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Abstract

We introduce a method for modeling disk galaxies designed to take full advantage of data from integral field
spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce the surface brightness,
rotation, and velocity dispersion profiles of a galaxy. The models are fully self-consistent 6D distribution functions
for a galaxy with a Sérsic profile stellar bulge, exponential disk, and parametric dark-matter halo, generated by an
updated version of GalactICS. By creating realistic flux-weighted maps of the kinematic moments (flux, mean
velocity, and dispersion), we simultaneously fit photometric and spectroscopic data using both maximum-
likelihood and Bayesian (MCMC) techniques. We apply the method to a GAMA spiral galaxy (G79635) with
kinematics from the SAMI Galaxy Survey and deep g- and r-band photometry from the VST-KiDS survey,
comparing parameter constraints with those from traditional 2D bulge–disk decomposition. Our method returns
broadly consistent results for shared parameters while constraining the mass-to-light ratios of stellar components
and reproducing the H I-inferred circular velocity well beyond the limits of the SAMI data. Although the method
is tailored for fitting integral field kinematic data, it can use other dynamical constraints like central fiber
dispersions and H I circular velocities, and is well-suited for modeling galaxies with a combination of deep imaging
and H I and/or optical spectra (resolved or otherwise). Our implementation (MagRite) is computationally efficient
and can generate well-resolved models and kinematic maps in under a minute on modern processors.
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1. Introduction

The physical properties of nearby spiral galaxies are typically
derived by fitting a number of distinct components to broadband
images, either using azimuthally averaged 1D profiles or directly
in 2D (e.g., Peng et al. 2002; Sánchez-Janssen et al. 2016;
Johnston et al. 2017). For large surveys, common models are
single Sérsic (1968) profile fits or two-component bulge–disk
decompositions using an exponential disk and a de Vaucouleurs
(1959) or Sérsic profile bulge (Simard et al. 2011)—appropriate
parametrizations for galaxy disks and “classical” dispersion-
supported bulges (Gadotti 2009), respectively. Additional features
like bars, spiral arms, and dust are usually only modeled for well-
resolved nearby galaxies.

Photometric bulge–disk decomposition has several major
drawbacks. First, the best-fit 2D model may be impossible to
reproduce with more realistic 3D density profiles or a 6D phase
space distribution function (DF)—a serious concern, since most

nearby galaxies are dynamically relaxed systems close to virial
equilibrium. Two-dimensional models may be unable to
produce a stable equilibrium system or require an unrealistic
dark-matter halo density profile to reproduce the rotation curve.
Therefore, it is desirable that fitting methods exclude parameter
combinations that cannot create stable equilibrium models
consistent with the galaxy’s dynamics.
Bulge–disk decompositions can also produce ambiguous

results. For fits with an exponential and a Sérsic profile, it is
often assumed that the exponential component is a disk,
whereas the Sérsic component is a bulge; however, the bulge
can have a best-fit Sérsic index n 1s » , leaving only the size
and ellipticity to distinguish it from the disk. Furthermore,
bulges are typically centrally concentrated and compact, and
therefore difficult to resolve beyond z 0.05> with seeing-
limited imaging (Kelvin et al. 2014).
Kinematic data can break these degeneracies, even if

spatially unresolved. A single-fiber central velocity dispersion
can be used to infer the presence of a “classical,” dispersion-
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supported bulge. Similarly, an unresolved H I 21 cm spectrum
exhibiting a “double-horned” profile traces the orbital velocity
of the neutral hydrogen gas, constraining the circular velocity
at a large physical radius and (in principle) the combination of
the rotation curve and H I surface density profile.

Integral field spectroscopy (IFS) permits the inference of
spatially resolved rotation and dispersion profiles by taking
multiple spectra across each galaxy. Single-target surveys that
are already completed include SAURON (de Zeeuw
et al. 2002), ATLAS3D (Cappellari et al. 2011), and CALIFA
(Sánchez et al. 2012, 2016)—with nearly 1000 galaxies among
them—whereas ongoing multiplexed surveys like SAMI
(Croom et al. 2012; Bryant et al. 2015) and MaNGa (Bundy
et al. 2015) have each observed ∼2000 galaxies and are
expected to finish with 3600/∼10,000, respectively. These data
sets have enormous potential to constrain fundamental galaxy
properties, as illustrated in Figure 1, particularly for multi-
component galaxies and when combined with multiwavelength
data like deep imaging and H I spectra.

There are two major challenges in interpreting IFS kinematic
maps. First, extracting information on galaxy kinematics
requires careful modeling to account for observational and
instrumental effects, particularly “beam smearing”—the ten-
dency for a point-spread function (PSF) to blur ordered rotation
across a galaxy, artificially increasing the velocity dispersion.
Creating spectral datacubes by stacking dithered observations
has an adverse impact on image resolution, particularly in the
presence of differential atmospheric refraction (Law et al. 2015;
Sharp et al. 2015), an issue that can and should be resolved by
forward modeling rather than in the data reduction process.
Second, IFS maps may not have sufficient spatial coverage or
signal-to-noise ratio to reach the peak of a typical galactic
rotation curve, whereas even unresolved 21 cm H I spectra can,
since H I disks are typically more extended than stellar disks
(e.g., Walter et al. 2008; Wang et al. 2016).

Our new modeling method is designed to resolve the issues
outlined above. We create dynamical models from fully self-
consistent phase space DFs, then generate synthetic observa-
tions of the kinematic moments to compare with observed data.
Using kinematic moment maps allow for less ambiguous
detections of dispersion-supported bulges. Synthetic observa-
tions reproduce biases from beam smearing through the PSF/

line-spread function (LSF) and pixel discretization, allowing
for simultaneous fitting of independent data sets. Finally, since
the models are based on theoretically motivated analytic
density profiles, they predict reasonable extrapolations beyond
the limits of the observed data—vital for estimating the angular
momentum in extended disks (Romanowsky & Fall 2012;
Obreschkow & Glazebrook 2014).
Existing galaxy dynamical modeling methods include

Schwarzschild (1979) modeling (e.g., Cappellari et al. 2006),
Jeans’ modeling (as reviewed by Courteau et al. 2014), and
made-to-measure (Syer & Tremaine 1996) and action-based
modeling (e.g., Binney & McMillan 2011). However, most of
these methods are not specifically designed to perform bulge–
disk decomposition (but see Vasiliev & Athanassoula 2015)
and many do not necessarily produce self-consistent DFs (see,
e.g., Trick et al. 2016, who model the Milky Way’s disk DF
including a halo potential but no halo DF). Portail et al. (2017)
fit Milky Way data using a near-equilibrium M2M model with
a disk, halo, bulge, and bar, but at a significant computational
cost of 190 CPU-hours for 25 iterations. Our method solves
both problems, generating synthetic observations of near-
equilibrium bulge/disk/halo models efficiently enough to fit
data from large surveys like SAMI.
In Section 2, we describe the data sources for the sample

galaxy used in this pilot study. In Section 3, we describe each
step of the method in greater detail. In Section 4, we show more
detailed results and comparisons to 2D bulge–disk decomposi-
tion, summarizing conclusions and outlining future directions
in Section 5. Three appendices detail systematic tests of model
integration accuracy (Appendix A), stability (Appendix B), and
fit robustness (Appendix C). Two further appendices discuss
degeneracy/biases when models fit poorly (Appendix D) and
when fitting inclined thick disks (Appendix E). Lastly,
Appendix F details the GalactICS method used to build galaxy
models. Future papers will provide fits to a larger sample of
SAMI galaxies.

