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Abstract. We theoretically study the subband structure of single Si &doped GaAs 
inserted in a quantum well and subject to an electric field applied along the growth 
direction. We use an efficient self-consistent procedure to solve simultaneously the 
Schrodinger and Poisson equations for different values of electric field and 
temperature. We t hus  find the confining po!entia!, the sibband ener9ies and their 
corresponding envelope functions, the subband occupations, and the oscillator 
strength of intersubband transfiions. Opposite to what is usually the case when 
dealing with the  quantum-confined Stark effect in ordinary quantum wells, we 
ObSeNe an abrupt drop of the energy levels whenever the external field reaches a 
certain value. This critical value of the field is seen to depend only slightly on 
!empera!l_rre. The rapid change in the energy levels is accompanied by the  
appearance of a secondary well in the confining potential and a strong decrease of 
the  oscillator strength between the two lowest subbands. These results open the 
possibility to design devices for use as optical filters controlled by an applied 
electric field. 

1. Introduction 

Recent advances in epitaxial growth techniques, such 
as molecular beam epitaxy (MBE). make it possible to 
fabricate high quality Si &doped layers in GaAs. In 
these systems, a slab of Si atoms localized within a few 
monolayers supplies electrons and gives rise to quantum 
confinement of carriers. By this means, a two-dimensional 
electron gas can be realized by planar doping of GaAs at 
high donor concentration [I]. Devices based on &doped 
heterostructures are currently under extensive investigation 
for high-speed electronic and optoelectronic applications 
(see, e.g., [Z] for some examples of the practical advantages 
of &doping). Hence there is great interest in a good 
understanding of Si &doped GaAs as a representative 
example of those devices. 

Theoretical studies of the above systems usually 
neglect possible effects of disorder due to the random 
distribution of impurities in  order to simplify the analysis. 
indeed, cumentiy available techniques allow for an optimai 
control of the growing heterostructure, thus justifying 
the assumption that the ionized impurity atoms are 
homogeneously distributed inside the 8-doped layers. This 
approximation has recently been shown to be correct in 

considered this limit within different approaches, like the 
Thomas-Fermi 141, local density approximation (LDA) [5 ]  
and Hartree methods 161. These previous works show 

[he high.densiiy iiinii [3j, A nurnbei of iiave 

that in the absence of external fields the Thomas-Fermi 
semiclassical approach is equivalent to a self-consistent 
formulation over a wide range of doping concentrations 
[ 4 j ~  171p effects of applied electric field have recent!y 
been considered in the case of single and periodically 
Si &doped GaAs 17, SI by using a generalized Thomas- 
Fermi formalism. In this framework one first computes 
the one-electron potential in the absence of electric field 
and then tilts i t  to account for the electric potential. It 
has thus been found that the well-known Stark ladders, 
already observed in quantum-well based superlattices [ 9 ] ,  
should also be clearly revealed in periodically Si 8-doped 
G A S .  Nevertheless, this ad hoc procedure might be 
incapable of describing all the phenomenology arising in 
&doped heterostructures: a fully self-consistent approach 
may reveal interesting issues about the behaviour of actual 
structures under bias voltage not accounted for within 
simpler approaches. 

As an example of new phenomenology found by self- 
consistent procedures, we mention that, in  superlattice-like 
systems. the Hartree potential from electrons of different 
wells partly screens the effect of the electric field, leading 
to the formation of electric field domains. The physical 
existence of electric field domains is firmly established 

references therein). To our knowledge, however, there 
have been no reports in the literature about field domains 
in 8-doped CaAs superlattices. Note that in this case 

i n  GaAs-Q+Ai,As [io] supei;aiiices (see i ;  1; and 
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there are a number of free carriers in the structure and, 
as a consequence, it is possible for the electric field to 
break up into two or more regions with different field 
strengths, i.e. electric field domains. Similarly, it would not 
be strange to observe other unexpected phenomena when 
a more complete theoretical analysis of &doped systems 
under applied fields is carried out. It is therefore clear that 
a careful self-consistent analysis of this kind of device is 
necessary to make sure what their properties as well as their 
possible applications are. 

