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The self-consistent hybrid approafH. Wang, M. Thoss, and W. H. Miller, J. Chem. Phyd5
2979(2001), preceding papéiis applied to the spin-boson problem with Debye spectral density as

a model for electron-transfer reactions in a solvent exhibiting Debye dielectric relaxation. The
population dynamics of the donor and acceptor states in this system is studied for a broad range of
parameters, including the adiabatstow bath, nonadiabati¢fast bath, as well as the intermediate
regime. Based on illustrative examples we discuss the transition from damped coherent dynamics to
purely incoherent decay. Using the numerically exact results of the self-consistent hybrid approach
as a benchmark, several approximate theories that have been widely used to describe the dynamics
in the spin-boson model are tested: the noninteracting blip approximation, the Bloch—Redfield
theory, the Smoluchowski-equation treatment of the reaction coord{@atman equationsand

the classical path approatEhrenfest modg¢l The parameter range where the different methods are
applicable are discussed in some detail. 2@01 American Institute of Physics.

[DOI: 10.1063/1.1385562

I. INTRODUCTION level “system” plus the “bath,” using a basis-set method in
a multiconfiguration time-dependent Hartre®CTDH)

Dissipative processes are a common phenomenon in thgontext®>~3’ In this way, numerically exact results for the
dynamics of complex systems in physics and chemisTitye  spin-boson model can be obtained via a standard type of
spin-boson model, a two-level system interacting linearlyvariational calculation, which has been proven to be as effi-
with a harmonic bath, is one of the best studied examplesient as the path integral method for the spin-boson model.
describing dissipative dynamics.1t has been applied to a Furthermore, in contrast to the path-integral influence-
variety of different problems in physics and chemistry, e.g.functional approach, this method is by construction not lim-
hydrogen tunneling in condensed mé'fiar the description ited to a harmonic bath or linear coupling between the sys-
of macroscopic quantum coherefand many others dis- tem and the bath.
cussed in Ref. 1. In chemical physics it provides a model for  Most of the approximate methods that have been applied
electron transfer reactions in solution, protein complexes, ofo study the dynamics of the spin-boson model are based on
other condensed phase environménts. some kind of perturbation theory. They differ primarily in the

There have been extensive studies on the dynamics &pecific part of the spin-boson Hamiltonian that is treated
the spin-boson modéf®~**While many of these are based perturbatively. Examples of these methods include the
on approximations that restrict the applicability to certainnoninteracting-blip approximatiéf (NIBA) and different

parameter regimes, there exist a few numerically exacVariants of Redfield theory or master-equation
treatment¥*4~1#2*hased on the Feynman path-integral ap-approache&’ 12203027

proach. These methods take advantage of the fact that for the Besides these perturbation-theory methods, several
spin-boson model the bath is harmonic and can be integrateghixed guantum-classical” approaches have been applied to
out analytically, giving the Feynman—Vernon influencethe spin-boson modéf;*1*3¥most notably the classical-
functional®>* For situations where the memory effects im- path approac=*¢ (or Ehrenfest modgl(which is closely
plicit in the influence functional are only important on a related to the linearized semiclassical initial value
short time scale(i.e., the bath correlation decays fast representation/classical Wigner metfte) and the surface-
enough, efficient path integral calculations can be carriedhopping method’=>3In these methods the electror{ivo-
out. Otherwise, further approximations/improvements neegevel) system is treated quantum mechanically whereas the
to be adopted®** dynamics of the bath degrees of freed@oF) is described

A quite different approach, which was proposed recentlyby classical mechanics. They differ in the way how the quan-
by one of us? is to solve the time-dependent Sctinger  tum and the classical subsystems are coupled. Treating all
equation for all the degrees of freeddoF), i.e., the two-  bath DoF classically, these methods usually provide good
results for a slow batlii.e., the characteristic frequency of

dpresent address: Theoretische Chemie, Technische Univevkitechen, the bathw, is smaller than the e'_ECtroniC couplidg 5_‘r_‘d/0r_
D-85747 Garching, Germany. high temperatured.<kgT). If neither of these conditions is
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fulfilled these methods fail, for example, they cannot de-results are obtained when all the degrees of freedom are in-
scribe the relaxation dynamics correctly. This failure is re-cluded in the core. In practice, however, converged results
lated to the fact that a part of the baftypically the high are often obtained well before such a rigorous level of
frequency modeswhich would require a quantum mechani- theory>* Thus, this approach is, in principle, a numerically
cal treatment, is treated classicaify’*3° exact method and can “automatically” tune the portion of

Golosov, Friesner, and Pechukas have recently proposdtie overall system that is treated at a more approximate level
a method which circumvents this problem by expressing th@f theory. Different from the approach of Goloseval,, this
overall bath spectral density as a sum of two spectral densimethod is not based on the influence-functional approach
ties. Overlapping with each other, one spectral density has @and, therefore, can be applied to a nonlinear bath as well. As
low characteristic frequency, whereas another has a highavas demonstrated in paper |, it is, furthermore, not restricted
one. The latter was combined with the electronic two-statdo a low-dimensionale.g., two or three levgklectronic sys-
system to form a composite “quantum subsystem,” and thdem.
former is classified as “classical subsysteri. Approximate In paper | we have introduced the method and demon-
theories that are appropriate in these two physical limits arétrated the performance for a spin-boson system with Ohmic
then combined to treat the overall system, namely, thepectral density as well as for the decay of electronic reso-
memory equation approadapproximation to the path inte- nances in presence of a vibrational bath. In the present paper
gral method for the “quantum subsystem” and classical me- we will apply this method to a spin-boson model with Debye
chanics for the “classical subsystem.” spectral density as a model for electron transfer reactions in a