2. Data

We choose a well-resolved, massive SAMI spiral galaxy
(G79635), with M M1010.4 »  (Taylor et al. 2011) from
broadband spectral energy distribution fits. Stellar kinematics
are derived using single-Gaussian, two-moment pPXF

Figure 1. Illustration of how various multiwavelength data can constrain disk galaxy dynamics over different regions of a typical massive spiral galaxy with an
extended disk, concentrated bulge, and flat rotation curve.
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(Cappellari & Emsellem 2004) fits to the data from the blue and
red arms combined, degrading the red arm (FWHM=1.696Å,
covering the redder half of the SDSS r band) to match the blue
arm’s spectral resolution (2.717Å, covering the SDSS g band);
see van de Sande et al. (2017) and Fogarty et al. (2015)
for details. We create “SAMIgr” flux maps by collapsing
the spectral cube and masking emission and sky lines as in
van de Sande et al. (2017). Flux uncertainties include
approximate covariances (Sharp et al. 2015) added in
quadrature to the shot/read noise, along with a flat systematic
uncertainty corresponding to 10% (2.1%) of the faintest (peak)
surface brightness. The dispersion maps exclude outliers from
the best-fit radial profile. The PSF is a Moffat (1969) ellipse
with 1 83 FWHM, derived via a ProFit (Robotham et al. 2017)
fit to the reference star’s flux map (obtained from its spectral
cube exactly as for the galaxy).

g- and r-band images are from the VST-KiDS survey
(de Jong et al. 2013, 2015), which covers GAMA (Driver
et al. 2011) and SAMI survey regions. Uncertainties are
estimated from the effective gain and local sky brightness.
PSFs are Moffat ellipses with 1 16 (g) and 0 54 (r) FWHM,
derived from a simultaneous ProFit fit to 39 nearby point
sources. G79635 also has an H I spectrum from the ALFALFA
(Haynes et al. 2011) a.70 data release.15

3. Methods

Our method solves a nonlinear optimization problem using a
parametric galaxy model, constrained by 2D kinematic moment
maps or derived quantities thereof. First, a model phase space
DF must be generated (Section 3.1); second, this DF must be
integrated efficiently and accurately (Section 3.2); third, the
integrated DF must be projected onto a datacube (position–
position–velocity) and then onto kinematic maps (Section 3.3).
Finally, the optimization and sampling procedure is described
in Section 3.4. Our implementation, dubbed MagRite, is based
on C/C++ libraries with an R (R Core Team 2016) interface
for fitting.

3.1. Galaxy Models

The models are generated using an updated version, 3.0, of
the GalactICS (Kuijken & Dubinski 1995; Widrow et al. 2008)
galaxy initial conditions code, to be detailed in a future paper
(J. J. Dubinski et al. 2017, in preparation). GalactICS has
previously been used to model the surface brightness profiles
and rotation curves of local group galaxies (Widrow &
Dubinski 2005; Widrow et al. 2008) and NGC 6503 (Puglielli
et al. 2010), but not 2D images/kinematic maps. The core
functions of the updated code are as described in Widrow et al.
(2008). Key differences include the adoption of a logarithmic
grid (previously linear), and the use of GNU Scientific Library
(Galassi 2009) splines to create smooth differentiable functions
for tabulated DFs and multipole expansion coefficients for the
potential, both of which allow for more accurate function and
derivative/integral evaluations using fewer grid elements than
in earlier versions.

GalactICS generates equilibrium DFs with three components
for galaxies:

1. An exponential stellar disk with mass Md in, , scale radius
Rd, and scale height zd, where R Rexp dr µ -( )/

sech z z .2
d( )/

2. A (deprojected) Sérsic profile stellar bulge with
scale velocity vb and effective radius Rb, where
r r R b r Rexpb

p
n e

n1 sr µ --( ) ( ) ( ( ) ), p n1 0.6097 s= - +
n0.05563 s
2 (Prugniel & Simien 1997), and bn scales

such that Rb is the projected half-light radius (Graham &
Driver 2005).

3. A generalized Navarro et al. (1997, hereafter NFW) dark-
matter halo with scale velocity vh, scale radius rh, where

r r r r1h h
1r µ +a b a- -[( ) ( ) ]( ) , and 1, 3a b= = for a

“pure” NFW profile.

The minimal set of six free parameters includes a size and
mass/scale velocity per component: Rb and vb (bulge); Rd and
Md in, (disk); rh and vh (halo). Four parameters control the
density profiles: ns (bulge), zd (disk scale height), and α, β
(halo); we fix 3b = but leave the others free. We fit the disk
radial central (cylindrical) radial velocity dispersion R0s , the
square of which then declines exponentially with Rd. Finally,
we fix the streaming fractions f f 0.5s b s h, ,= = (fractions of
particles with a positive z-axis angular momentum Lz), giving
non-rotating bulges and halos.
Any component c can be truncated at a radius rt c,

with scale length drt c, , such that r rtrunc nominalr r=( ) ( )

r r dr1 exp t c t c, ,
1+ - -[ (( ) )] . Truncation is only strictly neces-

sary for the halo because the NFW profile has a divergent total
mass. Nonetheless, we fit the disk rt d, and drt d, (see Section 4 for
the implications of this choice), but fix the bulge r R10t b b, =
(dr Rt b b, = ) and halo r r50t h s h, ,= (dr r7.5t h s h, ,= ). This adds an
additional two free parameters to the previous nine.
GalactICS derives a DF for each spherical component using

Eddington’s formula (e.g., Binney & Tremaine 2008) and
iteratively computes corrections to an analytic DF describing
the disk. GalactICS then finds a potential/density pair for each
component which is consistent with these DFs. The final radial
density profile of each component only differs slightly from its
original parametrization (see Appendix F). The key differences
are that spherical components (bulge and halo) are flattened
slightly in response to the presence of the disk potential and
that the integrated properties of the components (e.g., disk mass
Md) can deviate slightly from their input values. Although
options have recently been added to GalactICS to further
correct the disk density such that the output mass and profile
match the input values more closely, we omitted this step
pending further testing of these new features.
Despite these caveats, Appendix B shows that under normal

circumstances, GalactICS models begin in near-perfect equili-
brium; perturbations on the order of a few percent result only
for extreme parameter combinations. More importantly, models
with large Toomre (1964) Q parameters are stable against
secular evolution. Although GalactICS is not restricted to
generating models with large Q—this depends mostly on the
values of zd and R0s —it can be guided to do so if necessary
through priors on these input parameters or on the minimum Q

value at certain radii. GalactICS also converges to a near-
equilibrium DF in ∼30 s without expensive orbital integration
—a major advantage over Schwarzschild/made-to-measure
methods and the key requirement to permit Bayesian analyses
of large samples of galaxies.15 http://egg.astro.cornell.edu/alfalfa/data/
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3.2. Distribution Function Integration

The default GalactICS integration scheme samples the DF
using a Monte Carlo acceptance–rejection method, which is
ideal for generating unbiased, equal-mass N-body particle
initial conditions. However, the rejection step is inefficient
unless a suitable (i.e., strictly larger than the target distribution
but only by a small margin) approximate sampling distribution
is known. Unbiased sampling is not optimal for accurate
integration over a uniform grid, because the fractional error is
not constant but scales with density, so low-density (outer)
regions have larger relative errors than the (possibly exces-
sively) accurately sampled inner regions. Lastly, stochastic
integration can induce spurious variations in the likelihood with
small changes in parameter values. Evaluating the same model
with a different random sequence or even a slightly different
model with an identical random seed can result in spurious
differences in integrated quantities and the resulting model
likelihoods, depending on the number of samples. As a result,
we chose to develop a faster and less stochastic grid-based
integration scheme, which we will now describe in greater
detail. For more detailed comparisons between these two
integration schemes, see Appendix A.

We integrate the DF in its native cylindrical coordinate
system and then project it rather than integrating over projected
coordinates, as is usually done for 2D surface brightness
profiles. For the remainder of this section, we will use the
mathematical convention, where the azimuthal angle is θ, rather
than the physics convention (f). The disk DF is parametrized
as f R z v v v, , , ,R zq( ). It is independent of θ and symmetric over
all axes except vq. The DFs of the spherical components (bulge
and halo) are internally functions of energy and Lz, but are re-
parametrized as f R z v, ,( ) for convenience. Integrating the
model over a cylindrical grid allows for some efficient

optimizations, whereas integrating down the line of sight
requires repeated unique transformations at each projected
position. Rotating and projecting cylindrical grid elements onto
the sky plane does present a challenge. Doing so exactly
requires computing the fraction of the volume of a 3D tilted
ring (with a fixed height) projected within each spaxel.
However, this can be roughly approximated by further
discretizing each annular ring into sectors, and then assigning
the mass within each sector to the spaxel containing its center
of mass (in projection).
The discretized disk integration grid for G79635 is shown in

Figure 2 (top-left panels). The scheme is designed to create
nearly equal-mass bins. The radial grid is roughly logarithmic
—each bin covers a radius containing 1/NR of the total mass of
an ideal, thin exponential disk. The inner and outer bins are
oversampled to minimize gaps at large radii and improve
accuracy near the galactic center: 15% of the bins cover
the inner 0.5Rd, whereas 35% cover R R3 d> . The bins
are staggered radially to spread them more evenly in projection.
Vertically, the grid covers z z0 10 d< < , spaced to cover equal
masses until switching to linear spacing near the upper limit.
For each R–z element, the disk DF is integrated over all
v v v, ,R z q within v 0 4R Rsá ñ = ( ) , v 0 4z zsá ñ = ( ) , and
v v 8circ sá ñ » q q( ) and discretized into equal-velocity bins.

