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Summary. We compute the static response of the world ocean to  an external 
zonal gravitational potential. The computation includes the effects of the self- 
attraction of the ocean, and the yielding of the Earth caused both by the 
external potential and the change in ocean load. We compare the computed 
tide with measurements of the fortnightly and monthly ocean tides. The 
short-wavelength departures from equilibrium found by Wunsch are still 
present. An average of observations at Pacific islands shows that the fort- 
nightly tide departs significantly from equilibrium but the monthly may not. 
We have also calculated the effects of our computed tide on measurements 
of tidal gravity and tidal fluctuations in the length of day. bxisting tidal 
gravity data are too imprecise to enable us to determine whether or not the 
spatial average of the ocean tides departs from equilibrium. The length of 
day data suggest that the monthly tide is farther from equilibrium than the 
fortnightly. We have not been able to resolve the apparent discrepancy 
between the length of day and ocean tide data. 

1 Introduction 

The equilibrium theory of the tides supposes that the surface of the sea at all times coincides 
with a gravitational equipotential, so that the tides simply reflect the change in shape of the 
equipotential caused by the variations of the attraction of the Sun and Moon. This theory 
thus ignores the dynamics of the water movement. This is a valid approximation provided 
that the oceans, regarded as a mechanical system, have no free oscillations at periods com- 
parable to or less than those of the variations of the equipotential and have enough friction 
that the decay time is not much longer than these periods (Proudman 1960). Neither of 
these conditions holds at diurnal and semidiurnal periods; consequently any theory of these 
tides must include dynamical effects. It is these effects that make tidal theory so difficult. 
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172 D. C. Agnew and W. E. Farrell 

There are slow variations of the tidal potential, with periods of a week and more, which 
produce small long-period tides. Because of frictional effects the ocean must have an 
equilibrium response at sufficiently long periods. The aim of this paper is to provide a self- 
consistent calculation of this static equilibrium response. By a self-consistent calculation 
we mean one in which the shift in sea level caused by an external potential is computed with 
the inclusion of the static response of the Earth as well as the oceans. We thus allow for the 
effects of the external potential on the Earth and oceans, and also for the changes caused by 
the movement of the water mass and its loading of the Earth. 

This problem is not a new one, for equilibrium tidal theory originated with Newton and 
Daniel Bernoulli. The necessity of allowing for the yielding of the Earth was first pointed 
out by Thomson (1863). The first complete self-consistent treatment was worked out by 
Munk & McDonald (1960), and the first solutions using such a treatment were given by 
Merriam (1973) and Dahlen (1976). In all of these studies the applied potential and height 
of the tide were expressed in terms of spherical harmonics. Because of the irregular distribu- 
tion of land and water, the equations for the different order harmonics do not decouple. 
Dahlen (1976, Section 5 )  discusses how one can sensibly truncate the resulting infinite 
system of equations to get useful results. This method is particularly suited to finding the 
low-order coefficients of a spherical harmonic expansion of an equilibrium tide. Our purpose 
here is to produce a contour map of the self-consistent equilibrium tide to compare with 
observations, and for this purpose we shall employ a very different method of solution. 

2 Methods of computation 

Our solution of the problem of the self-consistent equilibrium tide makes use of the Green 
function discussed by Farrell (1973), and resembles closely that which Farrell & Clark 
(1976) used in computing sea-level changes caused by the melting of glaciers. 

As the tides are measured relative to the solid Earth, our computation must include both 
the change in the equipotential in some non-deformable frame and the vertical motion of 
the solid surface. We assume that the initial gravitational potential is @(0, G) .  If we now 
impose an additional potential V(0 ,  G ) ,  which is a spherical harmonic of order 2 ,  the new 
equilibrium potential will be 

@ + (1 + k,) v +  @' 

where k ,  is the Love number expressing the solid Earth response to V, and qj'(8, $) the 
additional potential arising from the redistribution of the oceans and their altered loading 
of the Earth. Because of these additional potentials, the surface on which @ is constant will 
no longer be an equipotential surface. The distance we must go to to be on an equipotential 
surface is then E ( 0 ,  9) .  where 