In a preceding papéﬁ,henceforth referred to as paper |, Debye solvent. The purpose of this study is twofold: First,
we have proposed a self-consistent hybrid approach to acct€ new method allows us to study this model in a rather
rately simulate quantum dynamics for complex systems. Th@road parameter ranggarying the coupling strength, the
first step of the method is similar in spirit to that of Golosov characteristic frequency of the bath , and the temperature
et al®* and many other hybrid approaches, i.e., the overalll)- Second, using the hybrid approach results as a bench-
system is divided into a “core” and a “reservoir.” The dy- mark, we will test several approximate methods which have
namics of the core is treated by a h|gh level quantum mebeen eXtenSively used for this model in the recent years: the
chanical method, whereas that of the reservoir is treated at®Pninteracting-blip approximation, Bloch—Redfield theory,
more approximate |eve| of theory_ AsS has been discussed |We master-equation/smoluchOWSki'eqUation treatment of the
detail in paper I, the particular choice of the method for core’eaction coordinate, as well as the classical-path method.
and reservoir depends on the physics of the problem under
consideration. For applications to the spin-boson model af- SUMMARY OF THEORY
finite temperatures in this paper, we mainly use classical mea Hamiltonian and observables of interest
chanics(with the correct initial phase space distributido
describe the reservoir. Accordingly, the core comprises the
two electronic states and in most cases the high frequency H=Hg+Hgg+Hpg (2.2
modes of the bath, and the reservoir contains the remainin . .
bath modes. The core is treated using the MCTDH metho§escrlbes an electronic two-level system,
(which allows one to treat a rather large system quantum e A
mechanically®®9. The coupling between the classical and S:(A .
guantum degrees of freedom is accomplished as in the clas-
sical path method, i.e., the classical trajectories enter the dyzharacterized by the energy biasind the coupling\ of the
namics of the quantum system via a parametric dependené\é’o. electronic states, interacting with a bath of harmonic
of the Hamiltonian, and the wave function of the quantumoscillators,
part affects the classical trajectories through the average 1
force. Hg=2 o pf+wix?), (2.3

The major difference between our method and other pre- )
viously applied hybrid approachgcluding the classical through a bilinear coupling,
path methodlis that we cast the core—reservoir separation,
an often intuitive but otherwise rather arbitrary choice, intoa  Hgg= UZE CiXj . (2.9
self-consistent convergence procedure. Not only the elec- !
tronic degree of freedom is treated quantum mechanicallyere, o, and o, are the Pauli matrices,; andp; denote the
but also the “quantum” part of the bath. Furthermore, thecoordinate and momentum of thj¢h bath mode with fre-
part of the bath which is included in the core is increasedquencywj, respectively.(We use mass scaled coordinates
systematically until convergence is reached. Therefore, vergnd units withz =1 throughout the papern the context of
similar to a usual variational calculation, this hybrid ap- electron-transfer theory the two electronic states correspond
proach adopts an iterative procedure to achieve the final cone the donor and acceptor state, respectively.
vergence: besides variational parameters that appear in a The bath is characterized by its spectral density,
regular basis set MCTDH calculatignumber of basis func- - &2
tions, number of configurations, ecthe core—reservoir par- Hw)= E ;1 S w)). 2.5

J

The spin-boson Hamiltonian,

)=60'Z+Acrx, (2.2

tition is also varied. By definition, true quantum mechanical 2 4
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In the present paper we consider a bath with spectral densityred modes, the overall system is partitioned into a “core”
in the so-called Debye forfh?6:57-5° and a “reservoir.” The former is treated via a high level

guantum mechanical method and the latter is treated via a
——. (2.6) more approximate method. For the applications in this paper
wet we have used the MCTDH methd®’ for the core(which

This spectral density is lined®hmic) for small frequencies allows us to treat a rather large system quantum mechani-
but has a Lorentzian cutofflt is sometimes also referred to cally) and classical mechanics for the reservoir. Accordingly,
as an Ohmic spectral density with Drude cufoffit de- the core comprises the two electronic states as well as vibra-
scribes a solvent exhibiting Debye dielectric relaxation. Thelional modes with frequencies> wq. The reservoir com-
two parameters which characterize the spectral density, thrises the remaining low frequency modes<{wg). As de-

characteristic bath frequenay, and the coupling strengtlh, ~ Scribed in detail in paper I, a sensible initial guessdgrcan
are related to other physical quantitieswl# 7, is the lon- e obtained using a thermal criterion. Test calculations are

gitudinal relaxation time of the solvent aril=27 is the  then carried out and the number of modes included in the

reorganization energy in electron-transfer theory. As was discore (as well as other variational parameteis increased
cussed in Ref. 26, the Debye spectral density spans a mudystematically until convergenc¢asually to within 10% rela-
broader frequency range than the usual Ohmic Ca@ ( tive erI’OI) is reached. If all the bath modes were treated
= (7/2) awe™“/“c) and thus represents a greater challengeslassically(i.e., the core comprised only the electronic two-
to numerical simulations. state systemthis method would be equivalent to the classi-
To Study the dynamics of the Spin_boson model we W|||Ca.| path(EhrenfeSl method. But because the calculation is

primarily focus on the population difference of the two elec-converged with respect to the number of bath modes in-
tronic states, cluded in the quantum propagation, the results are numeri-

cally exact.

