and lessons from our experimental evaluation and issues for future design.

5.3.1 Experimental Evaluation: Limitations and Lessons. Although the motes used in

our experiment are largely automatically manufactured, they are not identically calibrated.

Motes from different shipments produced different levels of noise (2 KHz and 20 KHz
). Moreover, the antennas are handmade, and the reference voltage which is obtained

from a battery source is not stabilized. These are largely responsible for asymmetric radio

connectivity effects. Sensor self-calibration is currently the focus of research efforts at

UCLA and Berkeley.

A dominant issue in sensor network design is power conservation. While we have mea-

sured real radio data, we have not measured real power consumption. Instead, we have

emulated energy-consumption based on the radio communications energy expended (but

have ignored computation energy). It is increasingly desirable to evaluate these algorithms

using real power measurements.
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Self-configuring systems are challenging to measure and analyze because the system

is constantly in flux and never in steady state. Our experience suggests that while mea-

surements are invariably difficult to make, they are extremely necessary. For instance, our

design (and simulations) of HEAP and STROBE did not account for asymmetric connec-

tivity, but our experiments revealed that it does have an impact on the number of beacons

that decide to stay active.

5.3.2 Future Design Issues. Both HEAP and STROBE can be easily generalized to

other localization systems using beacons, when the position estimation is not based on

proximity. In HEAP, only the error-estimation part is domain specific, and will need

domain-specific information. In STROBE, only the decision making step described in

Section 4.2.3 needs to change.

We have designed and evaluated several variants of HEAP. A complete discussion of the

variants of HEAP is out of scope for this paper. The first of these variants extends HEAP

to add multiple beacons, not just one. In the second variant, we substitute error-estimation

function with a geometry-aware one, more suitable when position is a function of range

measurements. Neighborhood discovery in HEAP is accomplished through a multi-hop

protocol. We can also accomplish this by transmitting advertisements at a higher power.

In STROBE, the decision of a beacon to remain active or sleep is influenced only by

requirements to maintain a uniform localization granularity across the system at all times.

We may not really need homogeneous localization granularity in the system at all times,

especially if the system is event based [Schurgers et al. 2002]. Instead, we may want the

system to self-configure in response to application dynamics or events. We have exper-

imented with triggered beacon systems in our laboratory and these can lead to orders to

magnitude improvements in energy-conservation.

Finally, a comment on the quality of localization. While a saturation threshold of

0.25Range may seem too high, the use of multiple power-levels can significantly improve

localization granularity. Additionally, they can be exploited to improve decision making

of the beacons, especially when asymmetry exists in beacon connectivity.

While the localization quality can be improved by using multiple sensor modalities or

range measurements [Girod and Estrin 2001] instead of radio proximity, these will not

completely eliminate the need for self-configuration. Better algorithms may diminish error

or eliminate outliers, but we need enough redundancy in measurements to employ filtering

techniques. And self-configuration will be needed to ensure that redundancy. Thus our

work complements these techniques.

Lately there has been significant research in self-configuring network protocols for large,

dense ad hoc wireless networks - to form network topologies [Cerpa and Estrin 2002],

routing [Xu et al. 2001], media access [Ye et al. 2002] and beacon systems. In sensor net-

works, nodes may be participating in many self-configuring tasks at different network lay-

ers. Integrated self-configuration that takes into account all factors is an issue for future

research. Additionally, the performance of these protocols is extremely sensitive to the

choice of network parameters. Consequently, it is important to establish a theoretical foun-

dation for self-configuring systems. Some initial progress in this direction has been made

by [Krishnamachari et al. 2002].
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6. CONCLUSIONS

Large-scale, densely distributed sensor networks that are closely coupled to the physi-

cal world require node localization, but under far severe node-level resource constraints

(limited energy, bandwidth, memory and processing) [Bulusu et al. 2000]. Existing ge-

olocation systems such as GPS (the Global Positioning System) do not always meet their

operational (low power), environmental (indoors) or cost constraints. Localization systems

that can reconcile these needs by necessity must be loosely coupled, distributed systems

[Bulusu et al. 2000] [Priyantha et al. 2000] [Savvides et al. 2001] [Girod 2000] [Hightower et al. 2000].

We have highlighted the deployment, configuration and operational issues of such a lo-

calization system and argued that it must itself self-configure, that is, autonomously mea-

sure and adapt to the environmental and system dynamics in order to achieve environmen-

tal independence and robust, unattended system-level operation. In this paper, we have

presented the design and evaluation of algorithms to achieve that self-configuration. Our

design process relied on the following three pieces of insight.

