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ABSTRACT

The principle of profile consistency states that for fixed limiter safety
factor q,, there exists unique natural equilibrium profile shapes for the
current density j{r) [and consequertly q{r)], and the electron temperature
Te(r) for any tokamak plasma independent of the shapes of the heating power
deposition profiles. The mathematical statement of the three basic
consequences of this prineiple fer sawtoothing discharges [i.e., discharges
Wwith q(0) = 1] are: (1) (ry/a) = Fy (l/qa) [= /4,4, empirically], (2)
Te>/Tgq = Fpll/ay), and (3) a unique scaling law for the central electron
temperature Teo’ where r, is the sawtooth inversion radius [i.e., q(rT) = 1]
and <T,> is the volume average T,. Sirce for a given Te(r), the ohmic current
J{r) can be deduced from Ohm's law, given the function F,, the function Fy is
uniquely fixed and vice versa. Also given F1(1/qa), the central current
density J, = (VL/2anZEff) Tgéz = (Ip/xaz) F3(qa), where the function Fq =
(3,/q,) is uniquely fixed by F,. Here b = 6.53 x 103 na, and Ly Voo Zepps
f, a, and q, are the plasma current, loop voltage, effective ion charge, major
and minor radius, and the central safety factor, respectively, Thus for a
fixed j{(r) or Te(r), the set of fumetions F,, F,, and F3 is uniquely fixed.
Further, the principle of profile consistency [i.e., the existence of unique
natural eguilibrium praofile shapes far j(r) and Te(r) for a fixed qa] dictates
that this set of functions e F2, and F3 remain the same for all sawtoothing
discharges in any tokamak regardless of its size [i.e., a and R}, [p, v, Bp,
ete., Here, we present a rather complete and getailed theoretical examination

of this self-consistency of the measured values of Te(r), Fy, Fy, and F3 for

sawtoothing TFTR discharges.



In particular, the theoretical predictions of Coppi's Gaussian,
expanential, modified exponential, trapezoidal, Kadomtsev, and Campbell
et al. model profiles are compared with TFTR and TFR data. Tre principal
resuits are: (1) The empirical profile consistency relation (r,/a) = (“/ay)
is an acceptable solution of q (ry) = 1 for all 3, - dependent prefiles.
{2) A comparison Dbetween experiment and theory yields [<Te>/?eo]EXP
[<Te>/’f‘e0]TH + 0.05 for Coppi's Gaussian, Kadomtsev, and Campbell et ai. model
profiles. (3) For all g, - independent profiles F3(qa) = (qa/qo) = constant
and, consequently Teo3/2 =z (IpR Zeff/ava); while for all
G, - dependent profiles F3 (qa) = (qa/qo) = g, when (r,/a}) = (T/qa), and
consequently Te03/2 « (BT zeff/vL)' where BT is the confining toroidal
magnetic field. The former T, scaling is profile consistency independent,
and the latter one is profile consistency dependent via the empirical relation
ri/a = 1/q,.- {4) Coppi's and Ohkawa's forms of xe(r) yield Teo « BTO'7 while
the INTOR xo(r) yields T,, = BO'", uhere x(r) is the electron thermal
diffusivity. Experimentally, however, the TFTR data yield Teo = BTO‘67, and
the TFR data yield T g = BTO'BB. (5) For (rq/a) = (1/q,), Coppi's Gaussian,
Kadomtsev, and Campbell et al. model profiles all predict that (aT /T,) =
(1/qa) in agreement with the experimental observations. Here (ATe/Te) is the
pormalized sawtooth amplitude. (6) The experimental (ATe/Te) vs r is
consistent wWith the notion that during a sawtocoth crash the profiles get
flattened over the range 0 s r s /2 r, = /2 a/q,, keeping the total plasma
current constant. (7} For Q, - dependent models there exist universality of

profiles in suitable reduced coordinates when (r1/a) = (l/qa).
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I. PRELIMIYNARIES

A. Introduction

In 1975 the TFR group [1] reported some of the general features of their
measured -adial profiles of the electron temperature Te(r) for sawtoothing

ohmic tokamak discharges. These features are: (1) the T, (r) profiles become



more and more peaked as the limiter safety factor 9 increases, and,
consequently, the full width at half-maximum of the Te(r) profiles increases
linearly with q;1, (2) the normalized radius of the q = ! surface (r‘.‘/a)
determined from the position of sawtooth inversion also increases linearly
with q;1, (3) the central electron temperature T,, increases "almost lineariy"
with increasing BT [i.e., Teo = B%'Bf’] or g,, and (4) the normalized sawtooth
amplitude (ATe/Te) decreases with increasing BT or g,. These measurements
were done by changing B; keeping Ip and fi, approtimately constant.
Subsequently, Manheimer et al. (2] have given a somewhat satisfactory
thecretical explanation of some of the observed general Cfeatures of the
tokamak profiles. They used a marginal stability approach for the dissipative
trapped-electron instability for r > r; assuming that the inner core regien
for r ¢ ry is marginally stable to the internal kink and tearing modes (with m
= n = 1 structure observed as sawtooth oscillations in the soft x-ray and
electran cyclotron emission signals). These two earlier works are the
experimental and theoretical genesis of what is now popularly known as the
"profile consistency" in tokamak discharges.

In the literature many authors [2-13] have proposed various different
profile shapes to explain (either directly or indirectly) some or all of the
observed general features of profile consistency. The primary objective of
some of these models was to understand the nature of the energy and particle
transport proceases in ‘tokamak plasmas, while others concentrated on
understanding the macroscopic stability of the plasma column for
magnetohydrodynamic (MHD) modes (via, for example, minimum energy principle,
principle of minimum entropy production, etec.) with preofile consistency as a

by=-producct. But none of these authors have examined the intrinsic self-

consisteney of their models. It is our aim in this paper to approach the



problem from an altogether different paoint of view and examine the thecretical

and experimental self-consistency of these various models [see Fig. ! and Sec.
IB]. After all, what good is any model if it 1s not physically self-
consistent?

In general, the tokamak discharges may be broadly classified into two
groups. Type 1 discharges are those which have profile shapes for the current
density j{r), the electron temperature Te(r), and the electron density ng(r)
that are single valued and a monotonically decreasing function of r. For
these discharges the safety factor q(r) is single valued and a monotonically
increasing function of r. Type 2 discharges are those which have hollow
profile shapes for one or all of the three plasma parameters j(r), Te(r), and
ng(r). If, for example, T (r) is hollow, then by Ohm's law J{r) is hollow.
Consequently q{r) is multivalued. In this paper we will consider only type )
discharges. Here again we distlnguish two types. Type 1A discharges are
those which have q(o) £ 1 such that there exists a core region [g{r} < 1]
where internal disruptions (MHD activity) maintain a high thermal
conduction. These are the sawtoothing discharges. Type 1B discharges are
those which have gq(0) > 1 and gq{r) > 1 everywhere. Here the core region of
internal disruption is absent. These are the non-sawtoothing discharges.
Here we will only consider type 1A discharges.

it ié believed that during a sawtooth oscillation magnetic reconnecticn
occurs across the q = 1 surface [5,6,9,14-25]. During the rising portion of
the sawtooth, the T.(r) profiles keep on peaking up and at the end of the
sawtooth crash these profiles get flattened over the entire core region [i.e.,
up to the sawtooth inversion radius where q = 1]. In a sawtooth pericd a
certain fraction of the central core [i.e., inside the q = 1 surface] energy

is transferred into the region of prescure gradient. Thus, the energy



transport for sawtoothing tokamak discharges can be described by a three-
region medel [26]: (1) a core region [q < 1], where internal disruptions
maintain a high thermal conduction, (2) a confinement region of large pressure
gradient, and {3) an edge region dominated by a combination of atomic
processes [i.e., radiation, charge exchange, ionization, etc. | and
recycling. Hence the sawtooth period tgp L5 a measure of the time scale in
which the energy is sloshed back and forth across the q = 1 surface. Thus, a

core "coufinement time" associated with the sawtooth oscillations c¢an be

defined as T,y = (Tg/8T )tgp, where 4T, is the sawtooth amplitude.
Typically [14,20,21,25] 1 (rE/S), where ¢z 1is the global energy
confinement time and (nTe/Te) < (1/5) [see alseo Sec. IX]. That is, Tore’

tg. Hence for sawloothing discharges the core confinement is usually better
than the overall confinement.

What is the "prineciple of profile consistency?” In the literature there
does not seem to exist a fully satisfactory mathematically quantitative and
rigorous definition of this principle. It 1is physically instructive to
examine how other authors have attempted to define this principle. Coppi [3]
states: "We present a set of criteria that appear to lead to a consistent
description of both the electron thermal energy transport and the particle
transport. We label this set of criteria as the principle of profile
consistency. In fact, this is based on assuming that the observed flows of
thermal energy and particles are those needed te reach a consistent set of
radial profiles for the current density, the particle temperatures and the
plasma density, while satisfying the equilibrium conditions for the considered
plasma columm.™ Tang (5] states: "The principle of profile consistency
basically involves the empirical observation that dynamical processes in well-

behaved tokamak discharges tend to maintain the same relative electron



temperature prefiles, Te(r)/Teo, and associated current profiles. Te(r)/Teo
is indeed found to be sensitive mainly to g, irrespective of changes in
density, plasma size, central temperature, and heating method. Although no
specific mechanisms have as yet been identified to enforce the observed glebal
profiles, the allowed shapes are at least consistent with macroscopic
stability requirements (i.e., long wavelength MHD instabilities)}.” Kadomtsev
[9]) states: "An unusual phenomenon of sustaining certain optimal profiles with
a tendency to retain them even at considerable change in the deposited profile
in a plasma arises. It is more natural to assume the existence of tearing
modes at low pressures, as it has been emphasized by Furth [6], who has paid
attention te the fact that the experimental profiles are close teo the
stability boundary for tearing modes."

If tearing mode stability is what determines the profiles in tokamaks,
then it follows that the fundamental profile is the current density profile
J{r) [6,9,10,16,19,26]. The temperature profile To(r) must then conform to

J{r) so as to satisfy the Ohm's law [27]:
r) = a[Te(r)]E = (1/n[Te(r)])(VL/2wR) R (1.1)

where a[Te(r)] and n[Te(r)] are the temperature-dependent plasma conductivity
and resistivity, respectively, and E is the electrie field in the plasma
(281. Then, as pointed out by Furth [27], the density profile ny(r) and the
thermal transport coefficient xe(r) must conform to the electron thermal

energy-balance equation:

dT (r)
dr

=1
=

ar) = L Irx (e) n () 1. Q,, (1.2)



where
Qej = (Bmg/m;) vg; ng Tl - T;/Tg) (1.3}

is the rate of energy transfer from the electrons to the ions and Mg, My, Voi
are the electron mass, ion mass, and electron-ion collision frequency,
respectiveiy. In Eg. {1.2) Q{r) denotes the sum of all heat sources and sinks
in the plasma. For example, Q = Q. + Quuy - Quaq 10 which Qg = E - j(r)
is the Ohmic power input, Qaux is the auxiliary heating power input, and Qrad
is the radiative power loss, all per unit volume. For Ohmic impurity-free
plasmas Q, . = 0, Qupn >> Q.4 and hence Q = Qg = E - Jr). in the
literature [2-5,29-34] several authors have used widely different forms for
the electron heat diffusion coefficient xe(r). For example, Callen et al.
[29] have pointed out that either a constant Xe Lndependent of r or a non-
linear Xo model which takes Xg = nevTe can explain the JE™ electron heat flux
data [35]. The INTOR studies have proposed [32) a "standard" electron thermal
diffusivity for use in computer modeling studies, xe(r) = [ne(r)]'1. That is,
the heat conduection coefficient Ky = ne(r) xe(r) = constant [= 5 « 1017 em~!
sec‘1] independent of r. This form of xe(r) which was based on informal
studies of data from Alcator A seems to be the most popular one [30-34,361.

Ohkawa [33,34] has also proposed a constant «, model for xe(r). In Sec, IID

e
we will compare the Teo-scaling predictions of the Coppi's form of xe(r) with
those of INTOR and the Ohkawa's forms of xe(r).

Hence, we will take as an operational working detf'inition of the principle
of profile consistency for sawtoothing tokamak discharges as stating that for

a fixed limiter 9 there exists unique natural equilibrium profile shapes for

J(r) [and consequently q(r}], and T,(r) independent of the shapes of the
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heating power deposition profiles as a consequence of the stability
requirements for leong-wavelength tearing modes. These profiles are such tiat
the Liree basi. consequences aof this nrineiple for sawtocthing discharges are:
(17 (ry/a) = Fy(./q,)i= 1/q,, empiricallyl, (2) <T.2/T,, = F5('/q,), and

(3) Tgézz (IpRZef¢/a2VL)F3(qa). Since for a given Te(r). the Ohmic current
j(r) can be deduzed from Qrm's law, it follows thot the set of functions Fy,
Fy, and F3 is uniquely fixed. Further, this set of functions remains the same
for all sawtoothing cischarges in any tokamak regardless of its size (i.e,, a

and R}, Ve, By, ete. Also, by definition the set of relations (1), (2),

Ip,
and (3) necessarily implies that j, g, and Te are not only functions of r but
also are functions of g, [i.e., j = J(r, G5), q = q(r, q;}, and T, = Te(r,

9,01
We pointed out earlier in Eq. (1.1) that Ohm's law relates j(r) to T (r)

via the temperature-dependent resistivity n([T,{(r)]. This n may be written
= )
{(1/q) (1/ns) FU(P,, (1.4)
where fa(r) is the neoclassical conductivity form factor [37], and
_ 3/2
ng = {b zeff/Te ) Ohms-cm (1.5)
is the Spitzer resistivity [38] and b = €.53 x 103 2na. Then

3r) = s(e) [T ()32, (1.6)



where
g{r) = (VL/Eva)[fo(r)/ZefF(r)J. (1.7}

It may be noted that for a given j(r)-profile, Ohm's law specifies the
steady-state Te(r)-profile and vice versa [27,38] only for ohmically heated
plasmas with no appreciable amount of runaway and/or slideaway populations of
electrons [38,39]. For_ auxiliary heated plasmas [such as neutral beam
heating, electron-cyclotron rescnanze heating (ECRH), ion cyclotron resonance
heating (ICRH), lower-hybrid resonance heating, ete.] in general the current
density j(r) = Johm(r) + jaux(r), where Johm is the Ohmic heating current and
Jaux 1s the induced current due ©o auxiliary heating. Hence for "mildly"
auxiliary heated plasmas with j .. >> Jauxr ©one can use the Ohmic relations of
Eqs. (i1.1), (1.6}, and (1.7) and make no appreciable error in the final
results. However, when Jorm > Jaux: Qohm can either be greater or less than

Q depending on the Ohkawa steady-state current drive efficliency criterion

aux
For that auxiliary heating method [#0]. If Qux ?> Qpnmr then in Eq. {1.2)

Qr) = (r), regardless of whether J, . is greater than or less than

Qux
Jonm- That is, what is mild auxiliary heating for Ohm's law Egs, (1.1),
{1.6), and (1.7) is not necessarily mild for the electron thermal energy-
balance Eq. (1.2}. In thia paper we consider only cases where Jorm *? Jaux
and for all but the Teo-scaling law Qohm } Qaux' In deriving the Teo—scaling

law we further restrict ourselves to cases where Qo >> Q in Eq. (1.2)

aux
[see also Eqs. (1.15), (2.4T7), and {2.52) for examplel].

By the self-consistency of the prineciple of profile consistency results
for sawtoothing tokamak discharges we mean that having obtained the analytice

funetions that reasonably fit the experimentally measured Te(r) and/or j(r),
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can one analytically derive the unique set of functions F,, F5, and F3 that
will reasonably fit the experimentally measured plots of (ry/a) vs (1/qa),
(<Te>/Teo) Vs (1/qa), and the Teo scaling law simultaneously, and are these
analytie funetions for T,{r) and/or j(r) unique for all sawtoothing discharges
in any tokamak [see also Fig. 1]? In this paper we will examine in sufficient
detail and rigor tLhis theoretical and experimental self-consistency of the
various model profiles that are found in the literature. We will find that
some of these profiles are naturally inconsistent with the basic notion of
profile consistency for sawtoothing discharges. Indeed, all the d-
independent prcfiles are at variance with the notion that (r1/a) = F](1/qa),
(P>/Tyy = Foll/g), 3, = (Ip/naz) F3(qy), and (4T,/T,) decreases with
increasing q [see also Table 1]. That is, for these profiles F1, FE' F3 and
(ATe/Te) are some fixed numbers regardless of the value of q,- All the q5-
dependent profiles do show that F,, F,, and (ATe/Te) decrease with increasing
9, while F3 inereases with increasing Gy in qualitative agreement with
experimentzl observations. But none of these models are in exact quantitative
agreement with the experimental measurements. Nevertheless, the Coppi-Tang
diffusive model, Kadomtsev optimal proflle model, and the Campbell et al,.
model do come fairly cleose to being in quantitative agreement with the
experimental measurements for the full range of q, values studied here. Also
Wwe will find that the Coppi's and Ohkawa's faorms of xe(r) yield the profile-
consistency dependent Teo-scaling laws which are closer to physical reality
than that given by the INTGR form of xe(r). Finally, it will be seen that
precise measurements of the radial dependence of the normalized sawtooth
amplitude AT,/T, can, in principle, yield not only the temperature and current

profiles but also shed light on the "heat pulse" propagation xe(r)[35].
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B, Qutline of the Theoretical Procedure

We will now outline the general theoretical procedure that we will use to
examine the seif-consistency of the principie of profile consistency results
for sawtoothing tokamak discharges. As we stated earlier. (I tearing mode
stability is what determines the profiles in =okamaks, then the fundamental
profile is the current density mrofile 3i{(r). This j{(r) profile is very hargd
toc measure experimentally. Measurements of J(r) have been attempted with
some success by (1) far-infrared Faraday rotation (41], (2) Zeeman splitting
of excited levels of Li using Li® beams excited by tunable dye lasers [427,
(3) Thomson laser scattering in a direction perpendicular to both the toroidal
and poloidal magnetic fields [43] {(i.e., a manifestation of the familiar
Mossbauer effect [44]), (4) the magnetic field pitch angle-dependent widths of
He* ion lines from injected He® beams [45], and (5) the displacement of D*
and/or HY ion orbits from flux surfaces from injected D° or H® diagnostic
beams due to the conservation of total angular momentum [4%]. At the present
time methods (1) and (2) have yielded jJ(r) profile measurements Lo about 15%
accuracy at the plasma center. But the accuracy is rather poor near the
edge. However, fairly precise measurements of Te(r) profiles are available
via (1) laser Themson scattering [47], (2) black-body electron cyclatron
emission [U48,49,50], and (3) soft X-ray energy spectrum measurements along
radial chords and subsequent Abel inversion [51]. Hence, in this paper we
Wwill take the Te(r) profile and not the j{r) profile as the only reasonably
precisely measurable profile at the present time. With this in mind the self-

consistency examination procedure we will use is as follows:



Step 1:

Step 2:

Step 3:

15

Since we know the total plasma current Ip and hence the limiter q,,
we will first fit a reasonable analytic function Te[r, uT(qa)] for
the measured T,(r) profile, where the function a~(q,) is a measure of

the g -dependent width of the measured temperature profile.