(see Farrell & Clark 1976); E describes the motion of the potential surface relative to the 
centre of the Earth. The displacement of the surface of the solid Earth is 

where d' is the contribution from loading and h2V that from the external potential. The 
change in sea level is then 
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where c is a constant introduced to ensure that sea level satisfies the conservation of mass. 
This requires that 

where the integral is taken over the oceans. 

area, 

Gt (A) = g-' 9' - d '. 
This is the Green function for changes in gravitational potential (see Farrell 1972 for a 
discussion of related Green functions). This function may be written as a sum of Legendre 
functions weighted by the appropriate combination of load Love numbers k;, hk: 

We define a function G, (A) such that at an angular distance A from a load of unit mass/ 

where ME is the mass, and a the radius, of the Earth (Farrell & Clark 1976). 
The equation for the change in sea level caused by an external potential V is then 

+ /lGI(A)pt(O', J / ' ) d G ' -  A 

where A is the angular distance between (0,  4 )  and ( O ' ,  $'), p the density of seawater 
( 1  030 kg m-3), and A the area of the oceans. 

We have solved equation (2.2) for t(O, J / )  by iteration using an input potential of the 
form 

which is appropriate for the long-period tides. (We use the spherical harmonic normaliza- 
tion of Munk & Cartwright 1966.) The result of each stage of the iteration was the sum of 
the first two terms on the right-hand side of (2.2), with a constant subtracted to make the 
result conserve mass. Starting with t = 0, in four iterations the result converges to the point 
that the rms difference between sea level on the third and fourth iteration is 0.5 per cent 

To show the effects of the irregular distribution of land, we have compared our solution 
with that expected for an ocean-covered earth. In this case a spherical harmonic treatment is 
most convenient; we use the addition theorem to rewrite (2.1) as 

of Vok.  

If we then take 

(2.4) 
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we see that (2.2) becomes 

D. C. Agnew and W.  E. Farrell 

t (e ,  $1 = ( 1  + k2 - w g - l  v0y20(e, J / )  

By the orthogonality of the spherical harmonics, all the coefficients t lk are zero except for 

where p E  is the mean density of the solid Earth. This is the result of Dahlen (1976, p. 385) .  
The expression (2.5) is worth a further look. If the term in square brackets is ignored we 

have the classical result for the alteration of the equilibrium tide by the yielding of the 
Earth. The bracketed term expresses the effects of ocean loading and the self attraction of 
the water. For a typical earth model 1 t kk - h ;  is about 1.7, and evaluation of (2 .5 )  shows 
that these effects thus increase the equilibrium tide height of a global tide over the classical 
result by about 25 per cent. It is clear that for smaller bodies of water, loading and self 
attraction will be less, and this augmentation smaller. In the limit of very small bodies of 
water, such as a fluid tiltmeter (Michelson & Gale 1919) the size of the tide-raising potential 
would be 1 t kz - h2 times V/g. 

Figure 1.  Contour map showing the departure of the self-consistent equilibrium tide from the 
equilibrium tide for an ocean-covered earth. The height of the ocean tide is given by the sum of the 
contoured value and 17.1 (3  cos2 0 - 1); some values of the latter are shown at the edge of the map. The 
applied potential is such that V/g = 20(3 cos' 0 - 1).  

In Fig. 1 we show the departure of the self-consistent equilibrium zonal tide from the 
global equilibrium tide whose value is given by ( 2 . 5 ) ,  and shown in the margins of the figure. 
The main features of this map are that the departure is itself predominantly dependent on 
latitude, indicating that the true tide is very nearly a spherical harmonic Yzo, but with a 
smaller coefficient than given by (2 .5) .  The predominantly positive value of the departure 
is a result of the conservation of mass requirement, which means that the true tide must look 
like a spherical harmonic minus a constant. The irregularities introduced by the uneven 
distribution of water (and hence water load) are also plainly visible. 
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3 Comparison with observed tides 