Figure 2 shows the integration grid for a single spatial bin,
including major-axis 2D projections and 1D probability
distribution functions (PDFs). Typically, the DF at most spatial
coordinates in the disk is nearly (but not exactly) a Gaussian
ellipsoid.
The bulge uses similar radial divisions, such that the inner

and outer 20% of the bins contain M0.1 bulge and M0.05 bulge,
respectively, accounting for the steep slope in the Sérsic profile
at small/large radii for large/small values of ns, respectively.
The radial grid is divided into quadrants and then subdivided

Figure 2. Densities within selected bins of a low-resolution model grid (25 radial bins and 25 km s 1- velocity bins). Left panels: density and mass within the model
integration grid. The scheme produces roughly equal-mass bins over most of the disk. Top: mass-weighted velocity distribution functions for the cyan-highlighted bin
in the left panels. The remaining panels show pairwise (logarithmic) densities integrated over the third velocity axis, i.e., projections of the velocity “ellipsoid” (which
is not perfectly ellipsoidal) at a given position in the disk.
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into linearly spaced cells along the z-axis. The bulge DF is then
integrated over all v vesc< .

3.3. Synthetic Observation Pipeline

To generate synthetic images and kinematic maps, we use an
updated version of the synthetic observation pipeline described in
Taranu et al. (2013) and ironically named “This Is Not A Pipeline”
(TINAP). We assume an exponentially declining star formation
history for the disk, t tSFR exp 0 tµ - -( ( ) ), from t 2 Gyr0 =
to 12.92Gyr (the universe’s age at G79635ʼs z=0.04 assuming
H 70 km s Mpc0

1 1= - - , 0.3mW = , and 0.7W =l ), fitting 1t- to
avoid discontinuities at 0t = . The bulge is modeled as a single
burst with a free formation time tb. Both bulge and disk
components have free metallicities (Zb and Zd, respectively). We
use Maraston & Strömbäck (2011) grids to compute M L in the
three bands (g, r, and SAMIgr), assuming no stellar population
gradients within components. We spawn a minimum of eight
“particles” at the central R z, of each grid bin with an evenly
spaced distribution from 0 4q p< < , beginning at a random θ
(the only stochastic part of the scheme) and duplicating particles in
the seven remaining octants.

The two left panels of Figure 3 show the distributions of disk
particles at two fixed radii but at different heights above/below
the disk midplane, color coded by vLOS (top), along with
particles at different radii but fixed heights above/below the
disk midplane (bottom). After binning particles spatially and in
vLOS, every spaxel produces its own vLOS PDF (right panel
inset, Figure 3). These PDFs are 2D integrals of line-of-sight
projections of the 3D velocity ellipsoids, and so kinematic
moments are sensitive to the disk’s vertical structure and
anisotropy. It is worth emphasizing that Figure 2 shows a very
coarse integration grid with just 25 radial bins, whereas for
G79635 we use 100 bins, eliminating most discreteness effects.
However, the X-shaped pattern of gaps remains even for very

fine grids. This is essentially a Moiré pattern generated by
overlaying an elliptical grid onto a rectangular one. The effect
is minimized but not eliminated by staggering radial bins. In
practice, the patterns are small enough to be virtually invisible
after PSF convolution and could be avoided entirely with more
sophisticated schemes for gridding the model DF, which are
under development.
For stellar kinematics, vLOS cubes are convolved with the

PSF and spectral line-spread function (LSF), both of which are
oversampled threefold. Finally, we measure the kinematic
moments in each spaxel, subtracting the LSF dispersion in
quadrature for the second moment. Gaussian fits to G79635ʼs
vLOS PDFs are indistinguishable from direct measurements of
v ,LOS s, so we use the latter. As discussed in Appendix C, this
choice may not be suitable for galaxies with more massive and
extended bulges, so we are investigating alternatives for future
applications.
Generating synthetic kinematic maps requires nine addi-

tional free parameters—the disk inclination and position angle,
offsets for x y v, , los, and ages and metallicities for the bulge
and disk—bringing the total to 21 free parameters.

3.4. Model Fitting

Wherever possible, initial parameter estimates and prior
means are obtained from 2D ProFit fits. All priors are assumed
to be normal and broad ( 1s » dex). We first use a robust
maximum-likelihood genetic algorithm, Covariance Matrix
Adaptation—Evolutionary Strategy (CMAES; Hansen 2006).
We then perform Bayesian MCMC using the Componentwise
Hit-And-Run Monte Carlo (CHARM) sampler of the Lapla-
cesDemon R package.16 The likelihood function is the sum of
the log-likelihoods from each map, assuming either a chi-

Figure 3. Visualization of the model projection and map generation schemes. Left panels: scatter plots of projected disk DF samples, color coded by line-of-sight
velocity (vLOS). The top-left panel shows bins at similar radii but different heights above/below the midplane, while the bottom-left panel shows a single z bin with
ellipses at the same height above/below the midplane but at different radii. Right panel: scatter plot of DF samples for the disk and bulge, color coded by vLOS. The
inset shows vLOS DFs for the highlighted spaxel (green). Radially staggered bins are distributed more evenly in projection but still create artifacts.

16 https://cran.r-project.org/web/packages/LaplacesDemon/
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square distribution for image residuals or a sum of normally
distributed residuals for kinematic maps with less well-defined
errors. Residuals are defined as data model errori i i ic = -( )

and data model errori i i i
2 2c = S -(( ) ) . Note that although we

quote reduced 2c (
red
2c ) values, they are not used in the

optimization procedure, which instead derives likelihoods from
the chosen statistics’ PDF directly (i.e., by calling the “dnorm”

and “dchisq” functions in R).
Our CMAES code is based on the R CMAES package.17 We

have modified both CMAES and LaplacesDemon, implement-
ing runtime limits for supercomputer queues; these versions are
available on GitHub.18,19

4. Results

The best fit for G79635 using SAMI and KiDS g+r is
shown in Figure 4. The

red
2c for all of the flux maps is

significantly above unity. However, the largest r-band residuals
clearly trace non-axisymmetric features like spiral arms and
interarm gaps, and the similarity in residuals across indepen-
dent data sets is encouraging, given the systematics introduced
by SAMI’s cubing procedure and single-star flux calibration.
The r-band fit is worst simply due to its higher signal-to-noise
ratio (better seeing and longer exposures than g).

Figure 5 shows 1D profiles azimuthally averaged over the best-
fit ProFit disk ellipse, compared to a ProFit 2D double Sérsic r-
band fit with a free bulge position angle. The dispersion map/
profile is overfit and the best-fit rotation curve appears to rise

slightly too steeply, as can also be seen in Figure 4 (where the
velocity map residuals show spatial coherence). Encouragingly,
the predicted rotation curve at a fiducial radius of (3–3.4)Rd
(Catinella et al. 2007) is within 10% of the independent
ALFALFA H I W 347 8 km s50

1=  -( ) measurement, even
though the H I data were not used in the fit and the SAMI data
does not appear to reach the peak of the rotation curve. The lower
stellar velocity could be due to asymmetric drift, as it is not
unusual for stellar disks with radial dispersion support to have
10%~ lower rotation speeds than gaseous disks (Ciardullo

et al. 2004; Martinsson et al. 2013; Brooks et al. 2017). The peak
stellar velocity is also consistent with the independent
V isin 165 km smax

1= - circular speed derived by Cecil
et al. (2016).
The fact that the observed mean stellar velocity lies well

below the circular speed curve is due to a combination of
factors. First, the mean velocity within Re,disk is decreased due
to beam smearing (compare the solid blue and dashed blue
lines in Figure 5). This effect is modest beyond the peak of the
rotation curve (compare the solid and dashed rotation curves),
although it continues to boost the observed velocity dispersion
by about 10 km s 1- . Note that estimates of the mean velocity
and dispersion are unreliable beyond about 15 kpc, where the
dispersion drops well below the 60 km s 1- velocity grid
resolution. Also, there is some subjectivity in how 1D apertures
are defined. We measure velocities and velocity dispersions
using data from spaxels within 5 and 10 degrees of the major
axis, respectively. The model-projected velocity without beam
smearing (dashed blue curve in Figure 5) is measured within
the same apertures as the PSF-convolved version (solid line)
and does not take into account the fact that PSF convolution

Figure 4. Best-fit G79635 model using SAMI moment 0–2 maps and KiDS g+r images, along with residuals relative to pixel/spaxel uncertainties. KiDS images are
200 × 200 (2 ticks) while SAMI images are 36 × 36 (1 ticks).

17 https://cran.r-project.org/web/packages/cmaes/
18 https://github.com/taranu/LaplacesDemon
19 https://github.com/taranu/cmaeshpc
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modifies isophotes as well; however, since the 1D kinematics
are measured close to the major axis, this effect is minor.