The work we report on in this paper is a first step 
in the aforementioned direction. We have concerned 
ourselves with the self-consistent study of a single Si 6- 
doped layer in GaAs under an applied electric field. The 
aim of addressing this question is twofold. On the one 
hand, we intend to implement and improve an efficient 

thus developing the necessary skills io tackle the full 
superlattice problem. It is important to realize that a self- 
consistent study of a complex heterostructure requires a 
well developed technique to prevent expensive calculations. 
Os 1'.e otke: haz-d, *::e be!ieve t!xt oa!y &!er achieving 
a thorough knowledge of the phenomena appearing in a 
single layer will it be possible to proceed further, in order 
to assess the electronic structure of periodically Si d-doped GaAs superlattices. In addition, if our work showed new 
features of the single layer problem, we could foresee the 
subsequent, unexpected phenomena which would be likely 
to arise in the superlattice, as well as estimate the range of 
parameters for which they might take place. Therefore, a 
complete understanding of charge distribution and subband 
energy dependence on the applied electric field in a single 
Si &doped GaAs layer is necessary. With this double goal 
in mind, we undertook the study of the quantum-confined 
Stark effect in these structures by considering a &doping 
layer in a quantum well. 

In section 2 
we briefly discuss our model, in which we use a scalar 
Hamiltonian within the effective-mass approximation to 
describe the etectron dynamics. The one-electron potential 
due to the combined action of the ionized donors in the 
single &doped layer and the applied electric field is found 
by simultaneously solving the Schrodinger and Poisson 
equations. Section 3 is devoted to a summary of the 
numerical method we apply to obtain (i) the one-electron 
potential, (ii) the dependence of the subband structure upon 
the applied electric field, (iii) the subband occupation as 
a function of the fieid, ( iv j  the spatial charge distribution 
and (v) the oscillator strength for intersubband transitions 
when the whole structure is confined between two infinitely 
high barriers in an applied electric field (quantum-confined 
Stark effect). Results and discussions are collected in 
section 4. and section 5 ends the paper with a brief 
recollection of results and some comments on possible 
physical consequences and technological applications of our 
results in new devices. 

..,...o:-+a..+ I- I n q l . l l P  th;r r;mnlp r+n.rh.r. 
D C I L - L I V I I U L I L C I I L  p V L L " " L C  L" Y1LY.J"'  Llllil "mp1L. . , " " ~ L " I L . ,  

The paper is organized as follows. 

2. Modei 

The system we study in this work is a semiconductor 
structure made of a single Si 8-doped GaAs layer. We 

consider a slab of GaAs of thickness L confined between 
two infinitely high barriers with a Si &doping layer 
embedded in its centre. We assume that the doping layer 
consists of a continuous slab of thickness d with N: 
ionized donors per unit area. In what follows we neglect 
the unintentional p-type background doping appearing in 
most MBEgrown samples. This is not a serious limitation 
since actual techniques can keep this doping level very low 
(less than 10'4cm-3 acceptors). For such a low residual 
doping, the well shape below the Fermi level E F  is almost 
insensitive to the background acceptors [ 121. 

We assume the validity of the effective-mass approxi- 
mation and take an isotropic and parabolic conduction band 
in the growth direction. This approximation usually works 
fine in GaAs, except at very high electric fields, when r-X 
mixing induced by the field occurs [13]. Kane's parameter 
(Ep e 23 meVj and the conduction-band moduiation are 
much smaller than the bandgap in GaAs, and the coupling 
between host bands is small, so that a scalar Hamiltonian 
suffices to properly describe the electronic conduction-band 
states in d-doped GaAs [14]. In the envelope function ap- 
proach, the eiecuonic wavefunction corresponding io the 
j t h  subband may be factorized as follows: 

(1) +j(r) = - exp(ih. .  T d q j ( Z )  

where IC1 and TI are the in-plane wavevector and spatial 
coordinates, respectively. Here S is the area of the layer. 
The subband energy follows the parabolic dispersion law 
Ej +h2k:/2m*, m* being the electron effective mass at the 
bottom of the conduction band (r valley). The quantized 
energy levels Ej and their corresponding envelope functions 
+j(z )  satisfy the following Schr6dinger-like equation: 

1 
45 

The presence of infinite barriers implies that t te  envelope 

The -one-electron potential splits into four different 
functions vanish at z = fL/2.  

contributions: 

v(z) = vb(z) t eFZ + Vxc(2)  + vH(Z). (3) 