Now we deduce }{r, nj(qa)J = 8(r) {Te[r, “T(qa)]}3/2 from OChm's law
(se= vg. {1.58)]. Here the measure of the current profile width

ay (q,) is determined by the corresponding measure of the temperature
profile width ap(q,). In almost all cases ay = (3ap/2). First, as
is usually deone by theoreticians, we will assume for simplicity a
Spitzer form of resistivity and Zeff independent of r. This implies
that 8 is a constant independent of . Later we will try some
reasonable neoclassical form Ffactors. The procedure from step ! to
step 2 is illustrated by the reversible lines [with arrows pointing
in both directions] connecting the box Te(r, aT) with the box j{r,
aj) in the flow chart diagram of Fig. 1. Ideally, a pure theorist
will follow the reversed direction. If j(r) is more precisely
measurable than Te(r), then we would have first fitted a reasonable
analytic function j[r, uJ(an] and then deduced Te[r, uT(qa)] from

Ohm's law in agreement with the procedure used by the theorist.

We now calculate the poloidal magnetic field frow Biot and Savart

(and/or Ampere's law) [52]:
e[ra()]-uif‘”drr[.-c.(n 1.8
G’an ‘r e} J'an’ (~)

where u_ i. the free-space permeability.

Q



Step 4:

Step 5:

16

Thus, we calculate

{rB

qlr, a (qa)] T/Rﬂg[r. a (qa)]}.

J J

Hence

glr. a (g )] qa(rBB{a, a (qa)]/aﬁeir, oJ(qa)J>. (1.9}

J J

Now we solve for the normalized sawtooth inversion radius (r1/a) as a

function of uJ(qa) from the equation

q[r1, aJ(qa)] z qa(rIBa[a’ uJ(qa)]/aBe[rT, uJ(qa)]} = 1.
(1.10)

Since it is found expsrimentally that (rT/a) z F1(1/qa) ¥ (1/qa), we
demand that this experimentally measured function is a solution of
Eq. (1.10). This, in turn, yields the explicit functianal dependence
of aj on g, such that (r,/a) = (1/qa) is a solution of Eq. (1.10).
it is interesting to note from Eqs. (1.8} and (1.70) that [I (o to
r1)/Ip(o to a)l = (qar%/az), where Ip(o to r) is the plasma current
inside the wminor radius r. That 1is, the empirical profile~
consistency relation (r]/a) 2 (1/qa) implies that [Ip(o to r1)/Ip(o

to a)l = (i/q,).



Step 6:

Step 7:

We then calculate the volume-averaged electron temperature

a ”
<T> fo dr ¢ (T [r, aglq )]}

Tea Teo fg dr r dr

Since we know aT(qa) in terms of aj(qa), We now express [<Te>/TeoJ of
Eq. (1.11) as a function of (T/qa) and obtain the thecretically
predicted function F2(1/qa) which is consistent with the function
Fy(1/q,) = (1/q,). If this theoretically predicted function F,(1/q,)
describes well the experimentally measured plot of [<Te>/Te0] Vs
(1/qa). then thare 1is self-consistency in the predictions of the

principle of profile consistency.

From step 5 we know ay as an explicit function of Q- Then from Eq.
(1.9) one can easily show that the central peak current density j,

may be written

2
Jo = (1/1a%) Fila) = <J> (g,/q,) (1.12)

o

[see Sec. IID], where F3(qa) = (qa/qo), <> = (Ip/na2), g, =
(2Bp/ugR) ), and q; = (znazﬁT/uORIp). Alsc from the Ohm's law [i.e.,

Egs. (1.6) and (1.7}]
_ oy 3/2
1, = (JL/2anZerf) Teo , (1.13)

since by definition f {r=a) = 1.

Thus, from Egs. (1.12) and (1.13) we get
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372
T = (2prRZeff.

2
co /a VL) F3(qa). (1.14)

It may be noted from Eqs. (1.12) and (1.14) that Tgéz = ([p R
Zef.f./aevr_) if F3(qa) = (qa/qo) = constant, a result that is true for
all g, -independent profiles; and Tgéa x (BTZef.f/‘JL) if Fg(qa) =
(qa/qo) = 4z, a result that is true for all q,-dependent profiles
when (r.!/a) = (Ilqa). That is, the former Teo scaling is profile
consistency independent, and the latter one is profile consistency
dependent via the empirical relation r1/a = ‘i/qa. For low-density
regimes, for example, associating xe(r) of the electron thermal
energy-balance Eq. (1.2) with the presence of resistive reconnecting
modes [see also Eqs. (2.54) and (2.55) for the INTOR and Ohkawa
models of x,{r)] that allow for a stable j(r) profile, following

Coppi's [3] simple dimensional arguments one can easily show that

VL @ Fu(R, a, B., I,12

IR s D ete.) (1.15)

ere’ Te
[{see Sec. IID]. Thus from Egs. (1.14) and (1.15) we get the scaling

law for the central electron temperature Teo‘

This entire sequence of steps 1 to 7 is shown in the analytic self-
consigstency loop [or flow chart] diagram of Fig. 1. The reversible lines
(with arrows pointing in both directions in this figure) imply that there
should exist an intrinsic self-consistency among the forms of i{r)}, t‘a(r),

T (r), and xe(r) sSo as to satisfy the Ohm's law and the electron thermal

af
energy balance equation simultaneously as pointed out by Furth [27]. In this

figure the two large bold type connecting flow lines emanating from the bhox



labelled "solution “J(qa)" (one leading to the box labelled "<T >/T,, =
Fz(qa). Experimental check 4", and the other leading to the box labelied "T, -
scaling law 51(VL)' Experimental check 5"] are uniquely due to the principle
of profile consistency. That is to say that if the tokamaik discharges do not
satisfy the requirements of the principle of profile consistency these tuwo
large bold type connecting flow lines will be absent in the flow chart
diagram. In this figure we have also indicated seven distinct boxes where one
can experimentally check the corresponding theoretiecal predictions. For
example, first one can check whether the experimentally measured current
profile is consistent with the theoretical predictions for macroscopic
stability requirements for long-wavelength tearing modes. Second, are the
experimentally measured Te(r) and j(r) prcfiles consistent with Ohm's law?
Finally, are the experimentally measured functions F,, F,, Teo(VL), expression
for V;, and the fipal form of Too, Scaling consistent with the corresponding

theoreticai predictions based on the principle of profile consistency?

II. COPPI-TANG MODEL

A. Coppi-Tang diffusive model for Te(r. qa) with Spitzer type

resistivity,

It is found experimentally in Alcator A and Frasecati (FT) tokamaks [3]
that the electron temperature takes on a diffusion-like profile in impurity-
free plasmas. Also Taroni and Tibone [4] have shown that for regions outside
the q = 1 surface [i.e., for r > r1], a Gaussian profile shape provides an
excellent fit to the large najority of JET steady-state Te-profiles. Later,
Pfirseh and Pohl [11] have shown theoretically that these Gaussian To-profiles
lead in many cases to very good agreement With those predicted by their

"entropy principle."” Then, to the extent that the longitudinal resiscivity is
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proportional to the classical value [i.e., to the extent 8 of Eq. {1.6) is
independent of r], the current density profile j{r) is also Gaussian. Hence,

the profile shapes in this model are:

2,2
Te(r) = Teo exp(-uT r=/a%), (2.1}

and

Hr) = JO exp(—uJ refaa), (2.2)

where by Ohm's law oy = (SGT/2). Here, @y and ap are functions of q [i.e.,

ay = “J(qa) and aq = aq(g,)]. From Eq. (2.2) we get the pecloidal magnetic

field
B (r) = Yol [ dr r exp(-a rzlaz)
) T r o P J
= (uajoaz/ZruJ) [1 - exp(-aJralaa)]. (2.3)
Then
2,.2
(2B.a /Ru_j Y(rcr/a®)
qi{r) = [rBT/HB (r)] = T 1 o' (2.4)
8 2,2
1 - exp(-aJr /a”)
and
g = q(a) = (2BTCIJ/RMO_]°)/[1 - exp(-q, )] (2.5)

J

a
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Hence
qa(r2/a2)[1 - exp(-uj)]
qir) = 33 (2.6)
1 - exp(-ajr /a”)
and
qaf{o) = (qa/“j)[1 - exp(-uj)]. (2.7)

For sawtoothing discharges q{c) < 1, then from Eq. (2.7) it follows that o >

d,- The sawtoath inversion radius T is then given by

2,.¢2
g {r57a®)(1 - exp(-a. )]
q(r,) = 21 = 1. (2.8)
1 - exp(-ujr1/a )

If we demand that (r;/a) = (1/q,) is the solution of Eq. (2.8), then

= -qg log[1 - 1/q,] + qs logl1 - (1/g,)exp{-a (1 - 1/q§)}]. (2.9)

The iterative solution of the transcendental Eq. (2.9) may be written

3 = a§°) + g2 log[1 - (1/qa)exp{-u§°) (1 - 17g3H, (2.10)

where the zero-order solution

(0) _ _.2 _ ,
ay = a_ log[1 1/qa]. {(2.11)
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For our cases of interest 9, > 2 and hence
' v q v 05w (3g ) . (2.12)

J

This is the solution given by Tang [5]. From Egs. (1.11) and (2.1) we get

<Te>/'1‘eo = (1/uT)[1 - exp(-aT)]

(3/2uj)[T - exp(-2n1/3)]. {(2.13)

Figure 2 shows clearly that the soft X-ray measurements of the sawtooth
inversion radii in TFTR satisfy the relation (r1/a) = (llqa). In Fig. 3a we
show a comparison between experiment and tneory of [<Te>/Teo]. The data of
this figure include all the discharges used in Fig. 2. It appears that the
relationship between the experimental measurements and the theoretical
predictions of Coppi-Tang model is [<Te>/Teo]Exp = [<Te>/‘l‘eo]TH + 0.05. At
the peak of the sawtooth rise the Te(r) profile is peaked, while at the bottom

of the sawtooth crash the Te(r) profile is fairly flat up to r,. Thus, T

el *
Tolry) = Tgg exp(—aT/qg) z Toq exp(-2aJ/3q§). Hence [<Te>/'I‘e.|]TH =
{[(Te>/Teo]TH exp(ZaJ/3q§)}. In Fig. 3b we show a comparison between
(¢Tg>/Tgolgyp and the corresponding [<Tg>/T,ylpy for the same set of data as
in Fig. 3a. The agreement between the theory using the peak T,, = Te(r1) at

the bottom of the sawtooth instead of the peak Te at the top of the sawtooth

o
and experiment is rather poor, In Figs. %a and 4b we show a comparison
between the experimentally measured T,(r) profiles and the corresponding

theoretically predicted ones from Egs. (2.1) and (2.10) for {low} q, = 2.9 and
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(high) 4, = f 2 discharges, respectively. These measurements are the second
harmonic electeon cyclotron black-body emission as measured by a Michelson
interfercmeter, and are averaged over a couple of sawtooth periods. In the
Appendix we show that the fraction of the cotal plasma current that is flowing

outside te limiter for this model is
I to =)/1 {0 to «)] = expl(-a,). 2.14)
[J.p(a } p( )] P GJ) {

Since ay = ago) = Q, + 0.5, it appears that from an experimental standpoint
this is not an unreasonable fraction for values of a, > 2.

Thus far we have taken the view that the best fit for the experimental
plot of Fig. 2 is {(r,/a) = (1/qa). However, in Fig. 2 one could possibly also

fit an equation of the farm
(r1/a) = (m/qa) + b. (2.15)
Then the approximate solution of Eg. (2.8) is

(1;0)] (2.16)

a,(m;b) = a (1;0)[1 + {(a®- 1) + 2bmg_ + b2} /24

J

d J

where aJ(1;0) is the same ay of Eq. {2,10). Since by definitiocn when

(ry/2) = 1, g, must also tend to unity, it follows that b = (1 - m) in Eq.
(2.15). It is found that it is impossible to find a pair of values of m and b
even with b # (1 - m) that will yield good fits to both the plots of (ry/a’ vs
(1/9,) and [T /T olpyp vS [¢Tg>/Tg lqy simultaneously. That is, the pair
that gives a good fit for one plot yields a very poor fit for the other plot

and vice versa.



24

B. Chopped Coppi-Tang model for Te(r, qa) with Spitzer-type resistivity.
This model assumes that the profiles are flat inside some radius re £ r,

and is a Gaussian for r 2 Cee That is,

; Teo for r s ra
T (r) = 2 2 2
e Teo exp[-uT (0™ - rf)/a ] for r 2 P (2.17)
and
o forr<r
J(r) = - 2 _ 2,2
Jo expl( uJ (r rf)/a ] for r 2 Te s (2.18)
where a; = (3ap/2) by Ohm's law. Then cne can show that
qa(r2/a2)[(r§/ae) + (1/uJ)(1 - exp{~a, (1 - r?/az)})}
q(r) = - (2.19)

[[r§/a2) + (/a) (1 - exp{-uJ(r2 - r?)/az})]

J

We now write (rf/a) = c(r1/a) where c<t. If we demand that(r1’a) z (1/qa) is

the selution of q(rT) = 1, then ay of Eq. (2.19) is given by

caqu) - (a calqz)] (2.20)

a {e) = “J(c = 0) - qi flog (1 + o ]

] ]

for ¢ near 2zero, and

2
1 (c /qa)(l - llqa)

*3190 11 - expl-a (1 - @®/a2]) - q, (1 - exp{(-a,/2)(1 - B

(2.21)
for ¢ near unity, uwhere aJ(c = 0] is given by Eq. (2.10). It may be noted

that the zero-order solutions to the lowest order are
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(o) . . 2 - . - a
“j {(c = 0) = - q, log(1 1/qa) a, + 0.5 for ¢ = o, (2.22)
and
(O) = P ! - = + =
uj (c = 1) qa,(1 ./qa) =1, 1 for ¢ = 1 and q, 2 2. (2.23)

From Eq. (2.17), wWe get

)1 - exp- (2073301 - r2/a)}] + (r2a°).

[<Te>/TEO] = (3/2a j

J
(2.24)

In Fig. 5 we have shown a comparison of [<T /T, lgyp Vs [<Te>/Teo]TH for

¢ = 1 and the same set of data as in Fig. 3. Here the agreement between
theory and experiment is better than that of Fig. 3a. In Figs. (6a) and (0b)
we show a comparison between the experimental and theoretical Te(r) profiles
for discharges with (low) g, = 2.9 and (high) g, = 6.2, respectively. The
ovarall agreemert between the experimental measurements and the theoretical
predictions of this chopped Coppi-Tang model with ¢ = 1 seems fairly

reasonable.

C. Coppi-Tang Model With Some Neoclassical Form Factors.

We now wish ta examine the effects of the neoclassical corrections (to
the Spitzer resistivity ng) on the profile consistency set of functions,
Fi{17a9,) = (ry/a), Fo(l/q.} = [<KT>/Tg,l, and F3(qa) = (4,79, An
approximate analytic formula for the neoclassical conductivity form factor
ch(r) = GNC/Us = “s/“NC may be written fNC(r) = {1 - fT/(1 + E ug)] [1 «
CfT/(I + £ uy)], where fT is the fraction of trapped particles (with banana

orbits), vy is the electron collisionality parameter, C is the conductivity
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reduction coefficient due to electron-electron collisions, and & is an
affective ion charge-dependent numerical factor. Detailed formulae for these
coefficients fr, wus. C and & are given by Hirshman and Sigmar [37].
Generally, 0.4 ¢ fj{r) < 1, and fy(r) has a minimum at some value of r >
a/2. The flatter the temperature profile, the larger is the value of Tmin-
At the plasma center f; = 0 and hence fNC(r = Q) = 1. Since j = o0 E = o
(VL/2nR], the neocclassical correcticis to n, tend to narrow the current
profile j(r). That is, for a given T (r), the necclassical Jy.(r) is narrower
than the Spitzer j.(r). Hence, for a given q, and F,(1/q,) = (ry/a) =
(1/q,), the value of the current profile width parameter “J{Ca) for jNC(r)
must be less than the corresponding value given by Eg. (2.12) for jy(r) [i.e.,

ay <g, + 0.5]. Thus, for a given q and Te(r), the neoclassical corrections

tend to increase the value of Fy(1/q,) = [KT>/Tyy]

e [1/aJ(qa)] since we
demand that F,(1/q,) = (l/an. That is, one would expect the neoclassical
corrections to improve the fit between theory and experiment in Fig. 3a since
these corrections tend to increase the values of [(Te>/Te0JTH.