In the inner few kiloparsecs, the mean velocity is suppressed
both because of the presence of a non-rotating bulge and
because the disk has a finite thickness, so that a large fraction of
disk stars are a significant distance away from the disk
midplane. Beyond this inner region, asymmetric drift and the
non-zero radial and vertical velocity dispersion of the disk
continue to lower the mean velocity. Observations suggest that
it is not unusual for stellar disks with radial dispersion support
to have 10%~ lower rotation speeds than gaseous disks
(Ciardullo et al. 2004; Martinsson et al. 2013; Brooks
et al. 2017).

Despite also fitting the g-band image and SAMI kinematics,
the MagRite best-fit model is a better fit to the KiDS r-band
image than a single-band exponential disk ProFit fit; ProFit
only fits slightly better with a free ns disk.

Table 1 lists best-fit values and uncertainties for the MagRite
model parameters and several key derived quantities. Posterior
distributions for selected common parameters of the MagRite
and ProFit fits are shown in Figure 6. We find that direct fits to
the data yield unreasonably narrow PDFs, listed as obs.s in
Table 1. To test whether MagRite is the cause of this effect, we
generate and fit noisy mock maps of the best-fit model (see
Appendix C for a full description of the procedure). We find no
evidence for significant bias in the best-fit parameter values.

This form of “noise bias” can be significant in a low signal-to-
noise image, as is the case in weak lensing studies (e.g.,
Bernstein & Jarvis 2002; Refregier et al. 2012). However, the
parameter PDFs for fits to the mock maps are significantly
broader (Table 1) than when fitting the actual data—in some
cases by over two orders of magnitude—and ProFit exhibits
similar behavior.
As Figure 4 shows, an axisymmetric disk is not a good fit to

the flux maps and cannot reproduce the spiral arm structure
evident in the KiDS images (especially in r). In general, models
that fit data poorly underestimate uncertainties significantly,
although the degree to which this occurs does depend on the
model and fit statistic. This result is not immediately obvious,
and we discuss it further in Appendix D. Our solution of fitting
mock images to obtain more realistic parameter uncertainties is
necessary but likely insufficient. That is, the mocks in Table 1
should be interpreted as a lower bound on the uncertainty on
each parameter in the highly idealized scenario that the galaxy
is perfectly described by the model. There is no obvious
prescription for estimating or adjusting parameter uncertainties
for models that do not fit the data well.
Table 1 also lists Δ, the difference between the ProFit and

MagRite best-fit values for common parameters (whether
derived or fit directly). This can be considered as an estimate
of systematic uncertainties from using two different (but still
similar) modeling methods. In all cases, D∣ ∣ is larger than

Figure 5. Data and 1D profiles for G79635. Clockwise from bottom left: the SAMI dispersion and velocity maps, with a 2″ diameter aperture (green); the SAMI
spectrum within this aperture, with emission lines excluded from the fit shaded in gray; the ALFALFA H I spectrum; RGB composite image using KiDS g-, r- and
i-band images, overlaid with SAMI coverage (green). Center: azimuthally averaged, spline-fit 1D profiles (dotted lines) for the first three kinematic moments (KiDS
r-band surface brightness—gray/black; velocity—blue; velocity dispersion—red), along with 1σ uncertainties (shaded). Also shown are the best-fit MagRite (thick
solid lines) and ProFit 2D double Sérsic r-band fits (dotted lines), split among bulge (orange), disk (green), and total (purple). The background gradient in the KiDS
images (most visible in the red i-band channel) was removed prior to fitting. Note that velocities are as observed and not inclination corrected, i.e., v v isincirc» ( ),
where vcirc is the circular velocity and i is the disk inclination. The best-fit MagRite model v isincirc ( ) (dotted–dashed dark blue line) lies well above the observed
rotation curve, illustrating the combined effects of beam smearing, asymmetric drift, and a thick disk.
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σmock—sometimes by more than an order of magnitude. This
suggests that systematic uncertainties dominate over statistical
uncertainties. Unfortunately, we are unaware of any robust
methods for incorporating systematic uncertainties into our
likelihood functions, so the only obvious solution to this issue
remains increasing the model’s flexibility until it can reproduce
the data.

Our testing demonstrates that MagRite will recover input
parameters correctly from idealized mock data, but this does
not guarantee realistic parameter values when fitting real
galaxies. For example, the MagRite model has an unrealisti-
cally large disk scale height, z 1.67d = kpc, and a small
truncation radius, r 14.0t d, = kpc, compared to the scale length

R 6.52d = kpc. These values seem to compensate for features
in the data not otherwise described by the model. G79635ʼs
disk appears steeper than exponential, and the best-fit ProFit
disk n 0.8s » (Figure 5). The small truncation radius steepens
the MagRite surface brightness profile at large radii, whereas
the large scale height lowers the surface brightness along the
minor axis from the galaxy center—precisely where there are
two underdense interarm gaps. A model with azimuthal
variations and a more general Sérsic or broken-exponential
disk profile might prefer a thinner, non-truncated disk. Having
said that, Muñoz-Mateos et al. (2013) fit broken-exponential
profiles to Spitzer 3.6 μm imaging of nearly face-on disks and
found a typical break radius at 2.3±0.9 inner scale lengths, so
the truncation radius is not unreasonable for a Type II
(truncated, as per Freeman 1970) disk.
The disk mass is also considerably higher than the total

stellar mass estimated by Taylor et al. (2011) from fits to
photometry alone. G79635 has a rather large estimate H I mass
of M1010.22 , so it is possible that our larger disk mass is
compensating for the contribution of the gas disk to the rotation
curve. This could also be the cause of the slight underprediction
of the rotation curve at large radii, if it is not due to asymmetric
drift. In practice, a more flexible and better fitting stellar mass
model would likely allow the halo parameters to vary more to
compensate for such inconsistencies.
The best-fit disk metallicity is quite low ( Z Zlog 10 d <( )

0.5- ) for such a massive disk, whereas the bulge metallicity
reaches the ceiling of the Maraston & Strömbäck (2011) model
grids ( Z Zlog 10 0.3b =( ) ). By contrast, the disk is fairly old,
with a short 2.06 Gyrt = , while the bulge has a moderate age
of 5.92Gyr. The observed galaxy colors cannot be reproduced
by such a relatively simple model; in particular, the galaxy
center is redder than the model, and the outskirts are
significantly bluer, both by about 0.2 in g−r and with a
fairly sharp transition rather than a smooth gradient. Additional
model complexity (especially dust reddening and stellar
population gradients) is necessary to fully reproduce galaxy
colors, and full spectral modeling would be ideal. However, it
is worth noting that systematic differences in the inferred stellar
masses of GAMA galaxies (including the SAMI sample) can
be as large as 0.2 dex depending largely on the treatment of star
formation histories and dust (Wright et al. 2017), even
neglecting possible variations in the initial mass function.
There are also significant differences among stellar population
models, stellar spectral libraries, and isochrones, which
preclude making accurate estimates of stellar mass-to-light
ratios even given a star formation history, and it is unclear how
one might estimate the magnitude of such effects for a given
galaxy.
One potential general solution to limit parameter bias is to

introduce stricter priors on model parameters based on external
data. Disk scale height distributions can be constrained from
independent observations of edge-on disks, and dust extinction
can be estimated from Balmer line decrements. Ultimately, the
best solution is to improve the model itself, which would
permit the quantification of such biases. Such improvements
are planned for MagRite but are not necessary to implement the
method itself. For the moment, we advise caution when
interpreting uncertainties from models that do not adequately
reproduce known or clearly visible features in the data. This
particular galaxy is well-resolved compared to average SAMI
galaxies (although not uniquely so); these issues are less

Table 1

Best-fit G79635 MagRite Parameters

Name Unit loga Mean
obs.s mocks Δ

b

Fitted Parameters
Md in, Msim

c Y 1.604 8.76e−5 1.33e−3 L

Rd kpc Y 8.141e−1 2.62e−5 9.85e−4 L

zd kpc Y 2.224e−1 1.83e−4 8.08e−3 L

rt d, kpc Y 1.146 2.07e−4 1.67e−3 L

drt d, kpc Y 7.065e−1 3.56e−4 5.26e−3 L

R0s vsim
d Y −1.281e−1 2.93e−4 2.44e−2 L

vb vsim N 1.020e−2 1.80e−4 1.92e−3 L

Rb kpc N −2.899e−1 1.01e−4 7.35e−3 −3.62e−2
ns N/A Y −9.970e−2 9.79e−4 2.45e−2 1.82e−1

vh vsim Y 2.693e−1 6.41e−5 1.82e−3 L

rh kpc Y 8.051e−1 3.17e−4 1.47e−2 L

α N/A N 9.845e−1 1.57e−4 2.31e−2 L

1t- Gyr−1 N 4.851e−1 1.36e−3 6.62e−3 L

tb Gyr Y 8.450e−1 1.19e−3 8.55e−3 L

Zd Z Z Y −5.170e−1 1.75e−3 7.19e−3 L

Zb Z Z N 3.000e−1 8.17e−5 8.83e−3 L

P.A. rad. N 8.059e−1 2.72e−4 2.08e−3 −3.26e−3
isin( ) rad. N 8.160e−1 1.55e−4 1.65e−3 2.09e−2