Here Vb(z) is the built-in potential due to the infinite 
barriers. Therefore V&) = 0 for IzI < L / 2  and becomes 
infinite otherwise. F is the strength of the applied electric 
field. V,,(z) is the local exchange-correlation energy 
calculated in the JDA approximation using the Hedin- 
Lundqvist parametrization 1151, 

Rp* V*e(z) = - [ l  +0.7734rIn(l t l / r ) ]  (4) 
iu.Jzcir 

where we have defined 

(Y = (4/9n)'I3 and r = I 21 (*rra*'n(z))-'' 3 

a* = 4irtoKhZ/m'e2 are respectively the effective Rydberg 
and the effective Bohr radius. The local dielectric constant 
K is assumed not to depend on the spatial coordinate in the 

r;le e;ecpon density, and Rq" = ezjgxi, i ia* and 
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whole structure. The Hartree potential VH(Z) is obtained 
by solving the one-dimensional Poisson equation 

along with the boundary conditions VH(Z = -L /2 )  = 
V H ( L  = + L / 2 )  = 0, where NAD(z) = N A / d  for IzI < d/2 
and vanishes in other regions. The electron density can be 
written as 

n(z )  = T n j l @ j i ( z ) 1 2  (6) 

where the sum runs over the different subbands. The 
subband occupation nj is given by 

- 
I 

This set of equations must be solved until self-consistency 
is reached. Then envelope functions and electron energies 
can be found as a function of the applied field. Once 
these magnitudes are computed, it is easy to obtain the 
charge distribution and subband occupations. In addition, 
regarding field-dependent intersubband transitions from a 
state k into a state j ,  it becomes most important to 
determine the corresponding oscillator strength 

where mo is the free-electron mass. Device applications 
of interrobhand transitions require a la1:e Stark shift with 
a high oscillator strength. For example, it is known 
that square quantum wells exhibit a weak intersubband 
transition [16], but i t  can be improved by inserting one 
narrow well inside a wider one [17,18]. Therefore it is 
interesting, from a technological viewpoint, to compare the 
oscillator strength in 8-doped stnictures with typical values 
obtained in quantum wells. 

3. Numerical analysis 

3.1. Dimensionless variables 

For convenience, we begin by introducing dimensionless 
variables in our problem. We can define reduced 
well length, 1 ,  doping layer thickness, A ,  and position 
coordinate, x ,  by rescaling L,  d and z with a*, respectively. 
Furthermore, we introduce reduced energies, E ,  and 
potentials, U, by rescaling E and V with Ry'. On the 
other hand, reduced electric fields, f, charge densities, 
U, and temperatures, 5 ,  are defined by rescaling F ,  n 
and T respectively with their corresponding scaling factors 
FO (a*)-3 rz lo'* cm-) 
and TO = Ry*/kB sx 67.7 K. With these new variables 
equation (3) becomes 

Ry*/ea* % 5.91 kV cm-I, no 

(9) ,,Iv\ - . I .  I"\ I F" I .I lr\ I ,,..("\ "\*, - "",.-, T J * ~I "XC\*, I "H\* , .  

In this equation, U&) = 0 for 1x1 c 112 and is infinite 
otherwise. The reduced exchange potential, U,,, is given 

where x l ( x )  are the eigenfunctions of the Schrodinger 
problem 

(13) 
with boundary conditions xj(?c1/2) = 0. 

3.2. Discretization 

The numerical procedure requires the x variable to be 
discretized as xi i h  - 112, with h = l / ( N  + l), for i = 
U, I , .  , . , N + i .  Equation ( i 3 )  can then be approximated 
by the following difference equation: 

-xY(x) + u ( x ) x ( x )  = € j X j ( X )  

-~ 

1 -2 [x1 (x ,+r )  - 2&CJ(&) + X 1 ( X r - 1 ) 1  

+ u ( x i ) X j ( x i )  = E j X j ( x i )  (14) 
with boundary conditions ,yj(x,,) = X ~ ( X N + L )  = 0. The 
problem above is nothing but the diagonalization of the 
symmetric, uidiagonal N x N matrix H ,  defined as 

i f i =  j 
if li - jl = 1 (15) 

Hij [ u(x1) + 2 r 2  -h-2 
0 otherwise 

cj being the j th eigenvalue and x j ( x J  (i = I ,  2 , .  , . , N )  
the ith component of the j t h  eigenvector, with j running 
from 1 to N .  The Schrodinger equation is thus transformed 
into the much simpler problem of diagonalizing H ,  and we 
can take advantage of its simpler shape. 