However, it is extremely difficult if nct impossible to derive explieit
closed form analytic expressions for this set of funections F1, Fa, and F3 even
With this approximate fNC(r). Thus, it is natural to assume that a point by
poirt computer numerical solution for each q, is the most effective one. But,
this way does not help very much in comprehension of the physics of the
phenomena. Hence, we will now try to mock up this fy.(r) via conduetivity
form factors fa(r) that are some simple but physically reasonable functions of
(r/a). We find that £ (r) = (1 - @ r2/a®) and £ (r) = exp (- r?/a%) fit
reasonably well with the JET group resistivity measurements of Campbell
et al., {Figs. 3 and 13 of Ref 13] and Bartlett et al., [Fig. 9 of Ref. 31].

Purther, since these functidns Fq, Fy, and F3.dépend only on the moments of
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J{r) and Ty (r) and not on their local derivatives and since these functions
are sensitive primarily to the behavior of F_(r) in the main body of the
plasma and are fairly insensitive to the nature of Fa(r) near the plasma eadge,

we feel that these fd(r) are reasonably adequate approximations to fy.(r) for

the problem under study.

Case 1: First we will try

F(r) = (1 - arsad) (2.25)
where d <1. Hence, the profiles are

Te(r) = Teo exp(-aTrE/aa), (2.26)
and

Jr) = 1, (1 ~d r2/a2)exp(-ajr2/az), (2.27)

where ap = (2uj/3)‘ Then

a, (r27a%)[(1 - d/a,) = (1 - d/a,- d)exp(-a,)]

J
[(1 - d/GJ) - (1 - d/uj- dr2/a2)exp(-ajr2/a2)]

g(r) =
(2.28)

If we demand that (r1/a) = (1/qa) is the solution of the

transcendental equation q(r1) = 1, then we get for oy of Eq. (2.28)

_ (0)
uJ = aJ + 6§, (2.29)
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where
0y _ _ 2 _
o)’ = qa log(1 1/qa)' (2.30)
and
§ = - qz[log(1 - d/a,) - leog(l - d/a, - d/qz)]
a J ] a
(1 = d/a, -~ d)
+ qi log[1 - i 5 exp{-uj(l - ’/qi)}].
qa(l - d/uJ - d/qa)

{2.31)

For our cases of interest q, > 2. Then the zerc-order solution of

Eq. (2.29) to the lowest order is

. (02 1. -1 _ . 2
uJ uj 9% [logl d/aJ) og(l d/aJ d/qa)]
P qa + 0.8 -d + (1/3qa).... (2.32)
From Eq. (2.26) we get
[<Te)/Teo] = (3/2aj)[1 - exp(-20j/3)]‘ (2.33)

In Fig. 7 we show a comparison between the [<Te>/Teo]EXP and the
corresponding [<Te>/’reo]TH for d = 0.5 and the same set of data as in
Fig. 3. Here the agreement between theory and experiment is better

than that of Fig. 3a and is scmewhat similar to that of Fig. 5
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Second we will try
fa(r) = exp(—rzlae). (2.34)
For this conductivity form factor, it is relatively easy to show from
Eq. (2.9) that if (ry/a) = (1/q,) is the solution of q(r,) = 1, then

the corresponding 9y is given by

. 101 - 1/q§)}].

(2.35)

a, = -1 -qi logl1 - 1/q] + qs log[1 - (1/q,) exp{- (a

J J

For our cases of interest 9 > 2, then the lowest order form of Eq.

{2.35) may be wWritten
2
ay = -1 -q, log(1 - ?/qa] =q, - 0.5 +« (1/3 qa)"" (2.36)

Comparing Eg. (2.36) with Eq. (2.32), it is apparent that this case 2
is more or less the same as the previous case 1 with d =1 in Eq.
(2.32). This is a reflection of the fact that the functions, Fy, Fo,
and F3 wre sensitive primarily to the behavior of rU(r) in the main
body of the plasma and are fairly insensitive te its behavior near
the plast. edge since f (r) = exp (-r2/a2) = (1 - r27a2) for r2 ¢
a?. Also it is now apparent why both the conductivity form factors
fG(r) of case 1 [see Eq. (2.25)] and case 2 [see Eq. (2.34)] fit
reasonably well with the JET group measurements of Campbell et al.
{13] and Bartlett et al. [31] for the main body of the plasma. They

do however differ near the plasma sdge.
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Third we will try the theoretically expected conductivity form factor
fa(r) when xe(r) ng{r} = constant independent of r [i.e., the INTOR
and the Ohkawa type x,(r)] in the electron thermal energy-balance Eq.
(1.2). Then from the low-density regime {i.e,, neglecting the Qei

term] of Eq. (1.2), we get for Ohmic impurity-free plasmas

£(e) e [1 G (r :rTe)ergm
c 11 - (agre/a?)lexplage?rza?) (2.37)
far Te(r) =z Teo exp(-aTrzlaz). Then,
i) = J°[1 - (uTrE/az)]exp(—aTrZ/az). (2.38)

It should be noted from Egqs. (1.1), (1.2) ana {(2.37) that for low
density Ohmic impurity-free plasmas with a constant Kg = xe(r) ne(r),
a given Te(r) uniquely determines fa(r) and vice versa. Thus, if
Te(r) is a Gaussian of Eg. {2.1), then fo(r) # fyelr) [or
equivalently, if f (r) = fys(r), then To{r) cannot be a Gaussian] for

these Ohmic plasmas with a constant « This is a natural

a*
consequence of the fact that there must exist an intrinsic self-
consistency among the forms of j(r), fg(r), Te(r),xe(r), and ne(r) sS¢
as to satisfy the Ohm's law and the electron thermal energy balance
eqguation simultaneously as pointed out by Furth [27] and illustrated
by the reversible lines in Fig. 1.

Comparing Eq. (2.38) with Eq. (2.27) of case 1 (with ap replacing

both d and aJ], it follows from Eq. (2.28) that
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q{r) = q, exp[-uT(T - rz/az)]. (2.39)

If we now demand that(r,/a) = (1/qa) is the sclution of the equation

q(ry) = 1, then from Eq. (2.39) we get
an = {log q_)/(1 - 1/g%) (2.40)
T a a'’ :
Since T (r) = T_.. exp(~- r2/a2), we get
e eo T ’
[<Te>/Te°] = (1/aT)[1 - exp(-aT)]. (2.41)

it is found that a comparison between the [<Te)/TeolEXP and the
corresponding [<T>/T,,lpy for the same set of data as in Fig. 3
yields [(Te>/Teo]EXP = [(Te>/Teo]TH - 0.15. This is a poorer
agreement than that of case 1. This may imply that either y.(r) ne(r)
+ constant or the Te(r) is not really Gaussian for the discharges

under study.

D. Principle of profile consistency predictions for central electron
temperature T, scaling from Coppi-iang model.

By definition
_ - 2
q, = [aBT/HBe(a)] = [2na BT/uORIp]. (2.42)
Also from Eq. (2.5)

q, = (ZBTaJ/u RJO)/[1 - exp(-uJ)]. {2.5)

o)
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The principle of profile consistency for sawbtoothing discharges implies that

(ry78) = (1/q,) which in turn demands [see Eq. (2.12)] that a, = ag°> =qy +
0.5. For g, > 2, [1- exp(-aJ)] = 1. Then fram Egs. (2.42) and (2.5) we get
J = {Ia./ma%) = (I_/ra®){q_ + 0.5). (2.43)
o P J P a

Frem Egs. (1.12) and (2.43) it is seen that F3(qa) = (qa/qo) ¢ q, + 0.5 for

this model. By Ohm's law [see Egs. {1.6) and (1.7)]

3/2
Jo = (v /2md2 . R) TO0C. (2.44)

Then from Egs. (2.42), (2.43), and (2.44) we get

2/3 2/3 2 2/3
Teo A (unb/uo) (ZefrBT/UL) [1+ (uORIp/Hna BT)] . {2.45)

For q; > 2, (uORIp/HwaaBT) = (0.5/qa) << 1, Hence, the profile consistency

dependent scaling law for large a, is

2/3
Teo « (ZeffBT/VL) (2.46)

and there 13 no explicit dependence on Ip, R, ard a.

He now wish to obtain an eupression for the loop voltage V. Here we
will follow the dimensional analysis arguments of Coppi [3]. First we
consider the low-density regime where the Qei term in the electron thermal

enargy-balance Eg. (1.2) can be neglected. If we associate Xe{r) with the
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presence of resistive reconuecting modes that allow for stable j{(r) profile,

following Coppi [3], it is relatively easy to show that

. o 1/2 2 ,0:2/5,0,3/5 _1/5, 1/5
VL = (neD/E,)(3w bemec /2) (Rzeffne /ami )y (2.47)
where ey is a numerical coeff.cient [of order 0.3/8n ~ 10=2] that is evaluated
by a fit to the experimental data. One may note from Egs. (71.15) and (2.47)

that the funetiocn Fn = R Zgé% né’s a1 mE1/5 for this model profile and
Coppi's form of xe(r). Hence from Egs. (2.46) and (2.47), it follows that the

scaling law in the low-density regime is

T

o B$/3 R-2/3 a2/3 z1}/15 m2/15 n'2/15. (2.48)

eff i e

This may be compared with the Taylor et al. [25] regression analysis of the

TFTR data which yielded

« p0-78 -0.31 1.1 ,0.45 ,-0.24 (2.49)

Teo T eff “p ’

; : 0.86
and the TFR data [1]) which yield Teo « BT for constant Ip' Mg, R, a, and

mi.

We now consider the high-density regimes where Ti(r) is strongly coupled
tae Te(r). That is, when the electron-ion equilibration time is much shorter
than the energy replacement time the approximate form of Eq. (1.2) and (1.3)

become



34

E - j(r) = Qei « vei(r) ne(r) Te(r)[1 - Ti(r)/Te(r)]/mi. (2.50)
That is,
2 2 ;
{ES/n) = (VL/ZHR) {1/n) =« Vei rle Te - Ti/Te]/mi. (2.51)

Sinee n = {(mc® v_./n e2), Eq. (2.5") yields

(<] el e
1/2 1/2 1/2
VL « (R'I’e (1 - Ti/TeI Vai/M )
1/2 1/2
« (Rnezef.fﬂ - Ti/'re] /Te m; s {2.52)

. 3/2
where we have used the fact that vy; = (n 2,pp/T3 ). Thus, from

Egs. (2.46) and {2.52), the high-density regime scaling law may be written

(T, -T,) =8 R2m n?. (2.53)
In deriving Eq. (2.53) we have used the values of Egs. (2.50), {(2.51) and
(2.52) at r = o, Houwever, a better form of the scaling law can be obtained by
using the volume-averaged forms of Eqs. {(2.50), (2.51), and (2.52).

Equation (2.48) gives the Tgo Scaling if we associate xe(r) with the
presence of resistive reconnecting modes that allow for stable j(r) profiles
[31. In the literature several authors [2-5,29-34] have used various
different models for the electron thermal diffusivity xe(r). The INTOR
studies [32] have used a constant electron heat conduction coefficient Kg =
ng(r) xg (e} = 5 x 10’7 em~! see~!. Ohkawa [33] has proposed a xe(r) model

based on magnetiec reconnection due to the small-scale current filamentation
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around the singular peints u = 1/q = n/m. He argues that the mixing length or
the "random walk" step length is the collisionless skin depth c/upe and the
characteristic time is the transit time of the electrons around the closed

field lines (qR/ve) where the electron thermal speed Vg = (2¢ Te/me)1/2. That

is, Xe = (ce/m2 v /ﬂRqa) Hence for the Ohkawa model

kg = Xglr) ng(r) = (T;égfﬂqa). (2.54)
Subsequently, Kadomtsev and Pogutse [34] have shown that this Ohkawa result
also follows from considerations of the magnetic reconnection [around flux
surfaces where q takes on rational values] as a result of microturbulence in
the drift frequency range. It is physically instructive to examine the Teo
scaling for the INTOR and the Ohkawa x,'s using the Coppi-Tang diffusive
profiles of Egs. (2.1) and (2.2).

On making use of Egs. (1.7), (2.1), and (2.2) in Egq. (1.2) one can show
that for low-density Ohmic impurity-free plasmas with constant x_ = xe(r)

e
ne(r)[i.e., Q=Q

ohm = E v J and «g # k()]

= (321%0/3) (kg RPZ,pp/a2TL02) . (2.55)

When r,/a a 1/q,, ay = gy + 0.5 = g, for large q, [see Eq. (2.12)]. Hence,
from Eqs. (2.46) and (2.55) we find that the profile consistency-dependent T,

scaling law may be written

2/5 2/5 2/5 g2/

eo p eff (2.56)

for the INTOR form of xe(r), and
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< pe/3 ,2/3 ,1/3 o=1/3
Teo BT a Zeff R (2.57)

for the Ohkawa form of x,(r). Comparing Egs. (2.48), (2.56), and (2.57) with
the empirical Eq. (2.49) and with the TFR data [1], which yield T, « B,0-%6,
one can see that Coppi's and Ohkawa's forms of x (r) yield T,  scalings that

are closer te physical reality than the INTOR form of xe(r).

111, EXPONENTIAL PROFILES

Electron temperature prefiles have been measured under a wide range of
discharge conditions in TFTR. Boyd and Stauffer [7] have presented these
normalized T -profiles [i.e., plats of T (r}/T (o) vs r/a] for a wide range of
values of the limiter q. They find that for low g, the shape is trapezoidal,
and at higher q, the profile is centrally peaked and falls exponentially in
the range 0.1 < rfa < 0.6. However, Fredrickson et al. [8) have taken an
altogether different viewpoint in analyzing these Te(r) profiles in TFTR. In
particular, these authors chose to normalize the Te(r) profiles to the value
at the half minor radius point and have presented plots of Te(r)/Te(a/2) Vs
r/a. That is, Boyd and Stauffer have put more emphasis on the data for (r/a)
< 0.6 and less emphasis on the data for (r/a) > 0.6; while Fredrickson et al.
have put more emphasis on the data for (r/a) > 0.4 and less emphasis on the
data for (r/a) < 0.4, particularly for high q, discharges. Taking their
empirieally fitted prefile for high g, Ohmic discharges (with very small
sawteeth) as the "limit"™ profile, Fredrickson et al. found that the profile
shapes outside the core region can be approximately fitted with a modified
exponential function [see Sec. IV, Egs. (4.1), (4.2) and (4.15)]. Inside the

core region this limit profile shape is flattened for sawtoothing discharges.

o
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A comparison of the conventional normalizing procedure used by Boyd and
Stauffer [i.e., plots of Te(r)/Te(o) vs r/a] with those used by Fredrickson et
al. {i.e., plots of T,(r)/T (a/2) vs r/a] can be found in the paper by Becker
et al, [30]. In this Sec. III and in Sees. IV and Y we will examine the
predictions of the generalized versions of these profile shapes [i.e.,
exponential, modified exponential, and trapezoidal profile shapes,

respectively].

A. q, - dependent exponential profile fits for Te(r,qa)

In this model, the profiles are given by
Te(r) = TEo exp(-aTr/a), (3.1)

and

] ()

JQ exp(-ajr/a), (3.2)

where ap = (201/3). Then,

0, (r2ra%)01 - (¢, + Dexp(-a )]

q(r) = {1 - {(ajr/a) + 1f§§p(-ajr/a)] ’ (3.3)

where

q * (BTaifuoRjo)/[1 - (a, + Nexp(-a))] . (3.4)
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From Eq. (3.3), we get

q (o) = (2qa/a§){i - (a, + Nexpl-a)]. (3.5)

] J

For sawtoothing discharges q(o) < 1 and, therefore, a§ > 2qa. If(r1/a) =

(l/qa), then from Eq. (3.3) the iterative solution of the transceneental

equation q(r1) = 1 may be written

(o) 1

[ugO)2 exp{-agO) (1 - 1/qa)})]/Y(uS°)/qa)

(3.6)

2 2 eyt
a = + 2q° log(1 -
j a c|go) . qa

where

v @d®rq) < - 2fiee (14 alPray - (Vb e(Ve)? D

and the zero order sclution

G(°)2= -

2 \ N
j 2q; log(t - 1/q,) =29+ 1. ‘ (3.9)

From Eq. (3.1) we get

/T (2/«%)[1 - (ap + Dexp(-a)]

(9/2¢%)[1 = (1 + 2a

3 J/3)exp(-2a

/3 1. (3.9)

J

It is found that the Te(r) profiles of Eq. (3.1) witn ay of Eg. (3.6) in

general gives a very poor fit to the experimentally measured To(r),
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profiles. The agreement between [<Te>/Teo}EXP and the corresponding
[<Tg>/Tgylpy of Eq. (3.9} is also found to be rather poor., Further, in the
Appendix we show that the fraction of the total plasme current flowing outside

the limiter for this mode! is

[Ip(a to «)]/Ip(o to =)] = (uJ + 1)exp(-aj). (3.10)

Sinece oy = 030) = (2ca+1)1/2, it appears that from an experimental standpoing

this is an unacceptable fraction for vaiues of q, > 2.