Xoff kpc N 3.732e−2 4.32e−4 5.81e−3 5.11e−2
Yoff kpc N 1.513e−2 9.68e−4 5.89e−3 5.91e−2
Vz,off km s 1- Y −1.547e−1 3.47e−1 3.55e−1 L

Derived Parameters

Md
e M N 10.72 1.43e−4 1.38e−3 L

Mb M N 9.126 6.93e−4 1.07e−2 L

M Lg d( ) M Lg ( ) N 2.726 1.47e−3 1.18e−2 L

M Lr d( ) M Lr ( ) Y 2.213 8.60e−4 7.42e−3 L

M Lg b( ) M Lg ( ) N 3.745 1.18e−2 8.79e−2 L

M Lr b( ) M Lr ( ) N 2.581 7.44e−3 5.42e−2 L

Ld L r, Y 10.38 1.54e−4 8.76e−4 4.46e−3

Lb L r, Y 8.715 9.91e−4 7.58e−3 2.99e−2
Re d,

d kpc Y 0.9365 8.82e−5 1.10e−3 7.10e−3

Mh M Y 11.81 3.03e−4 3.33e−2 L

Notes. Fitted parameters are listed as fit internally by MagRite, whereas derived
parameters are measured during or after model generation.
a Values listed as log 10 value unit 1-( ).
b MagRite value less ProFit value (where applicable), where the ProFit model
has a thin Sérsic disk sharing its position angle with the bulge.
c
Msim=2.3245e M9 .

d
vsim=100 km s−1.

e Directly measured model half-light radius, accounting for truncation.
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pronounced when fitting lower-quality data. However, as the
recent public release of Subaru Hyper Suprime-Cam data
(Aihara et al. 2017) shows, high-quality, deep ground-based

imaging is rapidly becoming available for large galaxy surveys
—even in the southern sky (Keller et al. 2007)—and so this
issue cannot be ignored for much longer.

Figure 6. Triangle plot showing joint posterior parameter distributions (L L Llog 10 rº ( ), Re Rlog 10 kpceº ( ), zs z kpclog 10 dº ( ), n nlog 10 sº ( ), and i is the
inclination in degrees) for ProFit (blue) and MagRite (red), where the ProFit disk is a Sérsic profile and shares its position angle with the bulge. The upper-left half
shows the scatter plots of accepted samples, while the bottom-right half shows the 1D and smoothed 2D probability contours. Accepted samples are colored by
probability on an arbitrary scale, such that more probable points have darker and more saturated colors. Plots along the diagonals show the PDFs of accepted samples
for the variable on the x-axis; to avoid crowding, the y-axis ticks and labels are omitted for the three interior histograms. All posterior distributions are for fits to mock
data; the best-fit parameters used to generate the mock data are plotted as circles. Note that because the ProFit thick disk fits have an unrealistically large disk scale
height, the ProFit mock uses the best-fit thin disk fit parameters with z R0.1 1.67835d e d,= (equivalent to R0.1 d for an exponential disk); this illustrates the limited
constraints on disk thickness from photometry alone.
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5. Conclusions

We outlined a method for kinematic bulge–disk decomposi-
tion using self-consistent, DF-based dynamical models. The
method can be used to model any combination of data,
including deep optimal images and 1D/2D kinematic con-
straints. Our GalactICS-based implementation (MagRite) is
efficient enough (∼1–2 minutes per model on modern CPUs) to
fit deep KiDS images and SAMI kinematic maps (Figure 5),
exactly as conceptualized in Figure 1.

We fit the well-resolved SAMI/GAMA galaxy G79635,
showing that the best-fit parameters and posteriors are largely
consistent with ProFit 2D decompositions and with the
independent H IW50 constraint. This suggests that MagRite
can extrapolate reasonable rotation curves even without IFS
data reaching the peak of a galaxy’s rotation curve—a crucial
requirement for accurate stellar mass and angular momentum
estimates. In the provided appendices, we demonstrate that
MagRite can fit synthetic model data with minimal biases.
However, we caution that fits to real data are not immune to
biases, particularly in the presence of significant non-axisym-
metric features. Furthermore, we showed that poorly fitting
models can seriously underestimate parameter uncertainties by
yielding artificially narrow posterior PDFs. This can be
mitigated, but not corrected, by estimating uncertainties from
mock observations of the best-fit model.

Our example galaxy was selected as a well-resolved, fairly
passive spiral galaxy with an H I detection, but there are many
more SAMI galaxies with similar quality data. The KiDS
images are good enough to constrain the bulge fraction in
G79635 to at most a few percent and clearly show deviations
from our idealized models, which assume axisymmetric,
exponential disks and simple star formation histories for each
component. We therefore demonstrate that data quality is not
the main impediment to improved physical modeling of
galaxies, but the models themselves. G79635ʼs azimuthally
averaged disk profile can be reproduced with a combination of
an unusually thick and smoothly truncated exponential disk,
but would be better fit with a Sérsic or non-parametric profile
disk including perturbations from spiral arms.

One shortcoming of the method using kinematic moment
maps is that these must be derived independently; nonetheless,
the method can be generalized to fit spectral datacubes directly
(e.g., Tabor et al. 2017), and we plan to implement this
functionality within MagRite. Additional model features like
spiral arms, dust attenuation/scattering (Pastrav et al. 2013),
and more flexible/non-parametric density profiles are longer-
term ambitions. MagRite is under active development and will
be released in the near future, alongside early results from a
larger SAMI sample. Parties interested in testing the code or
contributing to future development are encouraged to contact
the authors.

The SAMI Galaxy Survey is based on observations made
at the Anglo-Australian Telescope. The Sydney-AAO Multi-
object Integral field spectrograph (SAMI) was developed
jointly by the University of Sydney and the Australian
Astronomical Observatory. The SAMI input catalog is based
on data taken from the Sloan Digital Sky Survey, the GAMA
Survey, and the VST-ATLAS Survey. The SAMI Galaxy
Survey is funded by the Australian Research Council Centre
of Excellence for All-sky Astrophysics (CAASTRO),
through project number CE110001020, and other

participating institutions. The SAMI Galaxy Survey Web
site ishttp://sami-survey.org/. This work was supported by
the Flagship Allocation Scheme of the NCI National Facility
at the ANU. D.S.T. acknowledges support from a 2016
University of Western Australia Research Collaboration
Award. B.C. acknowledges support from the Australian
Research Council’s Future Fellowship (FT120100660) fund-
ing scheme.

Appendix A
Integration Scheme Comparison

To test the accuracy and speed of the DF integration
scheme described in Sections 3.2 and 3.3, we generate
synthetic maps using our method and also from a high-
resolution GalactICS model with 20M/0.4M disk/bulge
particles, respectively. Figure 7 shows the maps and residuals
generated using the best-fit model parameters for G79635
with both of these integration schemes. Despite the large
number of particles, the MC (N-body) maps are still shot
noise limited near the outskirts of the disk. Furthermore,
sampling this many particles takes nearly 10 minutes on a
modern test machine (Intel i5-4690 at 3.50GHz). Each
accepted particle requires just over three proposals on
average, meaning that nearly 70% of the computing time is
effectively wasted evaluating rejected proposals. In contrast,
the grid-based integration method takes under a minute and
generates smoother, noise-free maps that are virtually
indistinguishable from the unbiased N-body maps near the
well-sampled galaxy center. This is accomplished mainly by
making fewer calls to the expensive DF evaluation methods,
effectively spawning dozens to hundreds of particles per DF
sample.
As discussed in Section 3.3, our grid-based integration

scheme is not entirely ideal. Placing evenly distributed samples
at the center of each bin is computationally efficient but
requires a random angular offset in θ to generate smooth maps
—otherwise, the model images would have bright “spokes” at
the sampled angles θ and artificial gaps between them.
Similarly, binning evenly spaced ellipses onto a rectangular
grid creates Moiré-like artifacts, apparent as an X-shaped
residual in Figure 7. These issues could be resolved by
distributing DF samples over the projected areas of elliptical
rings rather than as points binned onto a rectangular grid. In
principle, this would also need to be done in 3D, i.e., by
generating rings corresponding to the top of one bin and the
bottom of the next. These would be fairly inexpensive
calculations compared to the other steps in model integration,
but are somewhat complex and would be unlikely to change the
PSF-convolved model maps significantly, so they are left to
future revisions of MagRite.
One measurable impact of the integration scheme is the

change in model likelihoods through stochasticity. To test this,
we generate a series of maps for the best-fit model, varying
only the random seed used to generate the angular offsets in θ.
For the r-band KiDS image, the 2c value varies by about 40
from different seeds. This is an insignificant difference for a
well-fitting model, but highly significant for one with a large

red
2c , as discussed in Appendix D. To minimize the impact of

this issue, we keep the random seed fixed for all fits.
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Appendix B
Model Stability Test