Having computed what the equilibrium tide should be, we may ask whether any of the 
observed long-period tides are in fact of this form. The largest long-period tides have periods 
of about a fortnight, a month, six months and a year. The last two are unobservable in sea- 
level records because of the presence of much larger movements caused by weather, so that 
our comparison can be carried out only for the first two tides. As we noted in the intro- 
duction, we may expect the tides to be equilibrium only if the ocean has no free oscillations 
at or below the frequency of forcing. Because of the rotation of the Earth, the ocean seems 
able to support a wide range of oscillations, which become more densely spaced in frequency 
at larger and longer periods (some examples, for various special cases, are illustrated in 
Longuet-Higgins 1966 and Wunsch 1967). In a system which has free modes at zero 
frequency, the response at low frequencies will depart from the equilibrium response unless 
the period of forcing is less than the decay time due to  friction (Proudman 1960). The effect 
of friction in keeping the low-frequency modes of the ocean from distorting the tidal 

Table I. Long-period ocean-tide admittances (relative to self-consistent equilibrium tide) 

Place 

Guam (13.5" N,  144.7" E) 

Eniwetok (11.5' N ,  162.3' E) 

Kwajalein (9.3" N ,  167.5' E) 

Wake Island (19.3" N, 166.6" E) 
Ocean Island (0.9" S, 169.6' E) 
Arorae Island (2.6" S, 176.8" E) 

Hull Island (4.5" S, 172.2" W) 

Canton Island (2.8"S, 171.7" W) 

Johnston Island (16.7" N, 169.5" W) 
Christmas Island (2.0' N ,  157.5" W) 

Honolulu (21.3" N, 157.8"W) 

Kahului (20.9" N,  156.5" W) 

Hilo (19.7" N ,  155.1"W) 

San Francisco (37.8" N ,  122.42" W) 

La Jolla (32.7" N,  117.1" W) 
Malin (55.4' N ,  7.4" W) 

Aberdeen (57.2" N, 2.1" W) 

Stornoway (58.2" N, 6.4" W) 

Lerwick (60.2" N,  1.2" W) 

Average of Pacific islands 
(weighted mean) 

Tide Amplitude 

0.65 t 0.11 
0.25 + 0.15 
0.66 + 0.08 
0.76 i 0.14 
0.72 t 0.10 
0.68 t 0.21 
0.54 t 0.11 
1.16 t 0.32 
1.20 ?: 0.28 
0.68 f 0.30 
0.57 + 0.21 
0.90 t 0.20 
0.77 t 0.12 
1.26 t 0.23 
0.62 t 0.45 
0.84 + 0.10 
1.48 + 0.29 
0.66 t 0.09 
1.05 t 0.26 
0.59 + 0.16 
0.59 + 0.09 
1.29 ? 0.47 
0.65 + 0.10 
0.95 t 0.58 
2.03 f 0.71 
1.92 t 2.24 
0.39 t 0.29 
1.40+ 0.31 
1.06 t 0.46 
1.11 t 0.13 
1.13? 0.42 
1.12 f 0.18 
1.24 + 0.28 
1.23 f 0.11 
1.06 t 0.32 
0.69 t 0.02 
0.90 + 0.05 

Phase (deg) Reference 

-6 + 14 
-2 t 41 
3 4 t  10 
- 9 t  15 

6 +  11 
l o t  22 
31 t 14 
18 + 21 

-1 t 18 
-16 i 32 

28 t 34 
6 2 t  18 
4 7 t  1 2  
24 t 15 
25 t 46 
1 8 +  10 

38 t 6 
13 t 20 
51 t 19 
4 9 +  13 

-34 f 27 
52 i 13 

- 2 +  16 

- 1 7 t 4 1  
-19 + 26 

36 r 59 
-88 t 46 

5 2 +  16 
-13 f 22 

29 t 6 
18 t 20 
2 2 +  9 

- 2 +  13 
6 f 5  
1 t 15 

26 t 2 
7 t 4  

Wunsch (1967) 

Wunsch (1967) 

Wunsch (1967) 