First, beacons are one key approach to localization as they can guarantee the convergence

and accuracy of loosely-coupled distributed localization systems (see [Savvides et al. 2001]).

The localization granularity can be directly related to the beacon density when beacons

are distributed uniformly at random. Our simulations show that the localization granular-

ity saturates at a threshold beacon density µthresh. This realization argues for a beacon

density-sensitive approach to self-configuration.

Second, the beacon density is not a homogeneous phenomenon in real environments.

Rather, the beacon density varies throughout the terrain due to deployment perturbations

and due to environment-dependent propagation vagaries even when beacons are placed

uniformly. Note that this observation implies that just deploying beacons below or at this

theoretical density µthresh will not be adequate. Instead, beacons must themselves es-

tablish the density through measurements and suggest local candidate points where new

beacons could be added so as to improve the localization quality, as in the HEAP algo-

rithm proposed herein. Care was taken to propagate neighborhood information beyond a

single hop, so that beacons can select the candidate points effectively.

Third, beacons contend for the wireless channel when they broadcast advertisement

packets containing their position. When beacons are deployed at high densities (greater

than µthresh) in order to provide redundancy, the responsiveness and granularity of the

system degrades due to the self-interference caused by the channel contention. Instead

of having all the beacons simultaneously participate, beacons must explicitly coordinate

so that only some of them participate at a time. For a variety of performance reasons,

characterizing the measured and threshold density allowed a simple randomized algo-

rithm that achieved the desired statistical behavior in maintaining localization granularity.

Careful analysis of energy usage allows us to tune sleep probabilities and periods so as

to maximize system lifetime. This idea could be relevant to not only beacons but also

to routing [Xu et al. 2001], media access protocols[Ye et al. 2002] and topology control

[Cerpa and Estrin 2002].

Our experimental results show that these various algorithms have significantly improved

the performance of the localization system proposed in [Bulusu et al. 2000]. We discussed

in Section 5.3, the limitations of our evaluation and design issues for the future. Now that

the we have validated our self-configuring localization methodology experimentally, we

look forward to deploying it in our applications.
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A. BASE LOCALIZATION SYSTEM

In this Section, we describe our base localization system based on beacons. Our client

nodes use just one sensing modality for localization, which is radio proximity.

A.1 Localization Methodology

A.1.1 Idealized Radio Model. We have found an idealized radio propagation model

useful for predicting bounds on the quality of localization. This idealized radio propagation

model amakes two rather unrealistic assumptions.

—Perfect spherical radio propagation.

—Identical transmission range (power) for all radios.

To our surprise, this model compared quite well to outdoor radio propagation in uncluttered

environments [Bulusu et al. 2000].

A.1.2 Connectivity Metric. In practice, a small fraction of the radio transmissions of

a beacon can be received even outside its nominal radio transmission range owing to un-

predictable multipath effects. Therefore, it is important to characterize radio connectivity

based on statistical observation over a sample of several packets, rather than just one single

packet.

A.1.3 Localization Algorithm. Beacons situated at known positions, (Xi, Yi), trans-

mit periodically with a time period T . Clients listen for a period t >> T to evaluate

connectivity. If the percentage of messages received from a beacon Bi with range ri in a

time interval t exceeds a threshold CMthresh, that beacon is considered connected at ri.
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(1) Librettos with Radiometrix RPC radios (2) Rene Motes

Fig. 15. The two experimental testbeds used for developing our localization methodology. The experiments

described in this paper use the motes testbed.

When the beacon placement is uniform, the centroid of the positions of all connected

beacons is a feasible solution in the region of connectivity overlap. A client estimates its

position (Xest, Yest) to be the centroid of the positions of all connected beacons.
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
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1

ri
2

)

Σk
i=1

(

1

ri
2

)



 (18)

(Xest, Yest) =
(

Σk
i=1wi ·Xi,Σ

k
i=1wi · Yi

)

(19)

For non-uniform placement, a feasible solution can be found using more general convex

optimization techniques [Doherty et al. 2001].

Given the actual position of the client (Xa, Ya), we can compute the accuracy of the lo-

calization estimate or the localization error LEB(Xa, Ya) , which is the distance between

the client’s estimated and actual positions.

LEB(Xa, Ya) = [(Xest −Xa)2 + (Yest − Ya)2]
1

2 (20)

A.1.4 Complexity Analysis. In our system, both the communication and computation

complexity for a device to infer its position once are O(k), where k is the number of

beacons in radio range. Because both the computation and communication complexity

grow linearly with the density of the beacon infrastructure, rather than the size of the

system, our system is generally scalable.