To test the long-term stability of the model, we generated N-
body initial conditions with GalactICS, sampling the disk/

bulge/halo with 5M/0.1M/5M particles and using softening
lengths of 50/50/150 pc, respectively. We ran the model for
1Gyr with PARTREE (Dubinski 1996), using a fixed
0.196Myr time step and an opening angle of 0.8. Figure 8

Figure 7. Comparison between maps from grid-based and Monte Carlo integration using 20M/0.4M disk/bulge particles, respectively. The residuals are shown on an
absolute scale (MagRite—N-body) and as a ratio relative to the smoother MagRite map. The large relative velocity residuals along the minor axis are due to the small
absolute value of the velocity; absolute differences are small.
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shows the resulting maps from the evolved galaxy compared to
the initial conditions. There is evidence of relaxation of the
system, with the evolved model having lower central density
and velocity dispersion and a shallower rotation curve.

The evolution of this model is not representative of a typical
GalactICS model. As discussed in Section 4, the best-fit model

has an unusually large disk scale height and small truncation
radius. The initial virial ratio q T W2= - , where T and W are
the total kinetic and potential energies, respectively,
is1.00275. While the deviation from unity is not large, the
total energy of the system is dominated by the dark-matter halo
(with nearly 90% of the mass), so the stellar component is

Figure 8. Comparison between maps generated from N-body initial conditions and after 1Gyr of evolution. Pixels outside of the limits of the color bar are assigned
the darkest (most saturated) colors. The residuals show some evolution in the galaxy structure due to the thick, truncated disk being slightly out of equilibrium.
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likely out of equilibrium by a few percent. Accordingly, the
virial ratio drops below unity by a similar factor and shows
damped oscillations before reaching a new equilibrium.

We adjust the model to have a thinner disk (z kpc1d = ) and
much larger truncation radius (r r8t d d, = ) with the same disk
mass. This model shows virtually no evolution outside of the
inner 200 pc, where there is a modest depression in the central
density and velocity dispersion. We conclude that while the
disk truncation parameters and scale height can in principle
mimic a non-exponential (n 1s < ) disk, adjusting them beyond
GalactICS limits can produce unstable models and should be
avoided. This could be accomplished without running simula-
tions simply by placing stronger priors on model parameters or
on output diagnostics like the virial ratio, but further testing is
needed to determine guidelines for these limits.

Appendix C
Model Fitting Test

We test the code’s ability to recover model parameters by
fitting synthetic maps generated by MagRite. We assume shot
noise-dominated errors for the flux maps, given a gain and
mean sky brightness in counts per pixel. The higher-order
SAMI moment maps require some simplifying assumptions.
Kinematic constraints originate mainly from stellar absorption
lines, which only cover a small fraction of typical spectra. We
parametrize this effect with a simple “kinematic gain” ratio
gk,eff , which is roughly the ratio of the sum of the equivalent
widths of all absorption lines to the full wavelength range. We
generate a noisy flux-weighted vLOS DF for each spaxel, where

the counts in each bin are multiplied by gk,eff , and fit a Gaussian
to extract the mean velocity and dispersion. Finally, we reuse
the existing masks and also the velocity and dispersion error
maps for consistency with the original fits. We also adjust gk,eff
until the noise in the velocity/dispersion maps is roughly
consistent with the original errors.
Figure 9 shows synthetic noisy maps for G79635 using

g 0.02k,eff = . As expected, the flux maps are completely

consistent with (nearly) normal shot noise and have 1
red
2c » .

However, the noise in the vLOS and σ maps is not entirely
identical to that from the original SAMI maps, being slightly
over- and underestimated, respectively. This is not surprising,
given the nonlinear nature of kinematic fits, but the mock
kinematics still appear consistent with random noise without
any obvious systematic bias and are usable as data for a mock
fit. The possibly conservative choice of g 0.02k,eff = is
motivated by the need to keep this noise consistent with the
SAMI error maps; larger values lead to excessively smooth
kinematic maps. When fitting, we continue to use directly
measured velocity moments in the model rather than the
Gaussian fits used for both the mock and real data. This is
because fitting vLOS requires some estimate of the uncertainty
of the vLOS DF in each spaxel, and it is not clear what this
uncertainty should be in a noiseless model. Since G79635 has a
very modest bulge, there is little difference between the two
measurements; however, this may not be the case in galaxies
with more massive and extended bulges, where this issue
would be worth revisiting.

Figure 9. Mock G79635 maps with realistic shot noise. The kinematic maps are derived from Gaussian fits to noisy vlos DFs and therefore do not necessarily follow
Poisson or (approximately) normal statistics.
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Figure 10 shows the posterior distributions for a MagRite fit
to the mock data shown in Figure 9. Reassuringly, the best-fit
parameters are close to the inputs, with small deviations well
within the 1s uncertainties. Small offsets are expected given
the noise and the difference between the directly measured and
fitted kinematics, but there are no significant systematic biases.

This is not to say that fits to real data will be devoid of biases—
this simply verifies that MagRite recovers unbiased parameters
when the data are perfectly described by the model.
One possible concern is that there is still some noise in the

model probabilities themselves—when colored by log prob-
ability, the points do not show smooth gradients in posterior

Figure 10. Triangle plot showing joint posterior distributions for model input parameters ( M MDisk Min log 10 d in, simº ( ), RDisk Rs log 10 kpcdº ( ),
rDisk rt log 10 kpct d,º ( ), v vBulge vs. log 10 b simº ( ), RBulge Re log 10 kpcbº ( ), nns log 10 sº ( )). Points are color coded by log probability as described in

Figure 6. PDFs are shown for fits to the mock data and the observed data. Since the latter are exceptionally narrow, univariate PDFs along the diagonal are shown on a
logarithmic scale spanning six orders of magnitude.
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probability from the maximum-likelihood solution. This is
especially true for the fits to the observed data, which is
unfortunately not clearly visible in Figure 10 because the
posteriors are so narrow. This is likely due to the issues with
model integration outlined in Appendix A. The main practical
effect of a slightly stochastic model likelihood is that
convergence to the best-fit solution can be slow, as the solution
wanders between entirely artificial local maxima. This problem
is exacerbated when the best-fit model is a poor fit, since even
extremely small changes in input parameters can cause
spurious changes in the model likelihood. Fortunately, since
the actual changes in parameter values tend to be small, the
impact on the posteriors from mock fits is minimal.

Since poorly fitting models tend to vastly underpredict
parameter uncertainties (for reasons detailed in Appendix D
below), we suggest that uncertainties from mock fits should
be considered lower bounds on the “true” parameter
uncertainties. Again, this does not guarantee that there are
no biases in the best-fit parameters themselves, so caution
must be taken in defining priors and interpreting best-fit
values in such cases. Similarly, since the mock data are
idealized, they should only be interpreted as lower limits
until further testing is done to quantify the impact of
deviations from the assumed model parametrizations, which
are necessarily present in all galaxies.

Appendix D
Parameter Uncertainties from Poorly Fitting Models

It is not necessarily intuitive that poorly fitting models can or
should yield systematically smaller uncertainties than good
models. Nonetheless, it is a natural consequence of the shape of
some common statistical distributions. The difference in the
log-likelihood ( LLD ) between an nσ and n 1+( )σ deviation
from a univariate normal distribution is n 0.5- +( ). The
difference between 10σ and 11σ deviations is then much more
significant than that between 2σ and 3σ deviations, simply
because the log of the PDF of a normal distribution declines
as x 22 s- .

For a more practical example, the KiDS r-band image for
G79635 has 25,961 usable data points (unmasked pixels).
Using the chi-square distribution with 25,961 degrees of
freedom as the fit statistic,20 the maximum-likelihood solution
for an ideal model has 25, 9592c = . A 3σ deviation from a
univariate normal distribution (i.e., for a Gaussian parameter
posterior) has a log-likelihood 4.5 lower than the peak. The
equivalent range of likelihoods for the given 2c distribution is

25281.4, 26648.62c = [ ], i.e., 677.6, 689.62cD = - -[ ] or
0.974, 1.026

red
2c = . However, the best-fit model was only

able to achieve e1.677 32c = for the r-band image, or
6.46

red
2c = . An increase in 2c of just 10.6 produces a
LL 4.5D = - , so the range of acceptable 2c shrinks by a factor

of approximately
red
2c . Accordingly, the posterior parameter

PDFs shrink by a comparable margin, depending on the
linearity of the model. For a large number of degrees of
freedom, this behavior approaches that of a normal distribution.