Wunsch (1967) 
Wunsch (1 967) 
Wunsch (1967) 

Wunsch (1 967) 

Wunsch (1967) 

Wunsch (1967) 
Wunsch (1967) 

Munk & Cartwright (1  966) 

Wunsch (1967) 
Wunsch (1967) 

Wunsch (1967) 

Wunsch (1967) 

Wunsch (1967) 
Cartwright (1968) 

Cartwright (1968) 

Cartwright (1968) 

Cartwright (1968) 
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176 D. C. Agnew and W .  E. Fame11 
response at long periods is unclear (Wunsch 1967, pp. 469-470). In any case, it is not 
known what decay time is to be expected from reasonable models of frictional dissipation in 
the ocean. Proudman (1960) estimated a decay time of about a month, which would allow 
the monthly and fortnightly tides to depart from equilibrium. 

Wunsch (1967) argued that these tides are in fact not equilibrium. Using tidal observa- 
tions from a number of Pacific islands, he found that there appeared to be short-wavelength 
fluctuations in the tidal admittances (which in general fell somewhat below 1 in amplitude), 
which he explained as the effect of Rossby wave dynamics. His admittances have very large 
error bars, but seem to differ significantly, though not substantially, from unity. These 
admittances were computed relative to the input potential. We have used our results to 
recompute them as admittances relative to the true equilibrium tide. The results are given in 
Table 1 (we have also included the admittances found by Munk & Cartwright 1966 for 
Honolulu and Cartwright 1968 for Scotland). Since the equilibrium zonal tide is in phase 
with the driving potential, the phases of the admittances do not change. 

With the exception of La Jolla, for which the movement of the node owing to mass 
conservation has a large effect, none of the admittances is much changed. The island 
admittances are moved closer to 1 but still differ from it,  and the short wavelength 
fluctuations from island to island are not significantly reduced. We also give the weighted 
averages of the island observations in Table 1. These indicate that the spatial average of the 
monthly tides does not differ significantly from equilibrium, but that the average of the 
fortnightly tides probably does. In view of the large errors in the admittances, we are re- 
luctant to draw any stronger conclusions. 

Another kind of observation which contains information about the ocean tides is 
measurements of Earth tides, which are partly influenced by ocean loading. Since these 
provide data on the ocean tide averaged over a considerable area, they would seem to be 
ideal for testing whether the spatial average of the long-period tides is approximately equi- 
librium. According to the results of Wunsch (1967) this should be the case, but this is hard 
to test using direct measurements of the tide because of short-wavelength variations in the 
admittances. 

The problem of removing environmental effects makes measurement of the long-period 
Earth tides very difficult. Only a few results have been published, all for the gravity tides. 
In Table 2 we compare these results with those predicted using our equilibrium ocean-tide 
model. The load tide is only one or two per cent of the total gravity tide except near the 
nodal latitudes. The existing measurements are not precise enough to allow us to say whether 
or not the true load tide is significantly different from that expected from an equilibrium 
ocean tide. 

Table 2. Fortnightly gravity tide admittances (including the effects of a self-consistent equilibrium 
ocean tide). 

Place Amplitude (6 )  Computed* Phase (deg) Reference 
observed observed+ 

Talgar (43.2' N ,  77.1" E) 1.169 f 0.076 1.1551 5.1 ? 4.0 Barsenkov (1972) 
Strasbourg (48.4" N, 7.4" E) 1.16 f 0.09 1.1352 1.0 f 4.0 Lecolazet tk 

South Pole (90.0" S) 1.1358 
Piiion Flat (33.6" N, 116.5" W) 1.0429 

For an oceanless earth 6 = 1.1554. 
t Computed phase is 0 in all cases. 

Steinmetz (1966) 
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4 Effect of ocean tides on changes in the length of day 
There is one geophysical observation which is significantly dependent on the global form of 
the long-period tides: the tidal changes in the length of day. At the moment the observations 
are too inaccurate to be of great oceanographic value. Their main interest lies in the fact that 
they seem to conflict with the ocean tide observations. 