A.2 Implementations

We have implemented a prototype of our localization methodology on two experimental

testbeds, shown in Figure 15.

(1) Radiometrix RPC radios connected to laptops via. a serial interface.

(2) UC Berkeley Rene motes [Hill et al. 2000], completely integrated with RFM [RF Monolitithics ]

radios.
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A.2.1 Radiometrix RPCs. Our first experimental testbed consists of Radiometrix RPC

418 (radio packet controller) modules connected to a Toshiba Libretto running RedHat

Linux 6.0. In our experiments, one of these modules is used as a receiver and four are used

as beacons. A 3 inch antenna is used for the experimental purposes. The software for the

Radiometrix RPC-418 modules consists of two components.

—Beacon: The beacon periodically transmits a packet (every 2 seconds in our experiment)

containing its unique ID and position.

—Client: The receiver obtains its current measured position based on an input from the

user. For each measured position, it samples for a time period t determined by the

sample size S, and logs the set of beacons it hears from and its current localization

estimate.

A.2.2 Rene Motes. We have conducted further experiments on very small, embedded

devices called motes, developed at the University of California, Berkeley [Hill et al. 2000].

These devices have a RISC-like 8-bit CPU that runs at 4MHz. Motes are equipped with

512 bytes of SRAM, 256 Kbits of EEPROM, and a 916 MHz ISM radio (RF Monolithics

TR1000) that can transmit at the rate of 10Kb/s. The transmit power level of the radio can

be controlled using a digital potentiometer on the mote.

Motes can also be programmed as Beacons and Clients. But because motes have lim-

ited storage for experimental data, they can be programmed in two other configurations:

Snoopers and Logger. A Snooper mote acts as a network interface for a PC via the RS-232

interface and can listen to all transmitted data packets and forward this to the PC. A Log-

ger mote records all messages sent out by beacons into an EEPROM, and can transfer this

information on demand to a Snooper mote connected to a PC.

B. MEASUREMENT TOOLS AND TECHNIQUES

In this Section, we discuss the tools used to measure and evaluate localization quality and

our improvements in the localization systems.

While the basic localization software consists of just two components (beacon and

client), the experimental testbed to measure it is actually a lot more elaborate.

We made the following extensions to basic localization software components.

—Beacon: It not only transmits periodic advertisements with its position, but it also listens

to and responds to commands from a Beacon Remote Controller.

—Client: It not only estimates its position from the beacon advertisements it receives (the

algorithm for doing this position estimation has been described in Section A), but also

reports its estimated position to the Beacon Interpretor.

We developed the following control and visualization tools.

—Transceiver: The Transceiver communicates with the Beacons as well as the Clients. It

is needed to send control packets to beacons and to interpret the estimated coordinate

sent by the Client. To avoid interference, problems with beacons’ life-time, etc. the

beacons can be remotely controlled. The following commands are supported.
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STANDBY In this mode, a beacon sets its clock rate to the slowest

and does not transmit its coordinates. When it receives an

ON command, it will enter the NORMAL mode again.

TRANSMISSION It can adjust its own transmission power.

POWER (valid in NORMAL mode only)

CONTROL

TRANSMIT RATE It can adjust the rate at which it transmits its coordinates

CONTROL (valid in NORMAL mode only)

RANDOMIZED Since a command packet floating on the air can control

RESUME more than one beacon, each beacon in the STANDBY

mode will enter NORMAL mode x milli-seconds after

it hears the command, where x ∈ (0, y) milli-seconds

and y is adjustable.

—Beacon Remote Controller: A Java GUI that lets the users select the desired TRANS-

MISSION POWER and TRANSMIT RATE settings that beacons operate at. This pro-

gram will encode the information and send it as a command packet to the beacons.

ON and OFF commands can be selected to toggle the beacons between STANDBY and

NORMAL modes.

—Beacon Interpretor: A Java GUI that listens for coordinates the Client report and puts

them in a table. A user can manually enter the actual coordinates of the Client is located

and these coordinate will be compared with the estimated coordinate to compute the

localization error.

—Visualization: The visualization program displays all transmitting motes in our labora-

tory. This is useful to verify whether beacons are transmitting as expected, or if other

motes are transmitting and interfering with the experiment.

By allowing us to automatically control and configure the beacons, these tools allow

us to experiment rapidly under different beacon density and interference settings without

having to reprogram and redeploy all the beacons.
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