7] W @

J(w)=

P(t)=Pa(t) = P(1)

= (o)) =tr{pg|1)(1]e" o,e” 1. CN /e Approximate methods
In Eq. (2.7) we have assumed a factorized initial state: the
electronic system is initially in sta{d) (the donor staeand
the bath is in thermal equilibrium described by the Boltz-
mann operator,

A variety of different approximate methods have been
applied to the spin-boson model. Most of these methods are
either based on a perturbative treatment of a part of the
Hamiltonian or use classical concepts to treat the dynamics
e~ AHs=Yo% X)) M yes o of the bath. It is one intention of this paper to test some of
PB=Z—B, Zg=trg(e B~ Y02i%%1)). these more approximate methods with the results of our
(2.  simulation. For this purpose, we have chosen four methods

This initial diti ds. f | h which have been used extensively in the recent years: the
IS initial condition corresponds, for example, to a p Oto'noninteracting-blip approximation(NIBA), the Bloch—

induced electron-transfer process, where photoexcitatio&edﬁeld equation(BRE) approach, the master-equation/
takes Prls ce dfrom a Iolwer-lylng electr(;)mc stgte tohthe donorSmoluchowski-equation treatment of the reaction coordinate,
state. The dimensionless parameygrdetermines the aver- o, e classical-path method. To facilitate the discussion of

age position of the |n|t|allstaFe, which for a _phqtomducedthe results and to keep the paper self-contained we will give
electron-transfer process is given by the equilibrium geoms, ief review of these methods in this subsection.

etry of the lower-lying electronic state from which photoex-

citation takes plac&”* A value of yo=—1, for example, Noninteracting-blip approximation

corresponds to an initial state where the nuclear degrees of

freedom are in equilibrium at the donor state. A valueygf The NIBA was originally derived by Leggett and co-
=0, on the other hand, describes a nonequilibrium initiaworkers —using the path-integral influence-functional
state centered aroung=0. method? Later, Aslagulet al. have shown that it can also be

We will also present some results for electron-transfeobtained using standard reduced density matrix perturbation
rates, which can be obtained froR(t) if the population theory? Thereby, the(bath-dressadelectronic coupling is
dynamics exhibits exponential decay. In particular, we willthe part of the Hamiltonian which is treated within perturba-
compare results obtained from numerically exact and aption theory. Within the NIBA the population difference be-
proximate dynamical approaches with results obtained froniween the two electronic states is given by the solution of the
commonly used rate formulas such as, for example, théhtegro-differential equation,

Golden Rule rate. d t
aP(t)=—deT(KJr('[,T)P(T)-i—K,(t,T)). (2.9
B. Numerically exact self-consistent hybrid approach

i ) Here, the two kernels are defined by
The hybrid method we have used to simulate the dynam-

ics of the spin-boson system was in detail described in paper K (t,7)=(24)%cogQ"(t—7))cog 2e(t— 1)

. Briefly, after a discretization of the bath, whi¢tlepending " " —Q'(t-1)

on the specific parameters under consideration and the time- +H(1+y(QU)=Q(7)]e '

scale of interestusually requires between 50 and a few hun- (2.109
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K_(t,7)=(2A)2 sin(Q"(t— 7))sin 2e(t— 7)

)= ———=si 2JA%+ €t M"(t 2.13
+(1+yo)(Q"()—Q"(7))]e =7, o vA " ) (248
(2.10pn eA
with r,(t= AZ—+€2(1—cos(2JKT.sft))lvl"(t), (2.13h
QIN=Q (N +iQ"(7) T (1) = cog 2(AZ+ €M (1), (2.139
= ij dw@[cotdﬁw/Z)(l—cos{wr)) A%+ €% cog2 A%+ €%t)
™ ® Ty ()= ATT 2 M'(1), (2.139
+isinw7)]. (2.1)
As was discussed above, the_ paramygemontg_ins the infor- Tyy(H)=—Ty(t)=— € sin(2VAZ+ e2)M ()
mation on the average position of the initial state of the JAZ+ 2
bath?®?2 Analytical investigations? as well as comparisons (2.130

with results from path-integral calculations’-3%° (for

Ohmic spectral densitiehave shown that, in general, NIBA
is a rather good approximation for nonadiabatic electron M (t)=M"(t)+iM"(t)
transfer(i.e., weak electronic coupling/w.<1), in particu- 4
lar for systems without electronic biag=0). It is also -~ oo

known that NIBA breaks down in biased systenas-Q) for B ;j dod(w)lcoth fwl2)cod wr) i sin(wT)].

low temperature and weak coupling to the bath, for example, (2.14
predicting a qualitatively incorrect asymptotic state in this '
parameter regime. While these limits of validity of NIBA The non-Markovian master equatidB@.12) is supposed to
have been investigated by several workers for an Ohmigive good results if the system—bath coupling is weak, i.e., if
spectral density, in this paper we will systematically studythe dimensionless coupling parameter 2 7/ w . is small.

the quality of the NIBA for a bath with Debye spectral den- A simpler, Markovian master equation with time-
sity. dependent rates can be obtained by relating the expectation
values(oyy,(t—s)) to their values at time, thereby ne-
glecting the coupling to bath. In this way one obtains the
following set of equation$®®

with

2. Bloch —Redfield equation

While NIBA treats thglbath-dresseckelectronic coupling ﬂ _

perturbatively, a quite different approximation is obtained by  dt {o1))=2A(0y(V), (2.153
treating the system—bath coupling within perturbation theory. q