Once ej and xi are available for j = 1 , 2 , .  . . , N ,  the 
Fermi level, E P ,  is obtained as the solution of 

N 
(a')*N$ = vj 

j = l  

with uj given by (12b) for every E?.  Now the electron 

and, accordingly, the full right-hand side of equation (1 1). 
Again this latter equation can be approximated by a 
difference equation, namely 

h m 2 [ U H ( x i + l )  - 2 u H ( X i )  + U H ( X z - l ) ]  

density U(&) is comp!ete!y determined via equation (122) 

= 8 H  [ u F ( x . i )  - u(x j ) j  (17) 
with boundary conditions U H ( X O )  = u H ( X N + ] )  = 0. This 
problem can be straightforwardly mapped onto that of 
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finding the solution to the system Dun = p. where D 
is the symmetric, tridiagonal N x N matrix defined as 

-2 i f i = j  

0 otherwise 
if [ i  - jl = 1 (18) D.. = 1 

' I  - 

and p is the vector whose components are pi = 
8 r h z  [ $ ) ( x i )  - u ( x i ) ] ,  i = I .  2.. . . , N. The solution, U H ,  
of this linear system can be readily obtained through the 
standard Thomas algorithm, which amounts to computing 
the solution iteratively, as follows: 

(19) 

with the index j running backwards ( j  = N .  N - I .  . . . , l),  
and where 

f f o = o  yo=o  

U H ( X N + I )  = 0, 
u H ( x j )  = f f j ' - 'H(xjt l )  + v 

j = 1 , 2  , . . . .  N .  

d, ( j  = 1 , 2  ,..., N ) ,  aj ( j  = 2 , 3  ,..., N )  and c, 
(j  = 1 , 2 , ,  . ., N - 1) are the diagonal, subdiagonal and 
superdiagonal elements of the matrix D respectively (in 
our case, d, = -2 and aj = cj = I). Here p, is the j t h  
component of the right-hand side vector p as defined below 
equation (18). Note that the undefined elements a1 and CN 

appearing in equation (20) are in fact irrelevant. 

3.3. Algorithm 

The self-consistent algorithm consists of the following 
steps: 
( I )  Set v ~ ( x j )  = w(x, )  = 0 for all i = 1 , 2 , .  . . , N .  
(2) Set u i d  = U,,. 
(3) Compute v ( x i )  as given by equation (9). 
(4) Diagonalize H (equation (15)) to obtain the eigenvai- 

(5) Compute <F by solving equation (16). 
(6) Compute u ( x i )  as given by equations (12a. 12b). 
(7) Determine u$'"(xi) through the recurrence (19) (notice 

that the coefficients f f j  and yj only have to be computed 
once at the beginning of the program). 

(8) Check for convergence (by comparing, for instance, 
UF'" with v i d ) ;  if tolerance has been attained then exit 
the self-consistency process with UH = U$'". 

(9) Otherwise set UX = hu:'"+(l - A ) u i d  and repeat from 
step (2) on. 

The parameter A has been introduced to control the 
iteration: if A = 0 we will have U" = 0 forever, while 
if A = 1, U" will undergo its maximum variation at every 
step. This latter case (commonly used throughout the 
literature) has proven not to converge for NDf 2 lo-'* 
cm-'. Instead, h = 1 f 2  makes the process convergent for 
any set of parameters. 