B. Teo scaling for g, - dependent exponential profiles.

From Egs. (2.42) and {3.4) we get

2 2 \
2na BT (BTuj/uoRJO'

9 = Mo RIp =71 - (37 » 1)exp(-uj)] . (3.11)

2
If (ry/a) = (1/0,}, then from Eq. (3.8) uja = uJ(o) = (2qa + 1), For our
cases of interest q, > 2, then [1 - (aJ + 1) exp(-aJ)] = 1, Thus from Eq.
(3.11) we get

2 2 2
i = (Ipu /2%a”) = (Ip/na )(qa+ 0.5). {3.12)

J

Q

Then using Eq. (2.44) we find that for g, >> 1

, 2/3
Teo = (ZepeBr/VL) ™ (3.13)

Using Eq. (3.1) in the electron thermal energy-balance Eq. (1.2) Ffor low-

density regimes [i.e., neglecting the Qg; term in Eq. (1.2)] and since by



40

definition <j/j > = qa/q(o) and rj = (e/ln) d (rBe)/dr, one can show that [3]

2

c g 0 eV
X = (—3—=)1 £ ay, (3.14)
mpeqa (BHQOuT/qa)Te

2
where ap = (2a;/3) and for (ry/a) = (1/q,), aﬁ = ago) = (2q, » 1) = 2q, feor
4y 2 and Qg = (eBe(r)/mec). Since the general properties of resistive
reconnecting modes depend on characteristic fractional powers (1/3 to 2/5) of
the classical electrical resistivity, following Coppi (31, in Eq. (3.14) one

may take

eV w
L Ua pi.2/5

[ ] = € (X ) ’ (3-15)
(aﬁqouT/qa) Te R D "*n Yoy

where x, = (n,c2/4n) and n, = (3n/32) ny = (31/32)(b2,pp/T372), ¢p is 2
numerical coefficient that is evaluated by a fit to the experimental data and
wpj = (szeffneezlmi)1/2. Thus, from Eq. (3.15) we get for the low-density
regime

R3/2 I1/2 z3/5 n1/5

1/2 2 2/5 p eff e
eD/3e)(3ﬂ bemec /2) ( 5 172 175 Y,
a BT mi

VL =

(172,172
uO

(3.16)

where from Egs. (2 5} and (3.8) we have used [q(o)ap/q,] = (2/a§) (EuJ/3) =
(2/3) (2/q3)1/2 = (2/3) (Ho/ﬂ)1/2 (r1/2 Ip1/2/a ET1/2). Henee from Eq.

(3.13), for the low-density regime we get

. 2/3 _ g g-1 8/3 /15 =173 -2/15
Toy = (ZopeBp/V) Bp R a3 2002 1213 a S (3.17)

It is interesting and physically instructive to note from Eqs. (2.46) and
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(3.13) that the profile consistency dependent T, scaling law for sawtoothing
tokamak discharges in terms of the loop voltage T,, = (ZeffBT/VL)2/3 is
universal and unique and is independent of the profile shapes. However, the
expression for V; for macroscopic stability reguirements for the plasma column
under study depends critically on the profile shapes and, in particular, on
the Te(r) profiles, This is due to the fact that the electron thermal energy-
balance equation which determines the macroscopic stability of the plasma
gcolumn is a very sensitive function of the profile shapes for low-density
regimes. This is the reason that the Gaussian temperature profile scaling law
of Eq. {2.48) is somewhat different from the corresponding exponential Te(r)
profile scaling law of Eq. (3.17). However, in the high-density regime, the
dominant term in the electron energy-balance Eq. (1.2) is Qe and consequentiy
the T,, scaling is still given by Eq. (2.53) and is independent of the Te(r)

profile.

C. qa-dependent chopped expcnential profile fits for Te(r,qa).

The profile shapes for this model are

Teo for r < Th
Te(r) = TEQ exp{-ﬂT(I‘ - I‘f)/a} for r » rf‘ , (3.,18)
and
J forrsr
- o £
Hr) = {JO exp{—uj(r - rf)/a} forr 2r., (3.19)

where ap = (2uj/3). These profiles are flat up to some radius rp < r, and are

exponential for r z rp. Then for r> Prs
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q,(r2/ad)[(r/a%) » <1/a§) ((1+a

a /a) - (1 + aJ)exp{-uj(1—rf/a);)]

s

g{r) = '
2,2 2
(rg/a®) + (VoL + ayrp/al - (1« aje/a)expi-aj(r - rp)/al]
(3.20)
where
.. (2BT/MORJ0)
a- 2 2 2 '
+ (1/ - = * - - ,
(rf/a ) ( uj)[(1 aJ rf/a) (1 uj)exp{ aJ( rf/a)}] (3.21)

If (r,/a) = (1/qa) and (rf/a) = {er,/a) = (c/qa) with ¢ < 1, then from Eg.

(3.20) the iterative solution of the transcendental equation q{r;) = 1 may be

Wwritten
2,02, . .2 (0)
aJ(c) = aJ(c-o) 2qa{log(1 + ca, ‘a9,
¢ 2072y | (al®), )11t rq) (3.22)
u‘J qa J qa OJ qa .

for e near zero, and for ¢ near unity

agz(c) = (®/q_)(1-1/q}((1+a

c/qa)(l—qa) - {1+a )exp{-a (1+c/qa)}

J J 3

. (aJ+qa)exp(-(uj/qa)(1-c)}]-1, (3.23)

where a,{c=0), Y(al9)/q ) are given by Egs. (3.6) and (3.7), and the zero-
] J a

order solutions to the lowest order are

039) (c=0) = [-2q° log(1 - 1/qa)1"2 = (2q. + DV, (3.24)

and
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A I N N RV N SR C AR PLAN (2.25)

J

for ¢ near zerc and ¢ near unity, respectively. From Eq. (3.18) we get

<Ty/Toy = (37205 )1 + (2ea /3q,) + (2673 /903)
- (1. ZaJ/B)exp{ - (2a3)01 - e/q )11, (3.26)

where we have set ag = (2uJ/3) and (rf/a) = (¢ rlla) = (c/qa). Here again it
is found that the T,(r) of Eq. (3.18) with aj of Eq. {(3.22) and (3.23) gives a
very poor fit to the experimentally measured Te(r) profiles for any value of c
< 1. For ¢ = 1, the agreement between {<Te)/Teo]EXP and the corresponding
[<Te>/Te°]TH of Eq. 13.26) is found to be extremely poor. However, it is

shown in Fig. 8 that the agreement between [<T,>/T.,lpyp and the corresponding

[<Te>/Teo]TH of Eq. (3.26) for ¢ = 0.5 is reasonably good.

D. g, - independent exponential profile fits for T (r}.

In this model we assume the following profile shapes

T (r) = T exp({-4r/3a), (3.27)

and

H) 1 exp(-2r/a). (3.28)

Then

qa(rzlaz)[i - 3 exp(-2)]
[T - (1 + 2r/a)exp(-2r/a)] °* (3.29)

glr) =
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where
a, = (4B7/0.594u A3 ) (3.30)

since [1 - 3 exp (-2)] = 0.594. If (ry/2) = (1/q,) is the solution of the

equation q (r1) = 1, then
0.59ll/qa =1 - (1 + 2/qa)exp(-2/qa). {3.31)

The solution of Eq. (3.31) is (1/qa) = 0.8 and, therefore, q, = 1.25. Also,

1A

one can easily show that (r,/a) 2 o implies that (1/q,) > 0.297, i.e., q,

3.367. From Eq. (3.27) we get
T /Ty = (9/8)(1 - (7/3)exp(=U4/3)] = 0.453 (3.32)

regardless of the value of dg- It is clear that a9, - independent profiles
cannot have (ry/a) = {1/q,) as a solution of g (ry) = 1 for any continuous
range of values of Q, and, consequently, (Te>/TEO # F2(1/qa) for any finite
range of q,.
E. Teo scaling for qQ, - independent exponential profiles, a scaling that
does not depend on the principle of profile consistency.

From Egs. {2.42) and (3.30), we get

B 2
q, = (2na BT/uORIp) 3 (6.73uBT/uORJ°). (3.33)
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That is,

3 = (6.7341p/2ﬁ32). (3.34)

Then .sing Eq. (2.44), we get

eq v aa

2/3
6.734bI_RZ
) p eff . 2,2/3
T -( ) (IpRZeﬁ./VLa ) R (3.39)
L

By comparing Egs. (2.46), (3.13), and (3.35), it is apparent that if

j(r) and Te(r) profiles are g, - dependent, then T,, scales as T, «
(BTZeff/VL)2/3 for large q, as a consequence of the principle of profile
consistency relatioen (r1/a) ~ (1/qa). while if these profiles are Q; -
independent then Teo = (IpRZeff/VLa2)2/3, a scaling law that does not depend
on the principle of profile consistency. These two types of 'I‘eo scaling laws
are indeed a consequence of the fact that for g, ~dependent profiles which
satisfy the empirical relatien (r,/a) = (1/qa), F3(an = {93/, = q, [i.e.,
q, = constant] for large q,; while for q,-independent profiles F3(qa) =
(qa/qo) = constant [i.e., qQy = qa] for all q, and is independent of the
condition (r,/a) = (1/g;). It is our belier that these are the only two

fundamenizl types of Too Scaling laws for all tokamak discharges when Q = Q.

0
in Eq. (1.2). However, the expression for V| depends on the type of mode that
determines the stable J (r) profile for the plasma column under study. Again
in this case following Coppi [31, one can easily show that VL is roughly given
by Eq. (2.47) and (2.52) for the low-density and the high-density regimes,

respectively. Hence for the low-density regime

2/3 415 _-2/3 2715 _-2/15
Teo © Ip Zops 8 m; n, ' (3.36)
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and for the high-density regime

2 ~2 =4
(Ten - Tio) - Ip g ne a . (3.37)

It is interesting to note that there is no By <r R dependence on these T,

scaling laws.

F. Q- independent chopped exponential fits for T, (r).

In this model we assume that the profiles are given by

Teo for r = rf
Tlr) = Teo exp{-4{r - rF)IBa} for r 2 rg, (3.38)
and
Jo for r < Te
Hr) = 14 exp{-2(r - ra)/a} for r 2 rp . (3.39)
Then
( qa(rzfaz)[(rﬁ/az) « (1/)((1 + 2r/a) - 3 exp{-2(1 - rf/a)})]
qi{r) = ’
[(rfa/az) « (1/8) ((1 + 2rp/a) = (1 + 2r/ajexp{-2(r - r.)/a})]
(5.40)
and

T /T = (9/8)[1 + (Ur./3a) + (Bra/9a’)

- (7/3)exp{(-{84/3)(1 - rf/a)}]. (3.41)
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For Fe=rq, (r1) = 1 yields

lrq, = (¢27a) « (/01 + 2r /a) - Bexp{-2(1 - r/a)}] . (3.42)

a2

If (r]/a) = (T/qa) is the solution of the Eq. (3.42), then

1/q, = /g5 + (1/(1 + 2/q) - 3 exp{-2(1 - 1/q)}] . (3.43)

The graphical solution of Eq. (3.43) is (1/qy) = 0.32, i.e., q; = 3.125. Then

from Eg. {3.41) we get (T >/T,, = 0.647. Howaver, for 0 < (r,/a) = F,(1/q,) =

143

(1/9,), Eq. (3.42) has solutions for all values of q, (47{1 - 3 exp(-2)}1 =
6.7, and this is shown in curve A& of Fig. 9. In this figure the agreement
between thsory and experiment is gzood for medium and low values of g, and is
poor for high values of Q,- But the corresponding agreement in curve A of

Fig. 10 is terrible. This curve A is obtained from Eq. (3.41) with rp = ry,

where r, is given by Eq. (3.42),

IV. MODIF1ED EXPONENTIAL PROFILES

In contrast teo the exponential profiles c¢f the previous section, the
modified expomential profiles to be considered here will have a natural cutoff
at a certain value of r/a. Thus, the purpose of this section is primarily to
flustrate the effects of profile truncation on the consistent set of functions

Fys Fp, and Fy.

A, Gy = dependent modified exponential profile fits for Te(r,qa).
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In this model we will assume the following profile shapes:

e) = 3,00 - ajr/ca)exp(-ajr/a), .1
and
Te(r) = Teo(1 - aJr/ca)2/3 exp(-2ajr/3a). {4,.2)
Then
2,2 2
q (r*/a )[{(aj/c) - {1 + aj)(T - 2/c)}exp(-uj) « (1 - 2/0)]
q(r) = '
[{(aira/caz) - (1« aJr/a)(1 - 2/c)}exp(-ajr/a) « {1 - 2/¢)]
(4.3)
where
2
qQ = By kot (4.4)
a {(ni/c) - {1+ a)(1 - 2/e)}exp(-a) + (1 - 2/c)
and
ato) = (24,/a3){(e3/e) = (1 + a1 - 270 ]expl-a)) « (1 - 27)].
(4.5}

Since it is impossible to obtain a closed analytic form for <T.> of Eq. (4.2),

we will approximate this Te(r) profile as
Te(r) o Te°(1 - aTr/ca)exp(-uTr/a) , (4.6)

where oy = (2uJ/3). Then
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2

3 1{(a2/0) = (1 + ap)(1 = 27c)Jexpl-ap) + (1 - 2/0)],

(8.7)

<Te>/Te° = (2/a

It may be noted that when ¢ - =, Egs. (4.71), (4.2), (4.3), (U4.4), (4.5) and
(4.7) reduces to the Egs. (3.2), (3.1}, (3.3), (3.4), (3.5} and (3.9},
respectively, as they should. It is clear from Egs. (4.3), (4.4), (4.5), and

(4.7) that the simplest case occurs for ¢ = 2. For this simplest case

Hr) = JO(1 - ﬁjr/2a)exp(-ujr/a). (4.8)
From Eq. (4.5) for e = 2 ve get
q(0) = q, eXp(-uJ). {4.9)

For sawtoothing discharges q{0} < 1, and hence ay > log q,. From Eq. (4.3)

a(r) = q, exp{-uj(1 - r/a)}. {4.10)

If (r1/a) = (1/qa) is the solution of q{r) = 1, then

ajzlog qa/(1 - l/qa). (4.11)
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Then from Eq. (4.7}
<Te>/Teo = exp(-aT) 2 exp(-Zaj/3). (4.12)

Here again it is found that the agreement between [(Te>/Teo]Exp and

[(Te>/Teo]TH is very poor.

B. q, - independent modif.ed exponential profile fits for Te(r).

In this model we will examine the following two cases: case 1, ¢ = 2 and
a2 “j(qa) = 2, and case 2, (aj/c) = 0.95 and ay # aJ(qa) = 2 in Eq. {4.1).
In the literature, the second case with a flattened core has been considered

by Fredrickson et al. [8].

Case 1: ¢ = ay = 2 in Eq. (4.1).

That is
Jey = 3,01 - r/a)exp{-2r/a). (4.13)
If (ry/a) = {1/q9,) is the solution of g {ry) = 1, then from Eq.

(%.11) we get
log q, = 2{1 - 1/qa). {(4.14)
The graphical solution of Eq. (4.14) is (T/qa) = 0.203, i.e., q, =

4.92 and from £q. (4.7), <T>/Ty, = e=? = 0.135. These results are,

of course, in complete disagreement with the existing experimental
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measurements [1,25,53]. In particular, for example, the temperature

profile peakedness Teo/<Te> is not a function of 9.
ay = 2 <nd (uJ/c) = 0.95 in Eg. (&4.1).

That is

J(r) = 3,01 - 0.95r/a)exp{-2r/a). (4.

Then from Eq. (4.3) we get

5.736qa(r2/a2)

Q(r) = 2 2 . (4,
{1 + {38 {r°/a) - 2(r/a) - 1}exp(-2r/a}]
and from Eq. (4.5) we get
q{0) = O.lﬂsﬂqa = qa/6.973. {4,

For sawtoothing discharges q(o) < 1 and hence q, < 6.973. Now

q(r1) = 1 implies that

[1 - 5.736q, (rf/az)] = [1+2(r/a)

- 38(r?/a2)]exp(-2r1/a). {4,

If (rqy/a) = (1/qa) ig the solution of the Eq. {(4.18), then

1/q, = (1/2) logl(1 + 2/q, - 38/q2)/(1 - 5.736/q)1. (4.

15)

16)

7

18)

19)
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The graphical solution of Eq. (4.79) yields (1/q,) = 0, or (1/q ) =
0.222, i.e., q; = = or q; = 4.505. Since for sawtoothing discharges

Q 6.973, the only physically meaningful solution of Eg. (4.19) is

[ )

i

q, = 4.505. Setting oy = 2 in Eq. (4.12), we find that Tg>/Tyy =
exp(~4/3) = 0.264. Again these results are in complete disagreement
with the existing experimental measurements (1,25,53]. In parti-
cular, neither the sawtooth inversion radius nor the temperature
profile peakedness is a funetion of the limiter cafety factor [i.e.,
Fy ¢ F1(I/qa) and F, ¢ Fp{1/q,) for any finite range of values of
qa]. It may be noted that in general F,, F,, and F3 cannot be

functions of az For any qa-independent profile,

Teo Scaling from q,-dependent modified exponential profile.

Here we will only consider the simplest case of ¢ = 2 in Egs. (4.1) and

(4.2). For (rq/a) = 1/q,, one can show from Egs. (1.12), (4.5), and (4.11)

that

F3(qa) = (qa/qo) = exp[log qa/(1 - 1/qa)] = q

/(1 - 1/g.)
a

= q, for q, » 1. {(4.20)

Using Eq. (4.2) [with ¢ = 2) in Eq. (1.2) we get for the low-density regime

where

2 .
3c¢7q & eV (1 - a,rs2a}
Xe(r) = (—5228) [—— )%() 3, (4.21)
4ﬂupeqa ajqo 9,7 felr

e
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-1/(1 - 1/q )

(uj qo/qa) = uJ exp(-aj) [log qa, /(1 - 1/q 1] q,

a2

=1
a, log q_ for g, >> 1. (4.22)

Following Coppi [3]) and associating xe(r) with the presence of resistive
reconnecting modes that allow for stable J(r) profile, one can show from
dimensional analysis arguments that

3/5 1/5 i ). (4.23)

x (ujq /q )(Rzeff o

Hence from Egs. (1.14), (4.20), (4.22), and (4.23), it follows that the
scaling law in the low-density regime is
1 /8 ,2/5 -1 _-1/5

o aJ exp(2uj) 1p m, Zeff a e

-3
]

. (543 g2 /15 215 -2/15 p-4/3 [-2/3
- (8] 22727 0215 o~ R 1553
[log(EnaEBT/uORIp)]_2/3 (4.24)

for q, » 1.
In the high-density regime V, is again given by Eg. (2.52). From Eqs.
(4.20) and (2.52) one can easily show that the high-density regime scaling law

for large q, is again given by Eq. (2.53).