In the simplest caskl gg is treated perturbatively resulting in “ _ T T

a master equation for the reduced density matrix of the elec- dt (ox(1))= = 2&(0y(1)) = T' (1) = T()(0(1))

tronic two-level system:>®1=3|f only perturbation theory ~

(but no Markovian approximatioris used, the correspond- —I(O(oy(1)), (2.15b
ing equations read

d ~
a<ay(t)>: 26<0'x(t)> - 2A<Uz(t)>_ry(t)

d
a<gz(t)>:2A<0—y(t)>a (2.123
. : ~Tyy()(oy () ~Tyt)(oy(t),  (2.150
gilox)=—2¢(a,(1)) - Jods I'x(s) with the time-dependent rates,
_ t
- J;ds[rxx<s><ax<t—s>>+ny<s><oy<t—s>>], (0= Jodsfx“% (2.163
2.12 ~
; (2120 ry(t)zftdsry(s), (2.16h
t 0
a<ay(t)>:26<0x(t)>_2A<Uz(t)>_f dSFy(S)
0 ~ ~ t €2+ A%2cog2A%+ €2 s)
t Fyy(t)=Fxx(t)=fod AZ+ €2 (s),
- fodS[Fyy(SXO'y(t—S))+FyX(S)<O'x(t—S)>]. (2.160
(2.120 ~ ——s
The kernels for these integro-differential equations are D)= A2+ st(l Cog2VAT+ €'s)M(s),
given by (2.160
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T —A ‘dssi ’ «%J(w)
LyAt)= — Odssm(2\/A2+:szs)M (s). Jw)= . - 2 ,
o] S -
(2.16¢ w’— 02— —J ds— 2 2( )2 +[3(w)]?
0 —
For times long compared to the decay time of the bath cor- & S(0"=57) 2.21

relation function(i.e., w.t>1) the rateg2.16) approach their ) ) _ _
stationary value and then equatiof®15 are equivalent to where the integral in the denominator is to be understood as
the Bloch or Redfield equation. We will therefore refer to @ Principal value integral. _
Egs. (2.12 and (2.15 as non-Markovian and Markovian To describe a spin-boson model with Debye spectral
Bloch—Redfield equationBRE), respectively. density one cannot directly use the relatid@sl9 to obtain

the frequency and coupling strength of the reaction coordi-

nate, because the first moment of the spectral density
) ) ) Jdw wJ(w) (and also all higher momentis divergent. Nev-

3. Master-equat/on /$moluchowsk/-equat/on treatment ertheless, the mapping of the the spin-boson model with De-

of the reaction coordinate bye spectral density to a reaction coordinate model is pos-

An improved approximation can be obtained by includ-sible as a limiting case of a more general spectral density. To

ing one (or several reaction modes) into the system and illustrate this mapping, let us consider a reaction coordinate
treating the coupling to the rest of the bathe “secondary”  Hamiltonian with Ohmic spectral density,

bath perturbatively’1227:64=68hjs method can be derived

using the reaction-coordinate representation of the spin- J(®)= Y©€ o, (222
boson Hamiltoniahwhich is given by with exponential cutoff parametér and coupling strengthy.
~ Inserting this spectral density into E@.21) one obtains for
H=Hs+Hsrt Hr+HrptHa, (217 3 cutoff frequency which is large compared to the reaction
with coordinate frequency) (i.e., A/Q>1) the corresponding
spin-boson spectral density,
Hr=3(p;+Q%?), (2.183 ,
K yw
Hgr= kYo, (2.18b J(w)= (02— 022+ (yw)?
' 1 ~2  ~2|~ an 2} K2 w
HretHe 2%“ Pa @a| Xa™ 72 (2189 = WO (0T 2wl %

Here,y denotes the reaction coordinate with correspondingrhe second line in Eq2.23 shows that in the limit of an
momentump, and frequency(), and « is the coupling overdamped reaction coordinaties., 2 <y/2) this spectral
strength between the reaction coordinate and the electronigensity gives the Debye spectral density,

system. These quantities are related to the spin-boson Hamil-

tonian by the following identities: Jw)= nwcw (2.24
wit w? ’
Ky=$ CiX;j , (2193 Thereby, w, is the decay rate of the overdamped reaction

coordinate, i.e.w.=Q? vy, and the overall coupling strength
7 is given by n=k?/Q?. Therefore, the spin-boson Hamil-
K= E Cjzy (2.19B  tonian with Debye spectral density corresponds to a reaction
coordinate Hamiltonian with Ohmic spectral density where
-1 the bath-cutoff frequency\ and the coupling strength are
) (2190  |arge compared to the frequen€y
Defining the reduced density matrix for the electronic
In Eq. (2.18), the coordinates and momenta of the secondargystem and the reaction coordinate,
bath, as well as their coupling constants and frequencies, are . -
denoted with a tilde. The original representation of the spin- p(H)=trg{e " 1)pg(1le™}, (2.29
boson Hamiltonian, i.e., Eq$2.1)—(2.4), can be obtained where tg denotes the trace over the secondary bath, and
from the reaction coordinate representation by a normalising perturbation theory with respect to the coupling be-

0?%= K2( Z Cjzlez
]

mode transformation oflg+Hgg+Hg . tween the reaction coordinate and the secondary bagg)(
Defining the spectral density for the coupling of the re-as well as the Markov approximation, one can show that the
action coordinate to the secondary bath as dynamics ofp(t) is described by the master equatidn,
~ N _ d . Y
J(w)=§z m—&(w—wa), (2.20 ap(t):_I[HS+HSR+HRaP(t)]_E[yv[yap(t)]]
the formal relation to the spin-boson spectral density is given i
by g b 9 — 57y dpy (D)) (226
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Here,{,} denotes the anticommutator. This master equationlation dynamics in the spin-boson model along the three pa-
which was originally derived by Garet al.” based on a simi- rameter axis. Finally, in the third part, we will present some
lar treatment of Caldeira and Leggéttjs valid for high  results for electron transfer rates.
temperature, i.e 3JQ?— y?/4<1 in the underdamped case
(Q>y/2), and BO% y<1 in the overdamped case{)(
<+vl2), respectively. A. Comparison with approximate methods