The numerical parameters we have been using are as 
follows. Our mesh consisted of 501 points, enough to 

ues, cj. and eigenvectors, ,yj (j = 1 .2 , .  . . . N ) .  

resolve the physical dimensions of the delta layer potential 
we will describe below. We have checked our numerical 
procedure by using smaller and larger numbers of grid 
points, finding a negligible dependence on this paramctcr, 
as desired. In addition, we verified that the choice of 
the convergence acceleration parameter h influences only 
the rate at which the algorithm converges and not the 
convergence itself, provided it is not too close to 0 or 1. 
On the other hand, we usually started the Hartree iteration 
from U H ( Z )  = 0 we tested several other choices and we 
satisfactorily found that the procedure converged always to 
the same result, thus precluding the possibility of having a 
fictitious solution. We chose to stop the iterative procedure 
when the relative variation of the Fermi energy was 5 
We also used another criterion, namely computing the 
integral of the absolute value of the difference between 
the new and old potentials and stopping when it was less 
than obtaining again good agreement between the 
two conditions. Typical runs attained convergence after 
about 20 Hartree iterations, each one of them taking around 
30 s of CPU time on a HP 9000/715/75 with the above 
integration parameters. This shows that our procedure is 
rather efficient, and we are confident that it will allow us to 
deal with the superlattice problem without prohibitive use 
of CPU time. 

4. Results and discussions 

The different magnitudes we are interested in have been 
obtained taking m' = 0.067mo and K = 12.7 in GaAs. 
Since the dependence of the subband structure upon donor 
concentration (N;) ,  its distribution width (d) and the 
thickness ( L )  are well understood in the absence of external 
fields [IS], even if the whole structure is embedded in 
a quantum well [20], we have fixed their values and 
concerned ourselves with the dependence on temperature 
and electric field. In our numerical simulations we have 
set NDf = 5 x 10i2cm-*, d = 20A and L = 500A. 
This choice. with the above numerical parameters, gives 
our calculation a resolution of 1A. The maximum electric 
field we have considered is F = 100kVcm-', well 
below the value for which T-X mixing may be observed, 
thus remaining within the range of validity of our scalar 
Hamiltonian. We have studied three typical temperatures, 
namely those of liquid helium, 4.2 K, liquid nitrogen, 77 K, 
and room temperature, 300 K. 

In the absence of an applied electric field, the confining 
potential presents the characteristic V-shape profile, as 
shown in figure 1, where the origin of energies of all curves 
is the Fermi level. On increasing the electric field the 
potential is tilted so that it becomes slightly asymmetric 
(see figure 1 for 50kVcm-I). This behaviour is also 
predicted by means of the Thomas-Fermi approach, as 
mentioned above [7]. This trend holds until a critical value 
of the electric field Fc (about 60kVcm-l, see below) is 
reached. For higher strengths of the electric field. the 
confining potential changes its shape dramatically and a 
second minimum appears at the left barrier. Therefore, a 
local potential barrier arises between the centre and the 
left barrier of the structure, as shown in figure 1 for 
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Figure 1. The self-consistent confining potential for an 
ionized donor concentration N; = 5 x 10'2cm-2 distributed 
over d = 20A for three different electric fields, at T = 4.2K. 
The zero of energy is set at the Fermi level. 

F = 100 kVcm-'. It is worth mentioning that the transition 
between these two different regimes is very sharp. In 
other words, V(-L/2)  drops - 300meV in a very narrow 
interval, 5 1 kVcm-I, of electric fields. This phenomenon 
can be thought of as arising from competition between 
opposite effects: on one side, the electric field pushes 
the charge distribution to the left, and on the other side, 
electronic repulsion prevents charge accumulation on that 
part of the system. 

The different shapes of the confining potential for 
F smaller or larger than F, must strongly influence 
the subband structure and the corresponding subband 
occupation, as actually occurs. Results at different 
temperatures are collected in figure 2. In this figure we 
have plotted only those subbands whose electron densities 
nj are at least 1% of the ground state occupation. As 
expected, the occupation of subbands above the ground 
state increases with temperature. The subband energies 
depend only slightly on the applied electric field up to a 
critical field F, 0 60kVcm-', at which a sudden drop of 
the levels is observed. This value of Fc is almost the same 
for T = 4.2 K and T = 17 K, whereas at room temperature 
it is somewhat smaller. It is clear that this drop of the levels 
is related to the rapid change i n  the value of V(-L /2 )  and 
the subsequent appearance of the local maximum around 
z = - L / 4 .  This behaviour is very different to the quantum- 
confined Stark effect in quantum wells, where subbands 
change smoothly with F [21]. 