That the long-period Earth tides create periodic fluctuations in the speed of rotation of 
the Earth was first noted in 1928 by Jeffreys, who thought the effect too small to measure 
(Jeffreys 1976, Section 7.02). The first computation to include the effect of the ocean tides 
is due to Pertzev & Ivanova (1975) who did not allow for ocean loading and self attraction 
in computing their equilibrium tide. We have computed the expected response for a self- 
consistent equilibrium tide. 

We first review the derivation of the tidal fluctuations of the Earth’s rate of rotation, 
which is most conveniently done using MacCullagh’s formula (Jeffreys 1976, Section 4.027). 
In a coordinate system chosen so that the Earth’s moment of inertia tensor is diagonal, this 
formula gives for the external potential (to order l / r3)  

We assume that changes in the inertia tensor of the Earth and oceans caused by tidal de- 
formations are such that we can write 
C11=A t C 1 1  C,,=A +c22 c 3 3 = c + c 3 3  

with the off-diagonal components remaining zero. Substituting these expressions into (4. I ) ,  
we find that the potential due to deformation is 

We have here made use of the fact that for tidal deformations of the Earth-ocean system 
Tre  is constant (Dahlen 1976, p. 391 ; Rochester & Smylie 1974) so that c l l  t c22 = - c ~ ~ .  

We may of course also expand the external potential caused by deformation in spherical 
harmonics. If the applied potential that causes the deformation is of the form (2.3), the 
external potential is 

We define K = K ~ , ,  and call this the zonal response coefficient of the Earth-ocean system. 
In reality the external potential will depend on the frequency of the applied potential, and 
the response coefficients will therefore be functions of frequency. Since we are using the 
static response, the coefficients (including K )  are simply numbers. The reason for singling 
K ~ ,  out of the expansion (4.3) is that it is relatively easily measurable. Comparing (4.2) and 
(4 3) we see that 

a3 
3G n 

c33 = - K - J v, 
and c33 is measurable through its influence on the speed of rotation of the Earth, which is 
given by (Munk & McDonald 1960, Chapter 6) 

R = o(1 + c33/c). 
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Here !2 is the instantaneous, and w the steady, angular velocity of the Earth. 
It has been conventional in the past to regard the coefficient K as being equivalent to the 

Love number k2, and to compare those estimates of it from length of day measurements 
with others derived from Earth tide measurements or seismic models. This is not correct. 
The use of Love numbers assumes spherical symmetry, in which case the infinite matrix in 
(4.3) above becomes diagonal, with the diagonal element K~ being the Love number ki. 
Though the solid Earth is nearly spherically symmetric, when the effects of the oceans are 
to be included this approximation is no longer adequate. The other geophysical parameter 
which appears to depend on k2,  the period of the Chandler wobble, is also substantially 
affected by the Oceans (Dahlen 1976) and by the core (Smith 1977). 

The effect of an equilibrium ocean tide is to make K greater than k2. If we expand the 
tide height as in (2.4), we see that the external potential from the ocean tide is 

D. C. Agnew and W. E. Farrell 

This expression includes the potential due to loading of the Earth. Adding this potential to 
that due to the deformation of the solid Earth caused by the external potential, we find that 

3P 
~ = k ~ + - ( l + k i ) t ~ ~  

5PE 

For an ocean-covered earth we may use (2.5) to  find K directly. For the Gutenberg-Bullen 
model (Farrell 1972) it turns out that in this case K = 0.3040 + 0.0663 = 0.3703. 

We have evaluated K for an equilibrium tide on a realistic earth by integrating over the 
computed ocean tide to get the coefficient cZ0. (As a check, we performed the computation 
of the self-consistent tide and integration to find K on an ocean-covered earth; the compu- 
tation gave K = k2 + 0.0666, only 0.5 per cent different from the result given above.) The 
result that we found for a realistic ocean-continent distribution was 

K = 03040 + 0.0381 = 0.3421. 