D. Teo scaling frem qa-independent modified exponential profiles.

tirre again wWwe will examine the following two cases: Case 1, ay = c = 2,

and Case 2, a = 2 and (nJ/c) = 0.95 in Egs. (4.1) and (4.2). From Egs.
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(1.12}, (4.9), and (4.17) we get

7.389 for Case 1
F3(qa) = (qa/qo) = ronstant = 6.973 for Case 2 (4.25)

and is independent of the condition (rq/a) = (1/g,). That is, for q,-
independent profiles q, « a, for all values of q,; while far qa-dependenb
profiles q, = constant for large g, when (r;/a) = 1/q, [see Figs. 15a and
15b]. Again in these cases following Coppi [3] one can easily show that v is
roughly given by Egs. (2.47) and (2.52) for the low-density and the high-
density regimes, respectively. Hence for the low and high density regimes the
T_. scaling law is given by Eqs. (3.32) and (3.33), respectively.

eo

E. Fredrickson et al. model.

In this model the profile shapes are:

1q for r < re
jre) =
{ Jol{1 - 0.95 r/a)/(1 - 0.95 rpsa)lexp{-2(r - rp)/a} for r 2 rg
(4.26)
and
Teo for r < rg
Te(r) =

Tool(1 = 0.95 r/a)/(1 - 0.95 £,p/a) 123 exp{-4(r - rp)/3a} for ¢ 2 1
(4.27)

where we have assumed Spitzer reslstivity and thus j = Te3/2. This model is a
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special case of the q,-independent chopped modified exponential profiles,
Here we wiil only consider the case where r. = ry. That is, We will assume
that the profiles are flat up to the sawtooth inversion radius. Then from

EQ.(4.26) one can show that q(ry) = 1 yields

(17g,) = (ry2/2%) + (14D - 0.95 rq/a)~" (35 exp [-2(1 - ry/2))
- {38r2a%-2rya- 1}l (4.28)

If we now demand that (r,/a) = F,(1/q,) = (1/q;), then Eq. (4.28} nas a
solution for only cne value of q_, namely for q, = 1. However, for 0 < (r1/a)
= F(1/g,) = (1/q,), Eq. (4.28) has solutions for all values of g, s [40/(35
exp(-2} + 1}] = 7 and this is shown in curve B of Fig. 9. In this figure the
agreement between theory and experiment is good for medium and low values of
q, and is poor for high values of 4y Indeed for q, > 7, (r1/a) < 0. Hence,
tokamak discharges with this model profile cannot be sawtocthing for values of
g, > 7. It should be noted that the critieal value of g, = 7 below which the
discharges are sawtocthing and above which the discharges are nonsawtoothing
in this model is only true for re = ry. If ry is different from r,, then this
critical value of g, will alsoc be different from 7.

Since Eq. (4.27) contains powers of r that are nonintegers, it is
impoessible to obtain a closed analytic form for <T, > of Eq. (4.27). Ffor r <«
a, (1 - 0,95 r/a)2/3 a (1 - 0.63 r/a). Thus for the sake of analytical
simplicity we will approximate [(1 - 0.95 r/a)/{1 - 0.95 r./a)1®/3 in Eq.
(4.27) by [(1 - er/a)/{1 - crp/a)], where 0.63 < c = (0.63 + 0.95)/2 = 0.8 <
0.95. As we Will see later, choosing this mean value of ¢ = 0.8 is not a bad
approgimation for the range of G, values studied in Figs. 9 and 10. With this

approximation, one can show from Eqs. (4.27) and (1.11) that
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T2 /Tey = (rp2/a) » (9/8)(1 - crpsa)™! [(4.833¢ - 2.333)
expi- (4/3)(1 - re/a)} - ef(8/3)(rp/a)® + 2(rpra) + 1.5} « (B/3)(rpra) « 1],
(4.29)

where for our purposes rp = r, and (rq7a) is given by Eq. (4.28). This self-
consistent theoretical prediction of Eqgs. (4.29) and (4.28) is shown in curve
B of Fig. 10 for ¢ = 0.8. In this figure the agreement between the theory and
experiment is indeed remarkable. For a given g,, the higher (or lower} values
of ¢ in Eq. (4.29) tend to lower (or raise) the predicted values of <Te>/Teo
{by approximately equal amounts). For example, for ¢ =z 0.95 (or ¢ = 0.63) one
gets a parallel curve displaced downwards (or upwards) from that for ¢ = 0.8
by approximately 0.05 along the <Te>/Teo axis. Thus, from Figs, 9 and 10 in
conjunction with the earlier T (r) profile - fit studies of Fredrickson et al.
[8], it is apparent that these chopped modified exponential profiles are in
good overall agreement with the existing TFTR data. It is interesting to note
from Eqs. (4.12), (4.28), and (4.29) that by chopping a q,-independent profile
such that re « rq, one ends up with a qa-dependent prefile, That is, for a
qa-independent profile the inverse of the temperature profile peakedness
<Te>/Teo z F2(1/qa), while the same profile when chopped up to the sawtooth
inversion radius yields (Te)/Teo = F2(1/qa) via the relation (rx/a) = F1(l/qa)

+ (1/9;).

V.  TRAPEZOIDAL FITS FOR T (r).
In this model .:2 take the profiles to be given by

for r

T
_ eo f
Tlr) = T [(1 - r/a)/(1 = ro/a)] for v (5.1)

1A
"3

\3
-
™
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and
J forr < v
() :s ° 3/2 d (5.2)
ljo [(t - vra}s(t - rf/a)] for r 2 v,
Then
alr) = q (c2/354%)[8 + 12(r,/a) + 15(rya)°1lir/a) « (/1)1 - rra)™32

((1 - ra) 72 - (- rra)T/2) o (W5)(1 - epra) 372 {01 - p/2)%72 (1 - ppra)/2)0T,

(5.3)
where
{2B../u_RJ.)
q, - T oo = (5.4)
[(8/35) + (12/35)(rf/a) + (3/7)(rr/a) |
and
q(e) = (2B;/u R ). (5.5)

If the flat region of the profile rp = r,, then from Eq. (5.3) g(ry)} = 1

yields
(1/q,) = (8/35) + (12/35)(r,/a) » (3/T>(r /). (5.6)
It may be noted that for rp = ry, q{0) = 1 and hence Egq. (5.6) also follows

trivially from Eqs. (5.4) and (5.9). Equation (5.6) can easily be rewritten

as
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[(r,7a) » (2/5)1% = (1/3)[(1/q,) - {4/25)]. (5.7)

This is the equation for a parabela with the vortex 1/q, = 4/25 = 0,16 and
ri/a = -2/5 = -0.Y4 and this is shown in curve C of Fig. 9. If we demand that
ry/a = 1/q, is the solution of Eq. (5.6), then 1/q, = 1 or (16/30) = 0.533.

From Eq. (5.1) we get

n

N 2
(Te. /Teo (1733[(1 (rf./a) * (rf/a) ]. (5.8)
For Ty = Ty

T /T, = (/31 + (r,/2) + r1/a)2]

(179) + (35/36)(1/q,) - (/12)(e /)%, (5.9)

where we have made use of Egq. (5.6). If we neglact the (1/12](r1/a)2 in Eq.
(5.9}, this is <he equation for a straight line with a slope (35/36) = 0.972
and intercept on the [(Te>/Teo] axis of (1/9) = 0.111. We have illustrated
this in curve C of Fig. 10. In this figure the agreement between the theory
and experiment is indeed remarkable for medium and low values of g,. However,
the corresponding agreement in Fig. 9 is poor for high and medium values of
Agr and is fair for low values of - The trapezoidal fits to the
experimentally measured Te(r) profiles are very good for low q, - diseharges
and are poor for the high q - discharges. Indeed it is interesting to note
from Figs. fa, 9, and 10 that the trapezoidal profile is an "ideal limit

profile” for very low values of q, [i.e., for q, < 3] in agreement with the
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experimental observations of Boyd and Stauffer [7]. It is clear from Egs.
(5.6) or {5.7) that (r,/a) 2 0 only when (1/g_ ) 2 (8/35), i.e., only when g, =
(35/8) = 4.4, Hence, tokamak discharges with trapezoidal profiles cannot be
sawtoothing for q, > Loy, t may be noted that this critiecal value of q, =
4.4 for the trapezoidal model is much less than the corresponding value of q,
= 7 for the Fredrickson et al. model of 3ec. IVE. Finally, since in this
model the current is automatically truncated at r = a, no current flows

outside the limiter,

VI. KADOMTSEV MODEL

4. Kadomtsev optimal profile fits for Ty(r, q ).

Kadomtsev [9-11] argues that the optimal profiles with respect to
perturbations of the tearing mode type are the ones that satisfy the
variational minimum energy principle for the total energy with the current
conservation constraint. If we assume that the toroidal coils fix the
longitudinal flux and hence the longitudinal magnetic field energy remains

unchanged, then the integral
F = [ dr 2me [(82/8r) » (p/(y - 1)} + AJ) (6.1)

is a minimum for the correct flux function ¥(r) where (d¥/dr} = Bolr), » is
the Lagrange 1 adetermined multiplier, and y is the adiabatic index, The
current conservation constraint is a consequence of the indestructibility of
the magnetic configuration far from the islands [i.e., far from the singular

points of w = 1/q = n/m]. Let ¥ = (d¥/dr?) = (1/2r) (d/dr) = (By/2r) -
(BT/ZH){I/q(r)} = {Bp/2R)u(r); then from Eq. (6.1), the variational minimum

energy prineiple yields that
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6F = 5 dr? ev (.4 LIS (6.2)
dr LR

where

2 + {wp/(y - 1)} + anj]. {6.3)

£le?, ¥(r?), ¥1 = [(1/2) rP ¥

Hence, ‘.2 optimal profiles must satisfy

A L (6.4)

If we now assume that p and } are not explicit functions of ¢ [i.e., (a3af/ay) =
0) and since ¥ = (BTIERJu, Eq. (6.4) yields that the optimal profiles must

then satisfy
[rau - (HREIBT){(ﬂ/Y - 1){3p/au) + mx (33/3u)}] = constant. (6.5)

The simplest choice that will satisfy Eq. (6.9) is (3p/3u) « u and (331/3u) =

#. That is, p = p;u2 and j = j;ua. Then from Eq. (6.5) we get

(constant/af) 1
ued = (1 + r2/a] S atr) (66)
vhere
a2 - (Brﬁz/Bg)[(p;/y - 1) e J;]. (6.7)

From Eq. (6.6) we get

(1/9,) = (constant/ag)/[1 + a®/a3],
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and

w(e) = (1/9(e)] = (1 + a2/aR) /(1 + v2/ad) 1C17g,) . (6.8)
From Eq. (6.8)

q(o) = g5/(1 a?/a§). (6.9)
Hence. XKadomtsev optimal profiles are:

J(r) = 31,701 « £2raf)? (6.10)
and

pir) = ng(r) Tolr) = py/t1 + r2/ad)2. (6.11)
It may be noted from Eqs. (6.10) and (6.11) that if J « Tg/z, then n, « Té/z

[11].

Now from Eq. (6.10) and Biot and Savart's law, it is relatively easy to

show that

gi{r) = g,(1 + rzfag)/(1 - 32/33), (6.12)
where

a, = (2Bp/u R, I(1 + a%/ad). (6.13)

If we now demand that (r1/a) = (1/qa) is the solutien of the equation q(rT) =

1, then from Eq. (6.12) we get
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(ag/a) = (1/q,) for q, = 1. (6.14)}

Hence, the Kadomtsev optimal profiles that satisfy the principle of profile

consistency relation (ry/a) = (1/q,) are [9,10]

) = (Gt + r?/2§)?] = [157C1 + qara/a‘?)z], (6.15)
and

To(r) = [Too/(1 + v2/aD)¥3] = [T/ (1 + qr27a?)¥/3], (6.16)
where we have assumed that j « Tg/a. Then,

Tg/Teq = (3/a)[1 = 1/(qy + D131 (6.17)

These are also the same profiles given by Biskamp [10]. This Tel{r) profile of
Eq. (6.16) gives a fairly reasonable fit for high G, - discharges, but yields
a very poor fit to the low 9 - discharges, particularly for larger values of
(r/a). This is tied to the fact that this Kadomtsev model allows an
appreciable fraction of the total plasma current to flow outside the limiter
for low 9, - discharges. Indeed, we show in the Appendix that this fraction
is given by

(162 to =)/1 (0 to «}] = (1 + 27317 = (1w g (6.18)

for (r,/a) = (1/qa). In Fig. 11a we show a comparison between [<Te>/Teo]EXP

and the correspending [(Te>/Te°]TH. It appears that the relationship between
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the experimental measurements and the theoretical predictions of the Kadomtsev
model is £<Te>/Teo]EXP = {(Te>/TeQ]TH + 0.05. This result is exactly the same

as that of the Coppi-Tang model of Fig. 3a.

B. Chopped Kadomtsev Model.

In this model we take

Jo for r < rf
j{r) = 5 2 5 2.2 (6.19)
Jo[(i - rf/a,)/(1 + r°/ag)]" forr 2 Fos
and
Teo ‘or r = rf
T (r) = (6.20)
€ Toolll + r?/ag)/(1 + r2/a3)1u13 for r 2z r,°

Here, the profiles are flat up tc some radius Fp £ 0, and is of the Kadomtsev

type for r 2 ro. Then

") qa(rzlaa)[ (r%/af) + {(1+ r?./as)(a2 - r?.)/(a2 + af)}]
alr) =
2, 2 2, 2 2 2 2 2
[{rSra%) + {(1 + rSrag)ir® - rS)/(r° + af}}l
£ £ f * (6.21)
where
(2B_/u Rj )(a%/a2)
T oo l (6.22)

q - .
a [(r?/az) « {1+ r?./as)(a2 - r?.)/(a2 + af)}]

If rp = ry and (r1/a) = (1/qa) is the solution of the equation q(r1) = 1, then

(agsa®) = (1/a,)(01 - (2/q,) + (1/gD)}/(1 = 1/g)]. (6.23)

From Eg. {6.20) we get
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2,2 2, 2 2,2
T /T, = (rp/a”) « (3a,/a%) (1 + ra/ay)

- 1w e2a Y3 dRad) VA, (6.24)

For (rp/a) = (ry/a) = (17q,), Eq. {6.24) becomes

2 2,.2 2,,.2,.2
T /Ty, = (1/67) + (3ay/a I+ (L7  Ha"/ay),

(1 > (1/gE)Na*/ad)y 3

2 1/3 L

5 (6.25)
{1 + a"/ay)

where (ag/az) is given by Eq. (6.23). In Fig. 11b we have shown a compariscn
of [(Te>/Teo]EXP Vs [<Te>/Teo]TH of Egqs. 76.25) and {6.23) for the same set of
data as in Fig. 3. Here, the agreement between theory and experiment is
better than that of Fig. 11a.

C. T,. scaling from Kadomtsev optimal profiles.

eo
For (ry/a) = 1/g,, it can be shown frem Egs. (1.12}, (6.9), and (6,14)

that the function F3(qa) is

F3(qa) = (q,7q9,) =g, + 1. (6.26)
Using Eq. (6.26) in Eq. (1.14) we get

- 2/3 2/3 2 2/3
Teo = (41b/u°) (BTZeff/VL) [1+ (uORIPIZna BT)] . (6.27)
For q, = (2waaBTluoRIp) »> 1, Eq. (6.27) yields the approximate Fform of the

sealing law as Teo T (BTZefr/VL)2/3' Then for the low-density regime

neglecting the Q. term in the electron thermal energy balance Eq. (1.2) and
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making use of Eg. (6.16) we get

2 2,.2
) 3c aq eVL(1 +qr/a ) a
x (p) = ( > T(r) R] . {6.28)
€ 16mw" _rq BWb'e
pe “a

Since g, = [g,7(q, + 1)] = 1 for q5 >> 1, following Coppi [3] one can show
from Eq. (6.28) that the T,, scaling law in the low-density regime for large
values of q, is again given by Eq. (2.48). Also, for large values of q, it
can easily be seen from Eq, (6.27) and (2.52) that the T,, scaling law in the
high-density regime is again given by Eq¢. (2.53). That is, the Kadomtsev
model yields the same T, scaling law as that of the Coppi-Tang model for both

the low-and high-density regimes.

VII. CAMPBELL et al, MODEL

A. Fits for T,(r,q,) used by Campbell et al, of the JET group.

Campbell et al. of the JET group [13] have claimed that the theoretical
predictions of the behavior of tokamak discharges based on a simplified
current profile of the form j(r) = j, (1 - r2/a21%, where v = ({g,7a(0)) - 1]
is in remarkable agreement with their experimental observations In JET, This
model was used earlier by Wesson [12] to examine the various MHD instability
regimes in tokamaks. Here, we will generalize this model and take the

profiles as given by

WV,
T (r) = T[T - 1222 T (1.1

and
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v

$ey = 301 - r2/a°] 4, (7.2)

where by Ohm's law wp = (2 »,/3). Then

a(r) = q (+3a%)/11 - (1 - r2/a2)“1+]], (7.3)
Wwhere

9, = (2B /u RNy« 1), (7.4)
From Eq. (7.3)

a0} = q /v + 1), (7.5)

i,e., [vJ = (qa/q(O)) - 1] in complete agreement with Campbell et al. If we

demand that (ry/a) = (1/qa) is the solution of q(ry) = 1, then

(v, + 1) = log(i - 1/q_)/log(1 = 1/q). - (7.6)
] a a
It may be noted from Eq. (7.6) that for g, >> 1, vy = (g, - 0.5).