Finally, we note that overfitting is strongly disfavored by the
2c statistic—a desirable feature for data with reliable errors, as

in images dominated by shot noise from a large number of

counts. For lower signal-to-noise ratio and/or where other
terms like read noise are important, Poisson statistics or the so-
called Cash (1979) statistic should be used.

Appendix E
Thick Disk Surface Brightness Profile Fits

As discussed in Section 4, the best-fit MagRite model has an
unusually large disk scale height of 1.67 kpc. We ran a number
of tests by modifying ProFit to fit a thick disk with a sech2

vertical profile using a similar integration scheme as described
in Section 3.2. We superpose 30 Sérsic disks above and below
the disk midplane by shifting the profile center along the minor
axis, weighting each disk by the total mass within each vertical
bin. This is not the most efficient integration method for a 3D
density profile and has limited accuracy for highly inclined
thick disks, but it is analogous to the MagRite method and ideal
for model comparisons.
The results of fitting thick disk profiles to G79635ʼs r-

band image are shown in Figure 11. First, fitting a thick
exponential disk (second row/column) significantly
improves the residuals over a thin exponential disk. The
improvement is seen largely in the two underdense regions
between the galaxy center and spiral arms (roughly NNE and
SSW from the galaxy center). However, the thin Sérsic disk
achieves similar improvements without significantly worsen-
ing the residuals anywhere else in the disk. Thus, it is clear
that a thick disk can compensate for deviations from a pure
exponential disk, but not necessarily as well as by simply
modifying the radial profile. Unfortunately, the best-fit
ProFit disk thicknesses are unrealistically large—4.83 kpc
for the exponential disk and 2.35 for the Sérsic disk.
Figure 12 shows the posterior distribution from the ProFit

r-band fits to mock data using the same input parameters.
The “Thick” model shows the same chains as in Figure 6,
where the mock data were generated with a more plausible
scale height z R0.1 1.67835d e d,= (equivalent to R0.1 d for an
exponential disk), and with the other best-fit parameters
taken from the best thin disk fit. A second fit was run on
mock data with clipped residuals added back in. Specifically,
after generating the PSF-convolved model image, we add

tanh abs 1.25 30cs c( ( )) , where σ is the per-pixel uncertainty.
The tanh scaling smoothly truncates residuals below 2s, so
the disk more closely follows a Sérsic profile. Because
overdensities like spiral arms and star-forming regions tend
to be more significant than underdensities, the residuals have
a small net positive flux of slightly under one percent of the
disk luminosity, which is reflected in a small positive bias in
disk luminosity in Figure 12 compared to the input
parameters. The size and Sérsic index are somewhat biased,
but the scale height and axis ratio are significantly over- and
underestimated, respectively, indicating that structured
residuals with a small net flux can severely bias poorly
constrained and/or degenerate parameters even when the
model is a reasonable approximation to the data.
The fact that the scale height and inclination are highly

degenerate is not surprising—if the disk’s vertical density
profile is the same as its radial profile, then the scale height
and inclination will be completely degenerate. Using a sech2

vertical density profile rather than exponential limits does not
prevent this degeneracy. MagRite achieves a tighter con-
straint on the inclination by fitting the velocity map. Of
course, the mass model also modifies the rotation curve, but

20 We ignore model parameters in the effective degrees of freedom, as the
number of model parameters in nonlinear models is poorly defined (Andrae
et al. 2010).
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the stellar mass is independently constrained by the flux
maps. Unfortunately, the kinematic constraints on the disk
scale height itself are weak. In principle, the disk dispersion
is related to the disk’s vertical structure, but this is (mostly)
independently parametrized in GalactICS by R0s , and SAMI’s

spectral resolution is not fine enough to measure typical disk
dispersions anyway. Thus, there are insufficient data to
guarantee an accurate best-fit scale height, and a strong prior
based on observations of edge-on disks should be used in
practice.

Figure 11. Comparison of r-band residuals for five G79635 model fits. The models include four ProFit models—thin exponential disk (“exp.thin”), thick exponential
disk (“exp.thick”), thin Sérsic disk (“ser.thin”), and thick Sérsic disk (“ser.thick”)—as well as the MagRite fit. Diagonal panels show the model residuals

data modelc s= ( ‐ ) on a common scale (from approximately 22 22c- < < ), where dark colors correspond to excess in the model and light colors to excess in the
data. Also listed are the log-likelihoods, assuming a 2c distribution; ;

red
2c and the disk inclination i and scale height in kpc z. Panels above the diagonal show the

differences between models on a common linear scale centered on zero; dark colors are where the model in a given row is brighter than the model in the given column.
Panels below the diagonal show the differences in the model residuals (χ) on arbitrary linear scales, again centered on zero and where dark colors represent a better fit
in the model in the given row than in the model in the given column. The range of changes in the per-pixel log-likelihood (assuming normally distributed errors) is
show in the top left, and the total change in the normal log-likelihood is listed at the bottom right. As expected, residuals improve with added model complexity, but
are slightly worse in MagRite (which also fits the kinematics and g-band image) than in the ProFit Sérsic thick disk fit; however, both ProFit thick disk models yield
excessively large scale heights.
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Appendix F
Summary of the GalactICS Method

We provide a brief description of the methods used by
GalactICS to generate DFs for composite galaxy models

containing any number of disk-like and spherical components
composed of stars, dark matter, and gas (Kuijken &
Dubinski 1995; Widrow & Dubinski 2005; Widrow

Figure 12. Triangle plot showing joint posterior parameter distributions (L L Llog 10 rº ( ), Re Rlog 10 kpceº ( ), n nlog 10 sº ( ), zs zlog 10 kpcdº ( ), and where
q is the disk axis ratio) for the ProFitr-band Sérsic disk fits to mock data, with and without including clipped residuals from the best-fit model. Panels are structured as
in Figure 6. The fit to the mock data with clipped residuals (“Thick+Resid.”) has smaller uncertainties and is also significantly biased, particularly for the scale height
and inclination. The magnitude bias is due to the small net positive flux of the residuals. For clarity, points in the upper-left quadrant are thinned by factors of 5 and 10
for the “Thick Mock” and “Thick+Resid.” samples, respectively.
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et al. 2008). We use the Binney & Tremaine (2008) convention
below for denoting the cylindrical radius as uppercase R and
spherical radius as lowercase r, as well as the physics/ISO
80000 convention of θ for the polar angle and ψ for the
azimuthal angle (in contrast with Section 3.2. We also use the
relative binding energy E º and relative potential Y º -F,
where v 22 = Y - and v is the velocity (such that v 22 is
the specific kinetic energy).

A galaxy model is defined parametrically by the mass
profiles for each collisionless component. Stellar bulges and
dark-matter halos are defined by spherical models described by
a radial profile rr ( ). For example, we use the 3D deprojected
Sérsic profile (Prugniel & Simien 1997) to describe the bulge,
which is given by

r
r

R
b r Rexp , 1b

e

p

n e
n

0
1 sr r= -

-⎛

⎝
⎜

⎞

⎠
⎟( ) [ ( ) ] ( )

where the parameters are the characteristic density 0r , the
projected half-mass radius Re, and the the Sérsic index ns. The
two parameters bn and p are structural quantities depending on
ns. They are well-approximated by the formulae

p n n1 0.6097 0.05563 2s s
2= - + ( )

b n n2 1 3 0.009876 3s s= - + ( )

for n0.6 10s< < and R R10 10e
2 3< <- (Terzić &

Graham 2005).
There are numerous options for halo profiles depending on

one’s theoretical bias, including profiles with constant density
cores or power-law cusps (Merritt et al. 2006). In this paper, we
use a double power-law model to describe the halo,

r
r

r

r

r
1 , 4h s

s s

r r= +
a a b- -⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟( ) ( )

where , 1, 3a b =( ) ( ) is the NFW profile and , 1, 4a b =( ) ( )

is the Hernquist (1990) profile; such double power-law models
are sometimes referred to as generalized NFW or Hernquist
profiles.

Disks are flat axisymmetric models and are approximated by
the density law

R z
M

R z
R R z z,

4
exp sech 5d

d

d d

d d2
2r

p
= -( ) ( ) ( ) ( )

(van der Kruit & Searle 1981). We emphasize that this is not
the exact disk density but rather a close approximation to the
final density law derived in the computation of the disk
distribution function defined below.