In a private communication, F. A. Dahlen has informed us that K may be found using the 
results in Dahlen (1976); he has used them to obtain K = 0.3010 + 0.0403 = 0.3413. The 
value of k2 is about 1 per cent smaller because a different earth model was used; the 
difference in the computed ocean correction arises from differences in the representation of 
the distribution of land. The value Of K is probably uncertain by about 1 per cent. 

Any departure of the observed K from this value must be due to a departure either of the 
long-period ocean tide from equilibrium or of the effective elastic parameters of the Earth 
at fortnightly and monthly periods from those at seismic periods. Dahlen (1976, 1977) and 
Smith (1977) have shown that elastic parameters inferred from seismic data and corrected 
for attenuative dispersion give a value for the Chandler wobble period that does not differ 
significantly from that observed. Drastic changes in the elastic properties at intermediate 
frequencies seem unlikely. We thus expect that determinations of the tidal change in the 
length of day are valuable primarily as a measure of the globally averaged behaviour of the 
long-period ocean tides. We note that K is about 10 per cent dependent on the ocean tides. 
It is therefore about an order of magnitude more sensitive than tidal gravity measurements 
to variations in the long-period ocean tides. 

Three recent determinations of K for the fortnightly and monthly tides are shown in 
Fig. 2.  (The phase of the response does not seem to have been measured.) The error bars 
are large, but even so the fortnightly tide results seem to show that it is somewhat less than 
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I M m  

.25 .30 .35 
K 

Figure 2. Measurements of the zonal response coefficient, K ,  made from length o f  day observations. The 
left-hand dashed line shows the value expected for an oceanless earth; the right-hand one, that expected 
for equilibrium ocean tides. The letters indicate the sources o f  the measurements, which are: G - Guinot 
(1974); P - Pil’nik (1974); D - Djurovic (1976). 

equilibrium, just as is suggested by the island observations summarized in Table 1 .  Un- 
fortunately this agreeable concordance is lost for the monthly tides. The length of day data 
suggest that the monthly ocean tide is either almost absent or nearly in quadrature to the 
driving potential, while the island data suggest that it is closer to being equilibrium than the 
fortnightly tide. (We may note that the island observations, being from equatorial latitudes, 
are particularly relevant to changes in the moment of inertia.) The source of this disagree- 
ment is unclear. One possible source could be the effects of the non-linear interaction tides 
Mz - N2 and Mz - Kz. Unfortunately the effects of the stronger M, - S, tide on length of 
day variations at the period of the MSf tide cannot be evaluated because the Mz tide aliases 
into this tide in astronomical observations (Munk & McDonald 1960, p. 70). Lambeck & 
Cazenave (1 974) have suggested that noise due to meteorological fluctuations in the length 
of day might bias estimates of K at monthly periods. Unless the meteorology is coherent 
with the tidal potential (which seems unlikely) it should be possible to remove its effects 
by proper statistical treatment. The response method of Munk & Cartwright (1966) would 
seem to be a promising way to analyse length of day data. Noise arising from observational 
errors should be less for future observations because of the use of better techniques such as 
very long baseline interferometry. Certainly there seems to be a discrepancy to resolve, and 
further study is warranted. 

5 Conclusions 

We have computed the self-consistent equilibrium ocean-tide response to an applied zonal 
potential, with the purpose of providing a reference against which observations of long- 
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period Earth and ocean tides might be checked. The ocean-tide observations, though not 
very precise, suggest that the monthly and fortnightly tides depart from equilibrium, though 
more over short wavelengths than on a spatially averaged basis. The available observations 
of long-period Earth tides are too imprecise to provide any evidence. 

We have also computed the effect of an equilibrium ocean tide on tidal changes in the 
length of day. Observations of these changes are in conflict with the available ocean-tide 
data, for the astronomical observations indicate that the monthly tide is farther from 
equilibrium than the fortnightly, which is the opposite of what the oceanographic data 
show. If this discrepancy can be cleared up, and the precision of the astronomical measure- 
ments improved, they would seem to offer the best measurements of whether the long- 
period ocean tides are, on a global basis, equilibrium. 

D. C. Agnew and W. E. Farrell 
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