As we have discussed above, the Debye spectral density
corresponds to an overdamped reaction coordingte(Q).
In this limit it is possible(and advantageou#o eliminate the
fast momentum of the reaction coordinate adiabatically.
This leads to the generalized Smoluchowski equat®8b),

Depending on the ratio between electronic coupling and
characteristic frequency of the bati w., electron transfer
reactions are commonly classified as adiabatic or nonadia-
batic. In adiabatic reactionsA(w.>1), the characteristic
timescale of the bath is slow compared to the electronic tun-

d nw, d B d neling time. This case is realized, for example, in several
ot Ma(E) = B E{;(EJF 7+ oE N mixed-valence compound$-7® In nonadiabatic reactions
(A/we<1), on the other hand, the characteristic time scale
+iA(N— N2y, (22738 of the bath is fast compared to the electronic tunneling dy-
] namics. This case is typical for systems with a large separa-
inzz(E,t)= 79 9 E(E_ )+ 9 Nyo tion between donor and acceptor, i.e. long-distance electron
at B JE|7n JE transfer’’
—iA(N,—Nyy), (2.27H
) 1. Adiabatic (slow bath) regime
d nwe d | B d .
St MAE D= B oE ;E‘F SE| M2~ 2i(e+E)ng, Let us first focus on the adiabatic regime. In the limit of
- a very large adiabaticity paramet®fw. the nuclear degrees
+iA(ny1—Nyy). (2.279 of freedom are quasistatic on the time scale of the electronic

motion and the electronic population dynamics can be de-
scribed by solving the Schdinger equation for the bare
electronic two-state system and averaging the result over the
initial configuration of the nuclear degrees of freedt®’®
Therefore, in this limit the nuclear degrees of freedom effect
the electronic dynamics only as a static disorder of the en-
ergy levels of the two electronic states. Here, we will con-

Here, the generalized coordindggwhich represents the po-
larization energ}) is defined by E=«y. The functions
ni;(E,t) describe a probability distribution with respect to
the coordinateE and a density matrix with respect to the
electronic states. Accordingly, the population of the two elec
tronic states is given by

centrate on the more interesting regime of moderate adiaba-
Pi(t):f dE n; (E,1). (228 ticity with A/w.=4. Figure 1 depicts the results for a
reasonably high temperaturgg4=0.5). The three panels

The GSE(2.27) was introduced by Zusméiit is, therefore, jllustrate the transition from a coherent, weakly-damped os-

sometimes also referred to as the Zusman equediod later  cillation of the electronic population for small coupling
derived by Garget al.” as well as several other authtfrs [7/A=0.05, panel(a), corresponding tow=0.127 to an
using different methods. Cao and co-workers have analyzefcoherent decay in the strong coupling regifgA = 10,

its spectral structure recenfiy.Very recently, it was gener- panel(c), corresponding tar=12.733. It should be noted
alized to study_electron-transfer reactions in strong timethat the coherent oscillations in pané and (b) represent
dependent field§’ In the present paper we will systemati- an electronic coherence effect. As we have discussed above,

cally study the parameter range of its applicability. the Debye spectral density corresponds to an overdamped
reaction coordinate and, hence, cannot describe vibrational
coherence.

IIl. RESULTS AND DISCUSSION For all three cases, the GSE results are in very good

agreement with the numerically exact results of the self-
In this section we show results of simulations using theconsistent hybrid method. The NIBA result, on the other
hybrid method for a broad range of the parameters of théand, has a phase-shift for weak couplifmnel (a)] and
spin-boson model. If the electronic couplidgis used as the cannot even qualitatively describe the population dynamics
unit of energy, the spin-boson model has four independenin the medium to strong coupling regime. This is not too
dimensionless parameters: the electronic energydidgghe  astonishing, because the derivation of the NIBA involves
(inverse temperatureBA, the coupling strength to the bath perturbation theory with respect t/ w. which is not a valid
7l/A, and the characteristic frequency of the batfYyA. In  approximation in the parameter regime considered here.
the first part of this section we compare results obtained with Somewhat surprising at first sight is the failure of the
the numerically exact hybrid method to results of the NIBA, BRE in the weak-coupling regime. Both the Markovian and
the GSE, the BRE, as well as the classical path approach. Foaon-Markovian BRE drastically underestimate the decay rate
this purpose, we consider the adiabatic, nonadiabatic and irof the oscillations. The reason for this result can be under-
termediate parameter regimes separately. In the second patbod from the perturbative approximation of the Bloch—
we discuss the coherent to incoherent transition of the popuRedfield theory. The first order rate which describes the de-
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small first order ratd". Therefore, although the parameters
considered in panegla) are in the perturbative regime, one
has to include higher order terms, i.e., multiphonon relax-
ation processes, to obtain a realistic description of the popu-
lation decay?®

For the parameter regimes displayed in Fig. 1, i.e., a
reasonably high temperature and a small characteristic fre-
quency of the bath, it is generally believed that the bath can
be treated classically. This is found from our self-consistent
hybrid approach for not too strong electron—phonon cou-
plings, Figs. 1a) and 1b). In these cases converged results
are obtained if only the two electronic states are included in
the core, i.e., the self-consistent hybrid method automatically
“tunes” itself to the classical Ehrenfest model of the spin-
boson problem?® Things become different for stronger
electron—phonon coupling, Fig.(d, where 25% of the
modes(starting from the high-frequency end of the spectral
density need to be included in the core and treated via the
MCTDH method. The impact of treating these modes quan-
tum mechanically is that the electronic population decays
more slowlythan that obtained from the classical Ehrenfest
approachwhere all modes are treated classicglsomewhat
counter-intuitive compared with the usual simple interpreta-
tion of *“tunneling” contributions from the “quantum
modes.” This suggests that quantum interference effects exist
between the two electronic states and some of the high-
frequency modes, which are captured well by the GSE as
interactions between the two electronic states and the “reac-
tion coordinate.” All other approximate theories examined in
this paper fail to some extent in describing this effect.