From £q. (7.1) we get

B -1 _ -1
T/T g = lop + 17 2 [(2/3)(vJ + 1)+ (/) (7.7
where (uJ + 1y is given by Eq. (7.6).

In Figs. (12a) and {(12b) we show a comparison between the experifantally
measured Te(r) profiles and the ceorresponding theoretically predicted ones

from EqQs. (7.1) and (7.6) for low q, (=2.9), and high q, (= 6.2) discharges,
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resrectively. Here, the agreement between theory and experiment for Te(r)
profiles is better than that of the Kadomtsev model ar< is somewhat similar
to that of the Coppi-Tang model for botk the low and high q, - discharges.
This is tied to the fact that these profiles have an automatie cut-off at r =
a, and thus no current flows outside the limiter. In Fig. 13a we show a
comparis on between [<Te)/Teo]EXP and the corresponding [<Te>/Te0]TH for the
same set of data as in Fig. 3. It appears that the relationship between the
experimental measurements and the theoretical predictions of the Campbell e.
al. model is [<Te>/Teo]EXP = [(Te>/Te°]TH + 0.05. It is indeed remarkable
that this result is identical to that of both the Coppi-Tang model of Fig. 3a
and the Kadomtsev model of Fig. 1la. It is not very clear to us what
intrinsic connection exists among these three models [i.e., the Coppi-Tang,

Kadomtsev, and Campbell et al. models] that leads to the same relationship of

[<‘1‘e>/'1'e°]EXP = [(Te>/Te°ITH + 0.0% for all these three models.

B. Chopped Campbell et al. Medel.
In this model we will take the profiles as flat up to some radius re <
ry, and is aof the Campbell et al. type for r 2 Cp-

That is, the profiles are:

‘ Teo forr <,
T (r) = v (7_8)
e g, 10 - 2@ - 2 T e 2
and
; J for r < r,
Xri = s 2 2 2 (7.9)
‘ 3o L1 = r%/a%)y(1 - ri7a®)] ¥ for v 2 Po s

where vp = (2 uJ/3) by Ohm's law. Then
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qa(rz/a2)[(r§/a2) + (1-r?/32)/(vj+1)]
alr) = v,+1 v
[(r3/a®) (1-r§/a2)/(uj+1) - () b sir2sa?y (v;+1)}]
(7.10)
where
q, - (EBT/uORJOJ/[(rﬁfaz) . (1~ r?/az)/(uj + 0] (7.11)

For rp = ry and if (ry/a) = (1/9,) is the solution of the equation g(r,) = 1,

then we get

“J = q for q, * 1. {7.12)

From Eq. (7.8) we get

T /T = [(r?/a2) r (1 - r?/az)/(vT + 1. (7.13)

11}

Then for (rp/a) = (ry/a) = (%/q,}, Eq. (7.13) becomes

+

_ 2 2
<TO/T = [(1/g)) {1 - l/qa}/{ 1+ (2qa/3)}]. (7.18)
Here the agreement between theory and experiment for Te(r) profiles is
somewhat better for low 4, - discharges than those for the high q, -
discharges and is fair for all discharges. In Fig. 13b we show a comparison
of [(Te>/Te°]Exp vs [<Te>/Teo]TH of Eqg. (7.14) for the same set of data as in
Fig. 3. The agreement between theory and experiment is rather poor for a, > 4

and is somewhat reasonable for q, < 4,
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C. T,y scaling from Campbell et al. Model

For (ry/a) = 1/q, one can show from Egs. (1.12), (7.5), and (7.6} that

. L 2
(qa/qo; = [log(1 - 1/qa)/log(1 1/qa)]

F3(qa)

n

(qa + 0.5) for q, > (7.15)
From Egs. (1.14) and (7.15) one finds that T,, is given by Eq. .2.45) which
for large q, reduces to Eq. (2.46), Using Eq. (7.1) in Egq. (1.2) we get for

the low-density regime

2 2,2
3¢"aq 9, eVL(v + 1){1 -~ r°7a%)
1
x(r) = ( | a5, (7.16)
e 8nm2 rq “JTe(r) R
pe "a

Since frum Eq. (7.5}, [(uJ + 1)/vJ] » [(gy + 0.5)/(q, - 0.5)] = (1 + 1/9,) = 1
for g, >> 1, we find that VL is given by Eq. (2.47). Thus, here again we find
that the Campbell et al. model yiclls the same T , scaling law as that of the
Coppi-Tang mecdel for both the low [Eg. (2.48)] and the high [Egq. (2.53}]

density regimes.

VI1I. PROFILE CONSISTENCY AND THE UNIVERSALITY OF PROFILES IN THE REDUCED
COORDINATES
Recently, Soltwiseh et al. [41] have measured the current density j{(r)}
and, hence, the safety factor g(r) profiles by the Faraday rotation method in
the Textor tokamak (to about 15% accuracy at the center). Also West et al.
{42] have measured the axial safety factor 9, in the Texas Experimental
Tokamak by the use of laser-induced fluorescence of an injected Li° beam.

Their experimental results show that for sawtoothing discharges g, < 1, and
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when the sawtooth phenomenon is not observed, q, is measured to be above one
and when q, is raised, 9, also increases. We have also shown their
measurements of dy VS 4y in Fig. 15a.

Further, Soltwisch et al. bhave observed that in stationary conditions in
sawtoothing discharges, current density and g-profiles assume a unique
shape. They find that this can be expressed in reduced coordinates (depending
only on the "external" tokamak parameters R, BT' and Ip) as a result of the
critical effect of the m = 1 tearing mode on transport: [j/(BT/uoR)],
[r/(uoRIp/BT)UZI. It is physically instructive to note that (By/u R} =
(Ip/waz)qa = Q,), [see Eg. (1.12)] and (uoﬁlp/BT) = (2ﬂae/qa). Hence the
reduced coordinates of Soltwisch et al. are {j/qo_jol and [r/aef.f.] where agff =
(21ra2/qa). That is, their empirical observation of the universality of the
current profiles imply that the normalized current profiles are functions of
rlagee = (r q;/efa) [11,41].

One can show that all the qa-dependent profiles considered in this paper
except the ones used by Campbell et al. [see Eg. (7.2)]} will lead to the
universality of profiles in some reduced coordinates (_1/_1,3) and (r/aeff) where

1/2

(a,rp/a) is some function of qJ For example, it is apparent from Eg.
eff a

(2.2) that if we plot [j(r)/Jo] vs (r/aeff) where agff. = (az/uj) we wWill
obtain a universal Coppi-Tang diffusive profile. Here it follows from Egs.

(2.5) and (2.7) that the reduced coordinates j, and a e are given by
Jo = (2Bp/u Ra,), (8.1)
and

ader = (a%/ay) = 2®(ay/q,)[1 - expl-a] = a%(q,/q,)
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= (qOuORlp/EnBT), (8.2}
respectively, since for sawtoothing discharges Qg © 1 implies that ay a,
which in turn yields that [1 - exp(-uj)] s 1 for large q,. Now if the

sawtooth inversion radius r, satisfies the empirical principle of profile

consistency relation (r,/a) = 1/q,, then ay = ago) = g, + 0.5 [see Eg.
(2.12)]. Hence g, = (qa/aJ) = [ay/(a, + 0.5)] = {1 - 0.5/aq,] = 1 for g, >>
1. Since qy = (EWaZBT/uORIp), if (r1/a) = 1/qa, then the reduced coordinates

Jo and agppe of Egs. (8.1) and (8.2) depend only ca the "external” tokemak
parameters BT, Ip, R, and a. The weak dependence on the i .miter radius a
comes from the weak dependence of g, on q, when (ry/a) = 1/9,. Hence, for
large g, and when (r,/a) = 1/q,, our reduced coordinates of Egs. (8.1) and
(8.2) become equal to those of Soltwisch et al. It is interssting to note
that if Soltwisch et _al. would have used the reduced coordinate of Egq. (8.1,
in their Fig. 6, then the central current density (for r = Q0) would have tzken
the values 0.67 x 2.95 =~ 1.98, 0.74 x 2.64 =~ 1,95, 0.72 x 2.75 = 1.98, 0.78 «
2.55 = 1.99, 0.80 x 2.50 = 2.00, and 0.88 x 2.30 s 2.02 for the curves 1, 2,
3, 4, 5, and 6, respectively, thus yielding a reduced spread from 1.2 to 2.02
instead of the spread from 2.30 to 2.95. Also, if one used the A rr of Eg.
(8.2), fhen the values of r have toc be divided by the corresponding qo1/2.
Hence, it appears that the use of the reduced coordinates of Egs. (8.1) and
{8.2) would improve the universality of Soltwisch et al.'s profile plots of
Fig. 6.

Similarly, one can show from Egs. (3.2), (3.4), (3.5), and (3.8) that the
proper reducec coordinates for the qa—dependent exponential profiles to yield
the universality of the profiles are (j/JO) and r/a,pp, where j, = (2BT/uoRqo)

and agff = aE/uﬁ 3 (q°/2qa)a2 = (qouoRIp/QwBT) for large q,. From Egs. (4.1},
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(4.43, (4.5), (4.8), (4.9), and (4.11), the reduced coordinates for the g,-
dependent modified exponential profiles for the simplest case of ¢ = 2 may be
written (j/),) and r/a,pp, where J, = (2BT/u°Rq°) and agpp = (a/aJ) =
[a/log(qa/qo)] = [a/(1 - 1/qa)1og qa] s (a/log qa) for large q,. Also, from
Egs. (6.9}, (&.10), (6.13), and (6.14) it follows that the proper reduced
coordinates for the Kadomtsev optimal profiles are (j/j,) and r/a_pp, where jg
= (2Bp/v Aq,) and abpe = (a/q) = (ugRI /27B7).

't is, of course, apparent that for qa-independent profiles (such as the
g, -independent exponantial and modified exponential, and trapezoidal profiles)
and for the profile used by Campbell et al. of the JET group, it is not
possible to find any suitable reduced coordinates that will lead te a

universality of profiles as observed by Soltwisch et al.

IX. RADIAL AND q, ODEPENDENCE OF THE NORMALIZED SAWTCOTH AMPLITUDE

We now wish to examine the dependence of the normalized sawtooth
amplitude on the limiter safety factor q, for those models which satisfy the
empirical profile consistency relation (r,/a) = {1/q,). During the rising
pertion of the sawtooth, which occurs on a 3low resistive Joule heating time
scale [14-23], the Te(r) profile, and presumably the j(r) profile, keeps on
peaking up and the central 9 keeps on decreasing steadily from unity. At the
end of the sawtooth crash, which occurs on a fast time scale associated with
either the resistive internal kink mode [15-20]), the pressure-driven ideal
kink mode [(19,22,23], or with enhanced transport due to micro-turbulence
and/or global stochastization of the magnetic field lines oy the overlap of
secondary islands (23,26,55], these profiles get flattened over the entire
core region of the plasma [15,16,17,24,25). Kadomtsev [15,16,17) has shown

P

that this flat core regicn extends up to a minor radius Fg = CqTp = /2 r, and
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in this region q = 1. This is shown schematically by the dashed lines in the
inserts of Figs. 14a and b. Here the volume integrals of the two shaded
regions are equal to each other, implying the conservation of total plasma
thermal energy and total plasma current for the Te(r) profile [of Fig. tla]
and j{r) profile [of Fig. i4b], respectively. Hence, the radial dependence of

the normalized sawtooth amplitude is given by
- (B) (T) (B) (T}
(AT /T,) = 2[T 7{r) = TR (T " (e} « T (o) ], (9.1)

where Tés)(r) and TéT)(r) are the temperature profiles at the bottom of the
sawtooth [i.e., the dashed lines in the inserts of Figs. 14a and b] and at the
top of the sawtooth [i.e., the solid lines in these inserts of Figs. 14a and
b], respectively. Thus, the normalized sawtooth amplitude at the plasma
center [i.e., at r = 0].

(ﬁTe/Te)o 5 2[Te(a/qa) - Teo]/[Te(a/qa) + TeO], (9.2}

= T -
where we have set T,(r) = Tg"/(r) and Teg * Te(o) and we have used the
empirical profile consistency relation (r,/a) = (1/q,).
From Egs. (2.1), (2.9}, (2.12), and (9.2) we get for the Coppi-Tang model
2
/3q,)1]

(4T _/T_)_ = -2[1 - exp(-2a,/302)1/[1 + exp(-2a

J J

= - (2/3q,) for q, 2> 1, (6.3)
since when (r1/a) = (1/qa), ay = -qg log(1 - 1/qa) = q, + 0.5. That is, the
normalized sawtooth amplitude increases linearly with increasing limiter
rotational transform q;1 for large Q,- From Eq. (9.3 we get (ATe/Te)o = 0.28

and 0.12 for q, = 2.9 and 6.2, respectively, while experimentally (ATe/Te)o 3
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0.18 and 0.10 for q, = 2.9 and 6.2, respectively. Similarly, from Egs. (3.1},

(3.6), (3.8), and (9.2) we get for the q,-dependent exponential profiles

(ATe/Te)o x =2{1 - exp(—Eﬂj/E}q&]/U + exp(-ZaJ/Bqa)]

1/2

3 - (8/9qa) for a, ¥ 1, (9.4}

since when (r,/a) s (1/q,), °§ = —2q§ log(1 - 1/q,) = (29, + 1). Equation
(9.4) yields (aT,/T,), = 0.58 and 0.39 for q, = 2.9 and 6.2, respectively.
From an experimentalist point of view these are very unreas¢nable numbers.
Also for the qa—dependent modified exponential of Eq. (4.8), we find that

(8T /T ), = {1 - (1 - uJ/3qa)exp(—2uJ/3qa)]/[1 + (1 - uJ/3qa)em(-2uJ/3qa)]
> (log q,)/(q -1) for q_ >> 1, (9.5)

where o, is given by Eq. (4.11). This gives (ATe/Te)D s 0.56 and 0.35 for Gy
= 2.9 and 6.2, respectively. For the Kadomtsev model, we get from Egs. (6.16)

and (9.2)

-4 -
(T /1) = =201 = (1 170073100« (1w 1700730 < - r3ay) (9.6)

for 9, 1. This ylelds (aTe/Te)0 s 0.39 and 0.20 for q = 2.9 and 6.2,
respectively. For the Campbell et al. model we find from Egs. (7.1), (7.6),

and (9.2) that

2v /3 2v,/3
a - - - 2y - 2,74
(°Te’Te)o 201 - (1 1/qa) 1701 + {1 1/qa) 1
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= - (2/3qa) for q, ry 1, {(9.7)

This yields (ATe/TE)0 = 0.20 and 0.1 for q9; = 2.9 and 6.2, respectively,
while the corresponding experimental values are (aT, /T ), = 0.18 and 0.10, It
is interesting to note that all the qa-dependent profiles considerea here
predict that (AT /T,), decreases with increasing q, wnen (r,/a) = (1/q,), and
at the =2nd of the sawtooth crash these profiles get flattened over the entire
cor2 region such that in this flat region q = 1. This qualitative behavior is
in good agreement with the experimental observations of the %FR group [1]. It
appears, however, that gquantitatively speaking only the Campbell et al. and
the Coppi-Tang models are reasonably close to the experimental observations in
TFTR and TFR.