Finally, we force the density of each component to smoothly
approach zero by multiplying each profile by a truncation
function. We truncate density laws using a logistic function
defined by

T t e1 , 6t 1= + -( ) ( ) ( )

with

t
r r

r
, 7

t

td
=

-
( )

where rt is the truncation radius and rtd is the radial width of the
truncation interval. Equation (6) is a simple representation of a
smooth step function chosen for its computational efficiency
and continuous derivatives.

The method computes an axisymmetric DF for the system of
the form

f L f L f f, , , , , 8z z d z z b h     = + +( ) ( ) ( ) ( ) ( )

where  is the relative binding energy E º - , Lz is the z-
component of the angular momentum, and z is the z energy
defined below. The bulge and halo are functions of energy
alone and so are modeled as spherical isotropic systems. The
disk DF is defined as a function of three integrals of motion.
The first two are the usual energy and z-component of angular
momentum for axisymmetric systems but we introduce a third
approximate integral v 2z z z

2 = Y - , where zY is the vertical
potential defined as R z R z, , 0zY º Y - Y =( ) ( ), where Ψ is
the relative gravitational potential of the system Y = -F.
With these various definitions in hand, we can describe a

numerical procedure for computing the component DFs. First,
consider a purely spherical system composed of multiple
components—we will consider modifications when including a
thin disk component later. The construction of an isotropic DF
f ( ) from a potential-density pair can be accomplished using
Eddington’s formula (e.g., Binney & Tremaine 2008),

f
d d

d

d

d

1

8

1
. 9

2 0

2

2
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⎣
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⎝

⎞

⎠

⎤

⎦
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For a system of total density rr ( ), we can compute the total
potential using the integral expression

r G
r

dr r r dr r r4
1
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r

r0

2ò òp r rY = ¢ ¢ ¢ + ¢ ¢ ¢
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To use the Eddington formula, one needs to determine the
function r Y( ) and its derivatives up to second order. In general,
it is difficult to find an analytic solution so we use the following
numerical method. We first define a grid with n radial positions
equally spaced in logarithmic space defined by

u r rlog , 11i i 0= ( )

where r0 is a reference radius and ri is the grid point radius for
i n1 ..= . With this transformation, we can compute the
potential at the grid positions ui as

u Gr e du e u
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In practice, the infinite limits for the inner and outer integrals
can be replaced with the initial and final points of the
logarithmic grid u1 and un without loss of accuracy. The inner
integral is just the mass versus radius, and this becomes
insignificant if the innermost radius is sufficiently small. For
the outer integral, since the density drops to zero at a finite
radius defined by the truncation function, there is no need to
integrate beyond this point. Accurate and stable numerical
solutions are achievable with 200 grid spacings per dex,
making the new method much faster.
The integral in Eddington’s formula can be solved

numerically by creating a tabulated function of the density ρ
for each of the model functions versus the total Ψ on the
logarithmic radial grid. We use the interpolation modules in the
GNU science library (GSL) to create a splined function for
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r Y( ) and its first and second derivatives. We can then
numerically solve the integral in Eddington’s formula to
determine a DF for each spherical component independently.
The DF is also determined as a tabulated function by finding f
for each value of  = Y on the radial grid.

To incorporate the disk component in this scheme, we use
the ad hoc method introduced by Widrow & Dubinski (2005).
The disk density law of equation is spherically averaged to
create an additional spherical density component that is part of
the total potential. The individual DFs computed from the
scheme above then include a good approximation of the disk
potential in their derivation. We see below that when we
include the flattened disk, the spherical density profiles of the
bulge and halo that are consistent with their DF’s are modified
slightly from the ideal spherical case but remain close to the
original definition.

We now consider the construction of the disk DF. Kuijken &
Dubinski (1995, hereafter KD95) introduced this DF to
describe the disk:

f E L E
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where E E Ep z= - is the energy in planar motions, Lz is the z-
component of the angular momentum, Rc and Ec are the radius
and energy of the circular orbit with angular momentum Lz, and
Ω and κ are the circular orbital and radial frequencies derived
from the total potential. As shown in KD95, one can obtain the
density by integrating over velocities, and the resulting density
in the plane is Rdr ( ) with fractional errors O vR c

2 2s( ).
The disk density can be obtained by integrating the disk DF

over the velocities, and the result generates a midplane disk
density equal to Rdr ( ) plus fractional terms of O vR c

2 2s( ). By
construction, this disk DF works best for cool, thin disks where
the epicyclic approximation is valid for disk star orbits,
although warmer and thicker disks are still good equilibria in
practice (see Appendix B).

The goal is to find a set of “tilde” functions in the disk DF, r,
Rs , and zs~, that closely approximates the disk density in
Equation (5). To this end, we use the density law
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The constants C0 and C Clnsech1
2

0= ( ) are chosen so that the
run of the vertical density of the disk at a given radius R

approximates z zsech d
2( ). In practice, a good choice isC 30 = ,

corresponding to the equivalence of the vertical density at three
scale heights for the target density of Equation (5) and this disk
density.

At this point, we have built a DF for each component with
the density defined in terms of the total potential R z,Y( ). To
achieve self-consistency, one needs to solve for the total
potential,

R z G R, 4 , , . 15d z b h
2 p r r r Y = - Y Y + Y + Y( ) [ ( ) ( ) ( )] ( )

As in KD95, we use the iterative method of Prendergast &
Tomer (1970) to find a numerical solution. The method
proceeds by making an initial guess of the potential Ψ,
computing the densities on the right side of Equation (15), and
then re-solving for Ψ. This process is iterated until Ψ relaxes to
a solution. In practice, we use a multipole expansion of Ψ in
spherical coordinates r, cos q( ) with the radius defined on the
logarithmic grid. For an axisymmetric system, we can write the
potential on the logarithmic radial grid as the multipole
expansion
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where u r rlog 0= ( ) and the functions al(u) are given by

a u d P usin cos , 17l lò q q q r q=( ) ( ) ( ) ( )

(e.g., Binney & Tremaine 2008). We can replace the infinite
limits by the end points of the grid as before without losing
accuracy. We use convergence of the “tidal” radius of the total
density within some error tolerance to stop the iteration. The
tidal radius is just the finite radius where the total density drops
to zero for the model. The series is truncated for some l

sufficiently large to approximate the flattened potential.
We describe some modifications to this procedure that speed

up convergence and overall accuracy. The initial guess to the
total potential is the composite spherical potential derived in
the first stage. We first perform an iterative sequence to
monopole order until convergence. In a second phase, we
restart the iteration with this solution, gradually adding the
terms for higher-order expansions. Furthermore, the new
potential derived at each iteration is determined as a weighted
average of the newly determined potential and the previous
one. In general, convergence to a high order in l can be reached
in a few tens of iterations.
Following KD95, we also use an analytic “high harmonics”

disk potential to improve the accuracy of the multipole
expansion at a lower order in l. This analytic potential is

GM z
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where one notes that the radial parameter is the spherical
radius. One can use the identity
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to derive an analytic disk density
d
r† from dY

† . The last term
reproduces a zsech2( ) disk toO z R 2( ) while the other terms are
generally small for thin disks and tend to zero at the origin. In
the iterative method described above, we replace the disk
density with the residual d d d

dr r r= - † when determining the
total potential from the multipole expansion. The total final
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potential is computed as the sum of the multipole expansion
plus dY

† . In practice, this method allows an accurate
representation of the thin disk model for expansion orders of
l 10< , greatly speeding up the overall procedure.

The final step involves the finding “tilde” functions in the
disk DF that match the disk density in Equation (14). The first
function RR

2s ( ) can be set arbitrarily, but following KD95,
we use the observationally inspired profile R

2s =
R RexpR d,0

2s -( ), where the central radial velocity dispersion

R,0
2s is a free parameter for the disk. Normally, this parameter is

chosen so that the disk is stable, i.e., Toomre Q 1> across the
radial extent of the disk. The remaining functions—the
midplane density Rdr ( ) and the vertical velocity dispersion

z
2s —are iteratively adjusted for each radius on the grid such

that the midplane density and the density at z zd= are the same
as that in Equation (14). Finally, the tilde functions can be
represented numerically with splines, and thus the disk DF is
fully specified.

In summary, the final products of this moderately complex
procedure are fully specified potentials and densities for each
component defined by multipole expansions with modifications
for the thin disk to improve accuracy for lower-order l. Each
component also has a well-defined DF determined by
Eddington’s method for spherical components and the
constructed disk DF from Equation (13). The multipole
coefficients of the potential expansion are tabulated on the
logarithmic grid and represented as splined functions in the
code, allowing rapid evaluation of the potential and density at
any point. The spherical DFs as f ( ) and the tilde functions are
computed at the predefined grid coordinates. The code takes
tens of seconds on current hardware to tabulate these functions,
depending on the maximum multipole order, making it
practical to use for fitting galaxy observations.
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