Figure 2 shows the results obtained for an order of mag-
nitude lower temperature. Due to the lower temperature the
decay of the coherent oscillations for moderate coupling
[panel(a)] is slower[compared to Fig. (b)] and even the
result for strong couplingpanel(b)] shows remnants of co-
herence. For strong coupling it is also seen B reaches
a plateau after a certain time. This behavior signals the onset
of localization, which is known to occur in the adiabatic
regime forE, /A>1 in the zero temperaturg(-) limit.*
Because in the particular case considered here the tempera-
ture is small but finite, the plateau is only temporary and

FIG. 1. Dynamics of the population difference of the two electronic statesP (t) will eventually decay to zero.

P(t) in the adiabatic regimeA/w.=4) for BA=0.5: (a) n/A=0.05; (b)
n/A=0.5; (c) n/A=10. Shown are the results of the hybrid approach simu-
lation (full line), NIBA (dashed ling GSE (dashed—dotted ling and in
panel(a) Markovian(thin full line) and non-Markoviarithin dashed—dotted

line) BRE.

As to be expected from the discussion above, NIBA and
BRE again fail to describe the dynamics. But in contrast to
the high temperature case depicted in Fig. 1, also the GSE
gives results which deviate significantly from the numeri-
cally exact results. In particular, the GSE cannot describe the
damping of the oscillations correctly. This finding is related

cay of the oscillation in the BRE is determined by the onet0 the fact that the derivation of the GSE.27) involves a

phonon exchange rate. In the unbiased caseQ) this rate

is given by

I'=lim T (t)=2J(2A)coth BA),

t—oo

high temperature approximation8{p.<1) which is not
valid here. In the moderate coupling cdganel (a)], this
shortcoming of the Smoluchowski approach can be circum-
vented to some extent by using full Redfield theory. In the
strong coupling limitfpanel(b)], however, it is presumably

and is proportional to the spectral density at the Rabi frenot possible to describe the dynamics with a perturbative
quency(24A) of the two-level system. In the case consideredmethod.

here, the Rabi frequency is much larger than the characteris-
tic frequency of the bath (2/w.=8), resulting in a rather

In the above cases, the self-consistent hybrid approach
requires that 10% and 25% of the high-frequency modes be
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FIG. 2. Electronic population differenc®(t) in the adiabatic regime
(A/we=4) for BA=5: (a) n/A=0.5; (b) »/A=5. Shown are results of the
hybrid approach simulatioffull line), NIBA (dashed ling GSE (dashed—

dotted ling, and in panela) Markovian (thin full line) and non-Markovian

(thin dashed—dotted lineBRE.

FIG. 3. Electronic population difference(t) in the nonadiabatic regime
(A/w=0.2) for BA=0.5: (8) /A=0.5; (b) »/A=10. Shown are results
of the hybrid approach simulatioffull line), NIBA (dashed ling GSE
(dashed—dotted lineand in panela) Markovian BRE(thin full line).

included in the core and treated via MCTDH, for Figsa)2 NIBA is seen to be in excellent agreement with the re-
and 2b), respectively. It is often expected that for the lower syits of the self-consistent hybrid methf2D% and 50% of
temperature case of Fig. 2, motdigh-frequency bath  a|| bath modes are treated as quantum core modes for the
modes need to be treated quantum mechanically. Howevegonverged results of panel and(b), respectivelyover the
somewhat to our surprise we found that the classicalyhole range of coupling strengths. The GSE, the BRE as
Ehrenfest approach provides an excellent approximation fofe|l as the classical Ehrenfest modebt shown can also
weak electron—phonon coupling, Figal much better than  reproduce the weak-coupling resfpanel(a)] very well. For
any of the other approximate methods examined in this pathe BRE this is to be expected due to the small coupling
per. For the stronger coupling case of Figh)2on the other  strength. For the GSE this finding is somewhat surprising,
hand, the classical Ehrenfest approach is no longer a goggecause the assumption that the temperature is high com-
approximation. This finding, combined with the higher tem-pared to the characteristic frequency of the hagh which is
perature results shown in Fig. 1, demonstrates that the clagsually invoked in the derivation of the GSEs not fulfilled
sical Ehrenfest model is likely to work for adiabatic param-phere (Bw.=2.5). For the same reason one would have ex-
eter regimes only when the electron—phonon coupling is nopected a worse result from the classical Ehrenfest approach.
too large. The rationale of this is that if the electron—phonon coupling
is sufficiently weak, most approximate theories are likely to
work. If the coupling strengthy is increased, the GSE and
We next consider the opposite regime, i.e. nonadiabaticlassical Ehrenfest approaches eventually break down. The
electron transfer witl\/w.=0.2. Figure 3 displays the re- result in Fig. 3b), for example, demonstrates that for strong
sults of the different methods for a temperatgue=0.5. [It coupling the GSE significantly underestimates the long-time
should be noted, that although this temperature is larger thatslecay rate oP(t).
the electronic coupling it is smaller than the characteristic Figure 4 displays the results for a temperature that is two
frequency of the bathBw.=2.5).] As for the adiabatic case, orders of magnitude lower. Due to the low temperature, the
a coherent to incoherent transition is observed when the cowtamping rate of the oscillations is rather small. In this regime
pling strength to the bath is increased frapA =0.5[panel  NIBA, as well as BRE, reproduce the simulation results
(@), corresponding tee=0.0637 to »/A=10[panel(b), cor-  quantitatively. The GSE, on the other hand, cannot describe
responding tax=1.273,. the dynamics at all in this regime. Since the temperature is