Let us now examine the radial dependence of the saWtooth amplitude
(8Tg/Tg) of Eg. (9.1) for the two simple cases illustrated by the inserts in
Figs. 14a and 14b. According to Kadomtsev [15,16,17] the transfer of heat
from the shaded region of r s ry to the shaded region in the range ry < r = ry
is by convection induced by the tear.ng-mode perturbations to the magnetic
field. Thus, the evolution of the excess heat or "heat pulse” in the region r
2 r, = /2 ry should be determined only by the transport properties of the

stable plasma since the tearing-mode perturbations do not exist in this

region. In the light of such a transport study by Jahns et al. [see Fig. 2 of

Ref. 17], it is apparent that a straight line approximation for TéB)(r) and
j(B)(r) fat the bottom of the sawtooth crash] in the region r, £r <ecpryand
cJ r, for these inserts in Figs. 143 and 14b, respectively, is a very
reascnable one. For the Coppi-Tang diffusive profiles of Egs. (2.1) and
(2.2), it is relatively easy to show that the equation of this straight line

is
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2

yle; co) = (e - co)'I[(c - r/r1)exp(-a r1/a2)

- (co - r/r1)exp(-c2u rf/az)], ‘ {(9.8)

where y(c; c = (Te(r)/Teo), ¢ = cp, and a = op for the flattened Te(B)(r)

o)
profile of Fig. l4a; and y(e; cy) = (J(r)/j,) = (To(r)/T )32, ¢ = ¢y, and a
= ay for the flattened j(B)(r) profile of Fig. 14b. By equating the volume
integrals of the two shaded regions [i.e., by the conservation of total plasma

thermal energy and/or total plasma current], one can show after a certain

amount of lengthy algebra that ¢ of Eq. (9.8) is given by

(e + e /2% = ([(3a%/arddexp(arira) - (3¢2/0)] - [(3a%/ar®)

fzaz)l). (9.9)

2
v (2% - cc - ed)lexpl(1 - ) ar
Q o
Here aj = (3ap/2) is given by Egs. (2.10) and (2.11) for (r,/a} = {1/q;). For
iterative purposes the lowest order sclution cp of Eq. (9.9) may be written
(e, + ¢ /)% = [(3a%/a r])explar?/a®) - (32/m)], (9.10)
since ¢ > e, 2 1 and (a r%/az) ~ q;1 << 1 for large d,- By using this value -
of ¢ for ¢ on the right side of Eq. (9.9), one obtains the more accurate
first order iterative selution for e. Thus, from Egs. {2.1), (2.2), (2.10},
(2.11), (9.1}, (9.8), (9.9}, and (9.10) one can abtaln the radial dependence
of the normalized sawtooth amplitude, i.e., (ATe/Te) vs r. For the flattened
T, ' profile of Flg. 14a with conservation of total plasma thermal energy we

e

get
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=2{1 - exp[-uT(r? - r2)/32])

for r ¢ _r
{1 + exp[-aT(r? - rz)/aZ]} °

(ATe/Te) = (9.11)

2,2
2{y(eq;e ) - p{-a,r~/a%)}
T o T for e r. sr<ec.r

2,2
(y(cT,co) + exp(-aTr /a”)}

and is zero for r 2 Cql'y. Similarly, for che flattened j{r) profile of Fig.

illb with conservation of total plasma current we get

2{[y(cjzco)]2/3 - exp(—aTrzlae)}
(ATA/TE) = — 373
- ;e )]

{[y(cJ o

{9.12)

+ exp(-uTra/aa)}

for e, ry & 2 cjr1, is given by Eq. (9.17) for r < ¢y 'y, and is zero for r
2 ¢y ry. These radial dependences of (4T,/T,) for q, = 4 are shown in Figs.
18a and 14b. In both these figures the solid line corresponds to the
Kadomtsev case of eq = /5, and the dashed line is for e, = 1. The somewhat
symmetric solid line curve of Fig. 14b for the Kadomtsev case of Cq = /2 with
the current conservetion constraint seems to have the same shape as the
experimental results of Fig. 3 of Ref, 21 and Fig. 5 of Yamada et al. [20].
However, the esperimental curve of Fig. 2C of Ref. 184 has a rather assymmetric
shape for r > ry. Flnally, it is interesting to note from our simple physical
pieture that one can, in prineiple, unfold the TéT)(r) [and presumably J(T)(r)
via Ohm’'s lav) profiles from precise measurements of (nTe/Te) vs r for r < ¢,
ry = /2 a/q,. Then the precise measurement of (ATe/Te) vs r for r 2 Cy Iy

will yield TéB)(r) in this range, which in turn will shed light on the heat

pulse propagation dlffusion coefficient xe(r).
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X. CONCLUSIONS

In this paper wWe have presented a rather complete and detailed
theoretical examination of the self-consistency of the principle of profile
consistency results for sawtoothing tokamak discharges. In Sec. I we have
outlined very clearly the theoretical procedure that we used to examine this
self-consistency. 1t should be apparent from our procedural outline that the
method used here is for the most part a pedestrian approach. Table 1
summarizes our principal results and conclusions. Most of these models in
this table have been proposed earlier in the literature and used with computer
simulation techniques. Here, we have tried to present a rather rigorous
theoretical aralysis of these models and compare them with some of the
existing TFTR data for sawtcathing Ohmic and low-power neutral beam injection
discharges. We have not included any nigh-power neutral beam injection
results from TFTR, since: (1) for the sawtnothing high-power neutral heam
injection TFTR di:--harges the beam-induced plasma current is an appreciable
fraction of the total plasma current and it is not clear what type of Ohm's
law reiates this part of J(r) to Te(rJ [while for the Qhmic part of the
current j(r) = f‘dtr) T%’z(r)], and (2) most of the high-power neutral beam
injection TFTR discharges are high-Ti discharges with no sawtocth behavior
[54], and in this case there exists no function Fy. Now we will present a
section by section summary and conclusions.

In Sec. 1 we have presented an operational working definition of the
principle of profile consistency for sawtoothing tokamak discharges. The
three basic mathematical statements of this prineiple for sawtoothing
discharges [i.e., discharges with q(0Q) < 1] are: (1) (ry/a) = Fy(1/q,)

[= (1/q,) empiricallyl, (2) [¢T >/Ty,] = F5(1/q,), and (3) the scaling law for
the central electron temperature Tg£2 « (IpRZeﬁ-/aEVL) F3(qa)' In the rest of

the secticns we have examined the self-consistency of the measured Te(r)
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profiles, the functions F,, F,, and F3 for sawtoothing TFTR discharges with
the corresponding ones predicted by the various theoretical models proposed
earlier in che literature by several authors,

In general, as seen from Fig. 2, (r;/a) = F1(1/qa) = (1/qa) gives a very
good fit toc the experimental data. Because of .ne limited range of a; -
measurements, one can also get a reasonable fit to the experimental data of
Fig. 2 with an equation of the form (r/a) = (m/qa) + b, For example, the
pair of values m = 1.23 and b = 0.076 and the pairm = 1.6 and b = - 0.2 both
yield a reasonably good fit to the experimental data of Fig. 2. However, from
a theoretical standpoint the relation (r,/a) = (T/qa) seems much more
fundamental and physically appealing than the relation (rlfa) z (m/qa) + b.
This observed functional relationship (r /a) = (1/qa) for the range of q, -
values necessarily implies that for these TFTR discharges j(r) and, hence, by
Ohm's law Te(r) are both not only functions of r but also functions of Q-
i.e., J = J(r, q;) [and consequently q = q (r, q,}] and T, = T (r, g,}.

Ir. Sec. II, we find that (ry/a) = (1/qa) is an admissible solution to the
transcendental equation q(ry) = 1 for the Coppi-Tang model. Considering the
fact that at the top of the sawtooth the measured T (r} profile is peaked with
a peak value of T,, and at the bottom of the sawtooth crash Te(r) is flat
within the q = 1 surface such that TeT = Te(r = r1) = Teo exp(-EaJ/3q§) = Teo
exp[-2(q, + 0.5)/3q§], one can see that the Coppi-Tang model with Spitzer-type
resistivity is in reasonable agreement with the measured Te(r) profiles. The
best fitting relationship between the experimental measurements and the
theoretical predictions of the Coppi-Tang model appears to be [<Te)/Teo]EXP =
[<Te>/Teo]TH + 0,08, However, the agreement between [<Te)/TeoJEXP and
[(Tg?/Tgy)qy is rather poor. The trial function {(r,/a) = {m/q,) + b with b =
{1 - m) yields a better fit for the piot of [<Tg>/Toglpyxp VS [<Tg?/Tgglpy but

worsens the fit for the plot of (r,/a} vs (1/qa) and vice versa. However,
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unusual and theoretically unrealistic pairs of values of m and b = (1 - m),
for example m = 1.6 and b = - 0.2, will toc scsme extent yield reascnably good
fits to both the plots of (ry/a) vs (1/q,) and [<T>/To leyp vs [¢T>/T o ly
simultanecusly. [These plcts are not shown in this paper.]

The Coppi-Tang model with some reasonable neoclassical conductivity form
factors yields a better fit than factors with simple Spitzer-type
resistivity. However, the theoretically deduced neoclassical correction by
assuming that xe(r) ne(r) = constant in the electron thermal energy balance
equation yields the best fitting relationship as [<Te>/TeoIEXP = [<T8>/TeolTH
- 06.15. This may imply that either xe{r) ng(r) is not really constant hut has
some weak functional dependence on r or the T,(r} is not really Gaussian for
these TFTR discharges under study,

On the whole, the chopped Coppi-Tang model yields reascnably good fits to
all three experimental plots of Te(r) VS, (r1/a) vs. (lfqa), and
[(Te>/TEO]EKP VS [(Te>/Teo]TH simultaneously.

The principle of profile consistency prediction: for the scaling law fc-
the central electron temperature Teo from the Coppi-Tang model is found to be
in fairly reasonable agreement with the Taylor et al.'s. regression analysis
of the corresponding TFTR data, and the TFR data. The Ohkawa's form of xe(r)
yields a T,  scaling law that is rather similar to that yielded by the Coppi's
form of xe(r). However, the INTOR form of xe(r) predicts a somewhat different
'I'eo scaling law, in particular, a weaker dependence on BT and no dependence on
the minor radius a.

In See. IIl we have shown that, in general, the q, - dependent
exponential profiles give a poor fit to the experimental data. The fits for
Telr) vs. r plots are worse for low g, - data and .re somewhat better for the
high Q - data. But the ratio of 'I'eo at the top of the sawtooth to Tel at the

bottom of the sawtooth crash, i.e., T, /[Toy = To{ry) = T, exp(-opry/a)]

eo
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seems unrealistically large compared to the TFTH data of Taylor et _al. The
profile consistency predictions of the Teo scaling law for this model are
somewhat different from that of the diffusive profiles of the Coppi-Tang model
of Sec. II.

The chopped Q - dependent exponential profiles with (rf/a) = (r1/a) =
(T/qa) yieid a poor fi: for [<Te>/Teo]EXP Vs [<Te>/Te0JTH plots, However,
when chopped up to 0.5r; [i.e., (rpfa) = (0.5r,/a) = (N.5/q,)], they yield
reasonably good fits on this plot of [T /Ty lgyp v8 (KT /T lqy-

The a; - independent exponential profiles, in general, give very poor
fits all around. Further, the g, - independent orofiles can have {r,/a) =
(1/q;) as a solution of the equation q(r;} = 1 for only one value of q,, and
they yield a single value for [<Te>/Te°1TH regardless of the value of q,-
These same remarks alsc apply to the chopped G, - independent exponential
profiles. However, the chopped qa-independent exponential profiles have 0 <
(ry/2) = Fy(V/q,) = (1/q,) as solutions of the equation g(r,) = 1 for all
values of q, < [4/{1 - 3 exp(-2)}1 = 6.7. That is, when chopped ug to the
saWtooth inversion radius (or when rp = r1), all qa-independent arofiles (with
<Te>/Teo z F2(1/qa)] in general become q,-dependent [with T2y =
F2(1/qa)]. In deriving the Teo scaling law from any q, - independent profiles
one does not make use of the principle of profile consistency in sharp
contrast to those of the q, - dependent profiles. The qQ, - independent
profiles always seem to yield a scaling law of the form Teo @ (IpRzeff/vL
a%)2/3, unile the q, - dependent profiles always yield T, = (ByZgpp/V))2/3 as
a direct consequence of the profile consistency relation (ry7a; = (l/q,).
Further, for q; - independent profiles Teo is independent of Bp, while for 95
- dependent profiles T,, is a strong function of Brp.

The modified exponential profiles of Sec. IV also seem to give very poor

fits to the experimental plots of {(Te>/TeO] Exp VS [<Te)/Teo]TH‘ In a broad
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sense the same conclusions of the exponential prefiles of See. III apply
equally well here, However, the chopped modified exponential profiles of
Fredrickson et al. [8} yield good overall agreement with the existing TFTR
data.

As seen from the results in See. V, the trapezoidal fits to the
experimentally measured Te(r) profiles are very good for low q, - discharges
and are poor for high q, - discharges. For these profiles the eguation for
(rq/a} as a function of (1/qa) is a parabola, and is in very poor agreement
with the experimental measurements which yield the straight line (r,/a) =
(1/q,) as the best fit. However, amusingly enough, the trapezoidal model
yields [<Te>/Teo] values that are in remarkable agreement with the TFTR
experimental measurements.

In general, the behavior of the Kadomtsev medel of Sec, VI and the
Campbe!l et al, model of Sec. VII are very similar to those of the Coppi-Tang
model of Sec. II. However, from an experimental standpoint the Kadomtsev
model yields unrealistically large values for the fractional c¢ rrent flowing
outside the limiter, while the other two models yield practically realistic
values for this fractional current. It is indeed remarkable and is somewhat
amising to find that 2all these three models yield [<Te>/TeoJEXP =
[<Te>/Teo]TH + 0.05 z3 the best fit to the TFTR data., The exact reason and
the intrinsic connection that may exist among these three models [i.e., the

Coppi-Tang, Kadomtsev, and the Campbell et al. models] that leads to the same

*elatbionship of [<Te>/Teo]EXP = [<Te>/Teo]TH + 0.05 for all these three models
is not very clear to us.

In Sec. VIII we have shown that all the qa-dependent profiles considered
in this paper, except the ones used by Campbell et al., lead to the
universalily of profiles in some reduced coordinates which depend mainly on

the external tokamak parameters 1in agreement with the observations of

Y
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Soltwiseh et al. [U1] and also with the predictions of Pfirsch and Pohl
[11]. It is, of course, impossible to find any suitable reduced coordinates
that will lead to a universality of profiles for all qa—independent profiles
and for the profile used by Campbell et al.

In See. IX we have examined the radial and 9 dependence of the
normalized sawtocth amplitude (AT /T.). We find that for large g,, the Coppi-
Tang, Kadomtsev, and Campbell et. al models all prediet that (4T /T.) = (1/q,)
in agreement with the experimental observations. The assumption of the
flattening of the current profile for 0 £ r < e rq = 2 a/qa at the end of the
sawtooth crash subject to the current conservation constraint, yields a radial
dependence of (ATe/Te) that is in reasonable semi-quantitative agreement with
the existing experimental measurements.

Finally, in the dppendix we have examined the fractional amount of
current flowing cutside the limiter, and “he dependence of the central g{(o) on
the limiter safety factor Q- It is interesting to note from Figs. 15a and
150 that the recent measurements of q{o) as a function of g, by Soltuisch et
al. {41] and by West et al. (42] seem to favor the predictions of the Coppi-

Tang, Kadomtsev, and Campbell et al. models.
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APPENDIX

For the sake of completeness in this appendix we will oxamine the
fractional amount of current flowing outside the limiter, and the dependence
of the central q{o) on the .imiter q, for these models. From an
evperimentalist point of view, it is of course physically instructive to know
offhand whether the selected profiles predict reasonable values for the

fractions F, = [Ip(a to w)/Ip(o to =)], and (q(o)/q,l.

P

Case A: Coppi-Tang model.

For this model from Eg. (2.2) we get

Ip(o tor) = f; dr 2mr Jo exp(-ajre/az)
. 2 - - 22
= (7a Joluj)(1 exp( qu fa’)]. (a.1)
Hence,
. 2
;p(o to 2) = (na jo/aj) [1 - exp(-uj)], (4.2}
and
I(oto«) = (uazjoqu). (8.3)
Thus,
= a) [ = -
Fp [Ip(a to ./Ip(o to =)] = expl “3)‘ (A.U)

If {r,/a) = (T/qa), then from Eq. (2.12) to the lowest order
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u(o) . -

] -q; log{1 - 1/qa] = q_ + 0.5. (4.5)

a
Thus, for low q = 3, the fractional current flowing outside the limiter
is about 3%; and for high q, = 8, this fraction is about 0.02%. From an

experimentalist point of view these are very reasonable numbers.

B: Exzpenential profiles.

For this medel from Eq. (3.1) we get

) r -
Ip(o to r) fodrEﬂrJG exp{-a r/a}

3

2

2
(211_]08. /aJ

M1 - {1+ ajr/a)exp[-ajr/a)]. (A.6)

Hence,

Jexp(-e,). (A.T)

F_ = [Ip(a to u)/Ip(o to =)} = (1 +a 3

p J

If (ry/a) = (1/q,), then from Eq. (3.8) to the lowest order

Case

2 1/2

(0) | [_5q2 _ 172 ‘4.8
a [ an log(n 1/qa)1 P (2qa + 1) . A.8)

J

Thus, for low 9, = 3, this fraction of Eq. (A.7) is about 26% and for
high q, = 8, this fraction is about 8.3%. TFrom an experimentalist point
of view these are very unreasonable numbers,

C: Modified exponential profiles.

For this model from Eq (4.1) we get

Ip{o tor) = f:dr Ewrjo(1 -~ a,r/ca)exp(~s . r/a) = (2raejo/u§)

3 J

"
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[{(a?rzfcaz) - (1 + aj

{4.9)

Here again we Will only consider the simplest case of ¢ = 2.

Eq. (A.9) we get

Ip(o o r) = (njorz)exp(-ajr/a).

r/a)(1 - 2/c)}exp(-ajr/a) « {1 - 2se)].

Then, from

(4.10)

it is clear from Eq. (4.8) that the current profile must truncate when (1

- aJrIEa) =0, i.e., when r = (2a/°j)'

Hence,

e

)] = (”njoa2/aj

Ip[o tor = (2a/a Jexp(-2),

J
and

Ilo to al = (njoaz)exp(—aj).

Thus the fractional current flowing outside the limiter is

71
n

[Ip(a tor = 2a/aj)]/[[p(o tor = 2a/aJ)]

2
J

[1 - {a5/W)exp(2 - “j)]'

For q, - dependent modified exponential profiles which

vA.11)

(a,12)

(A.13)

satisfy the
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principle of profile consistency relation (rW/a) =z (T/Qa),

aj = log qa/(1 - l/qa). (a.14)

Then, for exampie, for q, = 3 the fracticnal current of Eq. (A.l3) is
about 3.5%; while for q, = 8 this fraction is about 3.1%. From an
experimentalist point of view these are very reasonable -umbers.
Finally, it is interesting and physically instructive to note from Egq.
{(A.13) that for a Q - independent modified exponential profile with ay =

2, the fractional current flowing outside the limiter is exactly zero.

Case D: Trapezoidal profiles.
These profiles by definition are automatically truncated at r = a.

Hence, no current flows outside the limiter for these profiles of Eq.

(5.2).

Case E: Kadomtsev optimal profiles.

For this model from Eq. (6.10) we get

2,2

( | Ir Enrjo ( 2 (r=ray) ( :
I (otor) = dr 2 (mag] ) ——a—75— . A.15
P ° (14 rzlaf)2 T *(rzlaf)]

Hence,

(a®/a2)
(8.16)

2
1 (O to a) - (ﬂa J ) — ———
P *'o i1+ (azlaf)]

and
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Ip(o to «} = (naijo). (A.17)
Thus,

F_ = [I(ato=)/I (0ot «)] =[1/(1+a/ad)l. (4.18)

P p P
If (ry/a) = (1/q,), then from Eg. (6.14)

(ae/ai) =q,. (A.19)
Thus from Eqs. (A.18) and (A.19) we find for low q, = 3 this fra~tion is

about 25%; while f“or high q, = 8 this fraction is 11%. From an

experimentalist point of view these are very unreasonable numbers,

Case F: Campbell et al. model.