The subband occupations at three different temperatures 
and three different values of the electric field are shown in 
table 1. The occupation of the lowest subband is almost 
independent of T and F .  With increasing temperature, 
more and more subbands are populated, as mentioned 
above. The most significant feature when increasing 
the electric field is that the occupation of the excited 
subbands increases rapidly for fields above F,. This fact is 
remarkable at low temperature, for which the first excited 
state has an occupation of 0.007 (in units of 10'2cm-2) 
for F < F, while it increases by two orders of magnitude 

-100 

-150 0 i 20 40 60 80 100 

F (kV Em-') 

80 , . I , , , . , . , . . ,~ , . , . I ,  . - .~ , 

-80 

-120 
0 20 40 60 80 100 

F (kV Em.') 

Figure 2. Subband energies as a function of the applied 
electric field for (a) T = 4.2 K. (b) T = 77 K and 
(c) T = 300K. Only those subbands with electron densities 
larger than 1% of the electron density in the ground state 
are plotted. Energies are referred to the Fermi level. Note 
that the vertical scale is different in plot (c) for the sake of 
clarity. 

for F > F,. Hence band filling also changes dramatically 
when crossing F,. 

According to our previous results, the spatial charge 
distribution should also be strongly influenced by the 
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Table 1. The subband occupation for three different 
tem eratures and electric fields is shown in units of 
101fcm-2. 
T F  
(K) (kVcm-') Ground 1st 2nd 3rd 4th 
4.2 0 2.50 0.007 0 0 0 

50 2.42 0.007 0 0 0 
100 2.80 1.36 0 0 0 

77 0 2.48 0.13 0 0 0 
50 2.40 0.13 0 0 0 

100 2.78 1.34 0.79 0.05 0 
300 0 2.42 0.50 0.10 0.02 0.005 

50 2.35 0.50 0.11 0.03 0.006 
100 2.58 1.20 0.80 0.29 0.08 

applied electric field. To elucidate these effects, we 
have calculated the squared envelope functions at low 
temperature (figure 3). At zero field the envelope functions 
present a well defined panty since V ( z )  is an even function; 
thus the electron density n(z)  is symmetric around the 6- 
doping layer. On increasing the electric field, the expected 
value (@jlzl@j) shifts to the left, in the same fashion 
as in ordinary quantum wells. However, electric fields 
larger than F, cause the first excited state to be located 
very close to the left barrier due to the presence of the 
potential minimum at z = -L /2 .  Therefore, spatial 
charge distributions undergo a large shift to the left for 
F F.,, which must clearly have profound effects on 
intersubband transitions between the first excited subband 
and the ground subband. This is shown in figure 4, where 
f Io  is plotted as a function of the electric field at three 
different temperatures. Below F, the oscillator strength 
is almost constant and presents a high value, close to 
15, which is even larger than that obtained for a narrow 
GaAs-Ga,-,AI,As quantum well inside a wider one [18]. 
Thus, for instance, flo(50kVcm-')/fio(0kVcm-1) - 
0.93. But contrary to quantum wells, f10 decays very 
fast for electric fields larger than F,, so that, for instance, 
fio(lOOkVcm-l)/f~o(OkVcm-') - 0.1. This change 
is practically the same for the two lowest temperatures, 
the magnitude of the jump becoming smaller at room 
temperature; nevertheless, the drop of fto is equally abrupt 
for all temperatures. In  closing this section, we note that 
this drop of the oscillator strength arises from the fact that 
the secondary well. newly formed, begins to confine charge. 
As a result, the overlapping between the ground and the 
first excited states is small, and transitions between the 
two subbands become tunnelling-like, leading to a sharp 
decrease of fio. 

5. Conclusions 

In the present work we have studied single Si &doped 
GaAs under an electric field applied parallel to the growth 
direction. E!ectronic structure and intersubhand transitions 
have been calculated by solving the Schrodinger and 
Poisson equations self-consistently. To this end, we have 
developed a very efficient numerical code which paves 

_- ground 
1st exned 
2nd e x t e d  
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Figure 3. Squared envelope fuctions for the three lowest 
subbands at different fields: (a) F = 0 kVcm-', 
(b) F=5OkVcm-'and(c)F=lOOkVcm-',at T=4.2K. 

the way to self-consistent studies of 8-doped superlattices. 
As regards the specific system we deal with here, one of 
the most significant results is the existence of a critical 
value of the electric field Fc separating two very different 
behaviours of the quantum-confined Stark effect, which is 
very different from what happens in quantum wells. This 
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