2. Nonadiabatic (fast bath) regime
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FIG. 4. Electronic population difference(t) in the nonadiabatic regime — Simulation
(A/we=0.2) for BA=50 and »/A=0.5. Shown are results of the hybrid

approach simulatiorgfull line), NIBA (dashed ling GSE (dashed—dotted
line), and Markovian BREthin full line).

P()
o
[&)]

very low here, most of the bath modes exhibit strong quan- ‘ SN
tum mechanical character. As described in paper I, we there- |
fore use a different strategy in the self-consistent hybrid ap-
proach: thelow-frequency modes are put into the core and
treated via the MCTDH method, and thegh-frequency
modes are put into the reservoir and treated via perturbation 0 ) 4
theory. For Fig. 4, convergence is achieved when 40% of the (b) 1A/
total bath modes are included in the core. Of course, thle:IG 5 Electroni ation differencB () in the infermediat .

H H H . O. roni 1on airreren n Intermedi regim
mixed quantum-classical strategy for the self-consistent hy o 1):‘92: a)c; AC:DSOOD,uy;laAO: 0_5;‘(1)6 5 A(:)l, " Ai 5 ghofmzree reegultz
brid approach still works, but is less efficient because moss e hybrid approach simulatioffull line), NIBA (dashed ling GSE

bath modes need to be included in the core. (dashed—dotted lineand in paneka) Markovian (thin full line) and non-
Markovian (thin dashed—dotted lineBRE.

3. Intermediate regime

Finally, we consider the intermediate regime wWiXhw, 4. Systems with electronic energy bias ~ (€#0)
=1. In this regime neitheA/w; nor w:/A can be treated as So far we have only considered systems without elec-
a small parameter and, therefore, NIBA as well as the clastronic energy bias, i.eg=0, corresponding to symmetrical
sical path method are not expected to work well, and that iglectron-transfer reactions. In this subsection we will show
indeed what we have found. On the other hand, our numerisome results for systems with an electronic bias. For this
cal studies show that if the temperature is sufficiently highpurpose we have chosen a valuebh =1. Generally speak-
and the coupling to the bath is not too strong, the GSE givetg, most of the approximate methods become worse with
good results. For example, we found good agreement of thiclusion of this energy biacompared with the correspond-
GSE results with those of the hybrid approach fgk=<0.5 ing unbiased casgs&nd more caution must be taken in jus-
and »/A=<10. In the low temperature regime, on the othertifying the physical regimes to which they apply.
hand, GSE is bound to fail. If the coupling to the bath is Figure 6 displays the results in the adiabatic, high-
weak, BRE gives rather good results. Such a case is shown temperature regime for a moderate coupling strength. The
Fig. 5@). But if the coupling to the bath is moderate or main difference from the corresponding unbiased da$e
strong, we found that none of the tested approximate methFig. 1(b)] is that the long-time limit of the population differ-
ods can describe the dynamics reasonably well. Figlse 5 ence of the two electronic states is no longer zero. As to be
displays the results of the different methods in this parameteexpected, NIBA and BRE give qualitatively incorrect results
regime. It is seen that after a short period of fast decay th@ this parameter regime. Different from the unbiased case,
system exhibits a transition to a much smaller decay ratehowever, the GSE also shows some deviations from the
NIBA cannot describe this transition at all. The simulation results, in particular its long-time limit is lower.
Smoluchowski equation, although capable of describing thé&urther numerical simulations in the adiabatic regime for
bimodal decay qualitatively, overestimates the stabilizationparameters corresponding to the unbiased cases depicted in
It should also be noted that in both cases, the convergeHigs. 1 and 2 have revealed that these three approximate
self-consistent hybrid calculation requires that more thammethods produce results that are in poorer agreement with
50% of the bath modes be included in the core and treatethe simulation(compared with the unbiased cages
accurately, whereas the classical Ehrenfest approach pro- We next turn to the nonadiabatic regime. Figure 7 shows
vides quite poor results. the results for small coupling and high temperature. As in the

Downloaded 17 May 2005 to 169.229.129.16. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



3000 J. Chem. Phys., Vol. 115, No. 7, 15 August 2001 Thoss, Wang, and Miller

1 , .
0.9 —— Simulation
—— Simulation —-=- GSE
/S NIBA
05 | ,"-I —— BRE
! --—-- NM-BRE
0.4 } 2
— h
= = N
o E_’ 0 |'\ .
il
-0.1 R
05 YUAA 4
i i A .
-‘f I‘.‘\i'"l.l y, \ 4 X
NN IRVAYY
-0.6 0 p . 5 5 ] 1 IHEEH NIV VA VAN
0 0 2 4 6 8 10

tA/m

FIG. 6. Dynamics of the population difference of the two electronic states
P(t) in the adiabatic regimeX/w.=4) for BA=0.5 with electronic energy
bias e/A=1 and couplingz/A=0.5. Shown are the results of the hybrid
approach simulatiorgfull line), NIBA (dashed ling GSE (dashed—dotted
line), and Markovian(thin full line) BRE. €