"
[

These profiles of Eq. (7.2) are automatically truncated at r

dence, for these profiles no current flows outside the limiter.

In a similar way one can show that the fracticonal amcount of current
flowing o-:side the limiter Fp for the chopped Coppi-Tang, Coppi-Tang with
neoclassical f, (r) = (1 - d rzfaz), qy-dependent chopped exponential, q,-
independent exponential, qa-inuependent chopped exponential, qa-independent
modified exponential of Eq. (4.13), chopped Kadomtsev, and chopped Campbell et

al. models are given by

, e .2
. }y\a to =) ) exp[-aj(1 - rp/a 1]
P Ip(o to =) y - qu;/aZ

) (4.20)

F
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-1/2
Ip(a to d ) (1 -d - d/aj)exp(-uj) * (d/aj)exp(—ajld)

F_ = =
p I(o to a~ 172 = d/a; + (d/a;)exp(-a,/d)

, (A.21)

I {(a to =) (1 + a,)exp[-a, (1 - r./a)]
Fp fp(o to =) - . ! 2.2 F2 ' (4.22)
p T+ ajrf/a + ujrf/a
I (a to =) )
Fp = —E——Ip(o to o) = 3 exp(-2) = 0.406 , (a.23)
Ep(a to =) 3 exp[-2{(1 - rF/a)]
F = T (o to =) = > 5 (A24)
P o e to 1+ ErF/a + urf/a
Fp = 0 {since these profiles are naturally truncated at r = a], (A.25)
I (a to =) (1 + r2/a3)?
Fo s Troto s © T2 EPor (4.26)
P (1 + a/ag)(t « 2ry/ag)
and
Fp = 0 [since these profiles are automatically truncated at r = a} , (A.27)

respectively. For most of the chopped models considered here we have set
(rp/a) = (r1/a) = (1/qa).

In Figs. 15a and b we show the behavior of the central safety factor q(o)
as a function of the limiter q, for the models considered in this paper. It
may again be noted from these two figures that the Coppi-Tang and Campbell &t
7., Models are very similar both in magnitude and shaps [>r medium and high q,
discharges; and further the Kadomtsev model is very similar [although slightly

low in values of q(o)] to that of Coppi-Tang model. Also, it is interesting

to note from these figures that the recent measurements of q(o) as a function
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of g, by Soltwisch et al. and by West et al. seem to favor the predictions of
the Coppi-Tang, Kadomtsev, and Campbell et al. models. As we pointed out
earlier, we see here that for g,-independent profiles glo) is propeortional to
q, [i.e., Fy = (9,/494) = constant = Fy (q4)], while for g,-dependent profiles
g{o) tends tc constant values for large 9, {i.e., F3 = F3(qa) = qy for g, »
1]. This difference naturally leads ta two distinct types of Tap Scaling laws
for Ohmic plasmas. For qa—independent profiles one gets the profile
consistency independent scaling law T, = (IpRZerf/ava)2/3’ and for q,-
dependent profiles one gets the profile consistency dependent scaling law Teo
a (BTzeff/VL)2/3 for large q,. Here we have used tne fact that for gq,-
dependent profiles F3(qa) = q, for large g, if and only if (r,/a) = F;{1/q,) =

t17q,).
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FIGURE CAPTIONS

FIG. 1 Analytic self-consistency leoop [or the flow chart]| diagram for
sawtaothing tokamak discharges. Here, the two large bold type
connecting flow lines emanating from either side of the box
labelled "Solution “j(qa)" are uniquely due to the principle of
profile consistency. The reversible lines with arrows pointing in
both direetions imply that an intrinsic self-consistency should
exist among the forms of j(r), fa(r), Te(r), and xe(r) S0 as o
safisfy the Ohm's law and the electron thermal energy-balance

equation simultaneously.

FIG. 2 A plot or the normalized sawtocoth inversion radius (r1/a) Vs (1/qa)
for some TFTR discharges. Here, q, is the limiter safety factor,

and the dashed line is (r,/a) = (1/qa).

FIG. 3a A comparison of [(Tg>/T, lpyp VS [<Te)/Teo]TH For Coppi-Tang medel
for some TFTR discharges including all those of Fig. 2. Here,—
is [<Te>/Teo]EXP = [<Te>/Teo]TH' and --- s [(Te>/Teo]EXP =

[<TE)ITEO]TH - 0.05.

FIG. 3b A comparison of [<Te>/Te°]EXP vs [(Te>/Te1]TH. for the same TFTR
discharges. Here, [<Tg>/Tgqlpy = [<To>/Toolry exp{2(q, -

0.5)/3¢2}. Here, the solid line is [<Tg>/Teolpyp = [<Tg>/Toylpy:

FIG, 4a A comparison of the theoretical and the experimental Te(r) profiles
for a low q, [= 2.9] TFTR discharge from Coppi-Tang madel. Here,

—— i3 experimental, and --- is theoretical.



FIG. 4b
FIG. 5
FIG. 6a
FIG. 6b
FIG. 7
F1G. 8
FIG. 9
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A comparison of the theoretical and the experimental Te(r) prefiles
for a high q, [= 6.2) TFTR discharge from Coppi-Tang model. Here,

—— is experimental, and --- is theoretical.

A comparison of {<Te>/TeoJEXP Vs [<Te>/Te°]TH for the chopped
Coppi-Tang model for the same TFTR discharges with ¢ = ', i.e.,

(rp/a) = (ry/a) = (i/q,). Here, the solid line is theory.

A comparison of the theoreticl and experimental Te(r) profiles for
a low q  [= 2.9) TFTR disenarge from the chopped Coppi-Tang model

with ¢ = 1. Here, — is experimental, and --- is theoretical.

4 compariscn of the theoretical and experimental Te(r) profiles for
a high g, (= 6.2] TFIR discharge from the chopped Coppi-Tang model

with ¢ = 1. Here, — is experimental, and --- is theoretical.

A comparison of {(Te>/Teo]Exp vs [(Te>/Teo)TH for the Coppi-Tang
model with a neoclassical conductivity from factor fc(r) =

(1 - 0.5 r2/a2). Here, the solid line is theciy.

A compariscn of [(Te>/Teo]EXP Vs [<Te>/Teo]TH for q,-dependent
chopped exponential model with (re/a) = (0.5r,/a) = (0.5/q,).

Here, the solid line is theory.

4 plot of (rI/a) vs (1/qa) for some TFTR discharges. Here, the
curves A, B, and C are the theory for the chopped g,-independent
exponential, Fredrickson et al,, and the trapezoidal models,

respectively, and the dashed line is (r1/a) = (1/qa).
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A plot of [<Te’/Teo] Vs (1/qa) for some TFTR discharges. Here the
curves A, B, and C are the theary for the chopped q,-independent
exponential, Fredrickson et al,, and the trapezoidal models,

respectively.

A comparison of [<Te>/Teo]Exp Vs [<Te)/Teo]TH for the Kadomtsev
optimal profile fits. Here, — is [<Te>/TeoJExp = [<Te>/Teo]TH,

and --- is [<‘1‘e>/‘1‘e°]Exp = [<Te>/‘1‘eo]TH + 0.05.

4 comparison of [<Te>/Teo]EXP vs (T >/Tyolpy for the chopped

Xadomtsev model. Here the solid line is theory.

A comparison of the theoretical and experimental Te(r) profiles for
a low g, {= 2.9) TFTR dizcharge from Campbell et al. of JET

model. Here, — is experimental, and --- is theoretical.

4 comparison of the theoretical and experimental Te(r) prefiles
for a high g, (= 6.2) TFTR discharge from Campbell et al. model.
Here, — 13 experimental, and ~--- is theoretical.

A comparisen of [(Te>/Teo]EXP vs [<Te>/Teo]TH for the Campbel: et
al, model. Here, — is [‘Te”Teo]EXP = [<Te>/Te0]TH, and --- is

[<Tg>/Taglpxp * [<Te>/Toglpy + 0-05.

A comparison of (<T>/Tg lpyp VS [<Te>/TeoITH. for the chopped

Campbell et al, model. Here, the selid line is theory,
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Radial dependence of the sawtooth amplitude for the flattened Te(r)
profiile with conservation of total plasma thermal energy as snown
in the insert. The solid line is for the Kadomtsev value of e, =

/2 and the dashed line is for ¢ = 1.

Radial dependence ¢f the sawtooth amplitude for the flattened j(r)
profile with conservation of total plasma current as shown in the
insert. The solid line is for the Kadomtsev value of e, = /2 and
the dashed line is for ey = 1.

Plota of the central safety factor g(0) vs the limiter 9 for
Coppi-Tang, Kadomtsev, and exponential models. Here, o and s are

the measurements of Soltwisch et al. and West et al. respectively.

Plots of q(0) vs g, for the modified exponential, and the Campbell

et al. models.



TABLE 1A

SUMMARY TABLE

MODEL PROFILE

Tf (ry/a) = F,017G,)

= (I/qa), then

Fol1/a,) = (T2 /Taglpy

l‘'I‘e)/'reoll':‘)ﬂ’ vs [(Te>/Teo]TH

1. Coppi-Tang ay s, 0.5 ¥y = (3/2uj)[1-exp(-201/3)] EXP = TH + 0.05
(Spitzer “s)
2. Chopped Coppi-Tang ay = qg(qa-l)'1 Fa = (3/2uJ){1-expl-(2uj/3) Good fit for g, ¢ 5, poor fit
(e=1, Spitzer ng) > o for higher q,.
(1-9291} + q
3. Coppi-Tang | ay v Gy + 0.5 - d Fy = (3/20j)[1-exp(—2aj/3)] Good fit for q, ¢ 6, poor fit
[n,e = ngt1-d v2/a?)~1) for higher q,.
4, Exponential ay = (20, + e Fy (9/2u§)|1-(1 + 2ay/3) | Bad fit.
(g,-dependent )
exp(-ZuJ/3)l
5. Chopped Exponential | a) » (q, + 1172 F, = (9/20§){1 + (2ay/3q,) | Bad fit for ¢ = 1, but fair
(e=1, q,-dependent ) 2, 2 fit for ¢ = 0.5.
+ (20§/955)-(1 + 2ay/3)
expl-(2a;/3)(1-1/9,) 1]
6. Exponential q, = 1.25 Fp 2 Fy(1/gy) = 0.43 Meaningless for (ry/a) = (1/q,)
(qa-independent) since Fp ¢ F2(1/qa}.
7. Chopped Exponential g, = 3.13 Fy ¢ Fz(\/qa) = 0.65 Meaningless for (rfa) = {1/q,)
(e=1, g ~independent) }

since Fy # Fy(1/g,).

£01



TABLE 14 (continued)

MODEL PROFILE

Ir (rT/a) = F1(l/qa)

» (¥/q,), then

F2(1/qa) = [(Te)/Teo]TH

[T /Teglpxp vs [<T2/Tyg lpy

Modifled Exponential ay = (1-1/qa)"los 9 | Fo = exp(-ZuJ/3) Bad fit.
[qa-dependent,
Bg. (4.8)]
9. Modified Exponential} q, = §.92 Fy # F2(1/qa) « 0,13 Meaningless for (r,/a) = (1/q,)
[q,-independent, since Fy * F2(1/qai.
Eq. (4.13}})
10. Trapezoidal q, = 1 or 1.88 Fy 2 F2(1/qa) = tor 0.6 Meaningless for (r,/a) = (1/qa)
1 \ since Fp + F (1/qa;.
{(rl/a) vs q;° 1s {Fy = (1/9) + (35/36) qz 'l [Excellent It for q, ¢ 441
parabola]
11. Kadomtsev (aw/a)? = g,°! F, = 30 (1-(gy + D71/3] EXP = TH + 0.05
12, ?hoqged Kadomtsev (a«/a)2=(qa—1)'1 Fy = q;2¢3(a'/a)2{| + Q;Z Good fit for g, < 6, poor fit
c= for nigher g,.
(1-2q;"+q33) (a2/68)-(1 « a2/ad)- V3
U1+ g;2a2sad) )43
13. Campbell et al. vy=a, - 0.5 Fp= (14 2vy/3)7" EXP = TH + 0.05,
14, Chopped Campbell vy ®a, Fp=q;2+(1-q3%) (1+20,/3)"" Fair fit for q, < 4, poor rit

et al.

(c=1)

for higher q,.
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TABLE 1B

SUMMARY TABLE

MEASURED Te(r) FIT WHEN (r1/a) s 1/q,

MODEL REDUCED COORDINATES;

PROFILE FOR LOW aq FOR HIGH qQy (UNIVERSALITY OF PROFILES) Fp = (Ip(a to “)/lp(o to «)]

1. Good for r > ry Good Jo = (2By/ugRa,), Fp = exp(-uJ)

ag” u (unOR!p/.?nB.l-); (Yes)
2 Gi = s ranlndy=1
. ood Fair for r > ry Jo = (2Bp/ugRay), €, = (-+nJ/qa)
a2pp » (9guoRlp/2nby); (Yes) exp[-uJ(|-1/q§)1
3. Good for r > ry Fair Same as 1 for d « a,, do not Fp = [(d/uJ)exp(-uJ/d)
exist tor d ¢ d(oJ)
+ (1-d-d/uJ)exp(-uJ)l
[{d/a)expl(-a /d)s(1-d/a})]""
[’ Bad Fair for r > ry Jo = (2Bp/ugRq,), Fp = [ nj)exp(-uj)
agrr = (ggroRly/UmBr); (Yes)

5. Bad Bad for c=1, but 3. = (2Bp/u_Rq, ), F_ = {(1va)expl-a,(1-17q,) 1]}
fair(‘orr)r.) e 1770 g J ] a
and c=0.5 a2op = (aguoRl Zinby) ;i (Yes) (1+ay/a,ra{/a]) "

6. Meaningless for

ryfa = I/qa

Meaningless for
r/a = 1/q,

Do not exist; (No)

= 3exp(-2) = 0.406
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TABLE 1B (continued)

HEASURED T (r) FIT WHEN (ry/a) = /g,

MODEL REDUCED COORDINATES;
PROFILE FOR LOW q, FOR HIGH q, (UNIVERSALITY OF PROFILES) = [Ip(a to ﬂ)/Ip(o to =)}
T. Meaningless for Meaningless for Do not exist; (No) =z (3expl-2(l-1/qa))}
r./a = 1/q r./a = 1/q
1 a 1 a -
{12/q 44742}
8. Good for r > ry Fair for r > 0.4a Jo = (2By/ugRay), z [1-(u§/u)exp(2-uj)]
agpp = {a/log qy); (Yes)
9. Meaningless for Meaningless for Do not exist; (No) = 0
ry/a = $/qa r1/a a 1/qa
10. Meaningless for Meaningless for Do not exist; (No) = 0
ry/a = 1/q, ri/a = 1/q,
n. Bad Fair 3o = (2Bp/ugRa,), : (1salsagy!
ader = (WoRIG/21B); (Yes)
12 Fair for r < 0.9a | Fair for r > r 3o = (2Bo/v Rq.) = (1er3/ad)? [(1+2r3/a8)
: . 1 o* T/ ¥oMp ! : f/a% /o
alpp = (bR1,/21Bp); (Yes) (1+a2/a§) 1!
13, Good for r > ry Fair Do not exist; (No) =0
4. Cand Fair for r > ry Do not exlst; (No) =0
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TABLE 1C

SUMMARY TABLE

Fy(ay) = (g,/9,) = (na®yy/1,)

Teo-SCALING LW

MODEL
PROFILE = (a?Vy T302/2b 15 R Zopp) FOK LOW FOR HIGH n,
1 Fy = o)1 - exp(-a))]”! Teo = [63/3 a2/3 2115 n2/15 (Teg - Tin) = B3 my K2 022
R/3 4-2/15)
2 FS:qa
23 203 15 2115 | 2 2 -2
3 Fy = a1 = d/ay - (1 -d-d/oy) | Tag = (B3 a2/3 24015 o (Tgq - Tyg) = BE my K2 07
exp(-a )1 R-2/3 q22/15
: (aB/2) ] . 473 /15 -1 (=13 : 2 . g2 =2
y Fy = (a5/2)[1 = (a) + 1) Teo = [Bp a3 2320 =71 17 (Teg - Tyo) « BS m; K
exp(-ay)1! 02/ 15) L
‘5_‘£~‘3=qa
. [12/3 415 2715 .’ 2 -2 b
6 F3 = 3.367 Teg « U152 2épp” mf (Tog = Tie) = I my ng
a-2/3 n;2/15]
7
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TABLE 1C (continued)

wopge, | 7308} = (aa’ag) = (va?§ /1) Too-SCALING LAW
PROFILE = (alyy T30%/20 1) R Zgpp) FOR LOW n FOR HIGH n,
. « [BY/3 22 2415 271 2 0 g2 o-
8 F3 = exp o Teo = [B' 2 a% Z 5 mf 5 (Tg - Tio) = Bf my R 2 p2
- 213
ng2/15 /3 13773
[log(ZnaZBT/uORIp]“2/3
: 2/3 44/15 [2/15 2 -
9 Fg = 7.407 Teo « [13/3 20445 n} (Teg - Tio) = 12 my ng? o™
a~2/3 2/15)
10 F3 =9,
- [(a2/a2 2 / 2
1" Fy = [(a®/ag) + 1] Teo [BT/3 a2/3 ng}s m?”s (Teg - Tig) « B.% m; R 2 ne2
R2/3 nz2/15)
12 F3 =g,
1 . « (B2/3 42/3 ZH/15 2715 2. g2 o2
3 F3 (vJ + 1) Teo {877 a Topp” WS (Tap - Tig) = BE my R™C mg
R-2/3 -2/15)
1 : w
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