P(t—>w)=—mtanhﬂvﬁﬁ+ €), 3.3

FIG. 8. Same as Fig. 7 but for lower temperatgue=50.

corresponding unbiased cas#. Fig. 3a)], all approximate where ﬁgg denotes the “path-dressed” electronic

methods we have tested reproduce the dynamics qualitativespl“'p“ng’ corresponding toP,=—0.7288. This latter

correctly. However, only BRE is able to describe the correct ?Itl;e IS N Ira?her gzoti agree:\n/lenli W!th tgeRllzor]rgr;tmche Ilkrmts
long-time limit; all other methods predict too low a value. orthe simulation and the non-harkovian - | ne vlarkov-

Figure 8 shows the results for a temperature two order-éan BRE gives a slighty smaller value, demonsirating that

of magnitude lower. As to be expected, GSE is not a Validalthough w. is already rather large there are still notable

approximation in this very low temperature regime. In fact, itnon-Mar_kowan effects. . .
does not even preserve positivity any more. Furthermore The inclusion of the electronic energy bias seems to have
NIBA is seen to deviatdafter a short timgand give an a major impact on the performance of the classical Ehrenfest
incorrect long-time limit. This failure of NIBA for systems approach.. Similar to the above fmdmgg of NIB.A and GSE,
with electronic energy bias in the low-temperature weak-the classical Ehrenfest approach predicts an incorrect long
coupling regime is well-knowrisee, for example Réf.)l time limit of the electronic population for nearly all the pa-
NIBA predicts the long-time limit ’ ’ rameter regimegexcept in the high temperature limf’

' Thus, in order to describe nonsymmetric electron-transfer

Pnia(t—)=—tank Be), (3.2

process with a hybrid approach, one needs to treat part of the
which corresponds in the present case to a valu® g,

bath quantum mechanically.

=0.9999, whereas the physically correct valirethe weak . N
coupling limit) is B. Coherent to incoherent transition

As was already mentioned briefly, the dynamics of the

electronic population in the spin-boson model exhibits a

1 : transition from damped coherent oscillations to purely inco-

" Smulation herent decay? In the context of electron-transfer theory the
——- GSE study of this coherent to incoherent transition is of particular
------ NIBA interest because it is closely related to the questions of oc-
0.5 1 L E,:{AE_BRE currence, observability and quenching of quantum coherence
effects in electron-transfer reactions which have been inves-
A tigated recently in a variety of systems both experimentally
o} ) and theoretically®?"%881-8As will be discussed in more
= detail in Sec. Ill C, information on the coherent to incoherent
TN transition is also important for a proper definition of
~05 [t electron-transfer rates.

tA/n

Within the spin-boson model there are two sources of
coherence: vibrational coherence, reflecting the coherent
wave-packet dynamics of the reaction mode, and electronic

FIG. 7. Dynamics of the population difference of the two electronic statescoherence, reflecting the Rabi-oscillations of the bare two-
P(t) in the nonadiabatic regimeA{w.=0.2) for BA=0.5 with electronic  |eve| system. The model for a Debye solvent considered here
energy biase/A=1 and couplingnp/A=0.5. Shown are the results of the ; ;

hybrid approach simulatioffull line), NIBA (dashed ling GSE (dashed— COI’fESpOI’IdS to an ov_erda_mpe_d reaction coordlnat_e and,
dotted ling, and Markovian (thin full line), and non-Markovian(thin t_herefore,_ does not exhibit V'_brat'onal Cohe_rence. In this sec-
dashed—dotted lineBRE. tion we will study the quenching of electronic coherence as a
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function of all three parameters of the unbiased spin-boson 1
model. A similar study was recently carried out by Wang
et al. using an approximate semiclassical methbHere we
base our discussion on the results of the numerically exact
hybrid method.

05}

1. Along the n-axis

This is the most obvious axis for observing the coherent
to incoherent transition. The parametgis a measure of the
coupling strength to the batfrecall that the corresponding
dimensionless coupling strength is given by-27/7w.). -1
Therefore, asy increases the energy exchange between the
electronic two-level system and the bath becomes more effi- 1
cient, and as a result the coherent motion of the two-level T pas

system is damped faster. This transition can be seen both in \ — E%:S}j
the adiabatic and nonadiabatic regime in Fig. 1 and Fig. 3, 05 F AN\ ‘
respectively. Whereas for a rather small valuezof =0.5 N

[Fig. 1(b) and Fig. 3a)] P(t) exhibits damped coherent os- — A
cillations, all coherent features are quenched by the bath for & [
strong couplingn/A =10 [Fig. 1(c) and Fig. 3b)]. The pre-

cise value ofp/A at which the transition occurs of course —05 |
depends on the characteristic frequency of the bath and the
temperature. For the adiabatic case depicted in Fig. 1, the
transition occurs aty/A~5, and for the nonadiabatic case -1

0 2 4

shown in Fig. 2 aty/A=2.
928 (b) tn
2. Along the T-axis FIG. 9. Coherent to incoherent transition along theuxis: (a) Alw.=4,

) . o n/A=0.5; (b) A/w.=0.2, p/lA=2.
For fixed coupling strengthy and characteristic fre-

guency of the batlw., the coherent to incoherent transition

can be observed as the temperatiirés increased. This is

because for increasing temperature more bath states become

energetically accessible and participate in the energy transfgrarameter regime for different values ef./A. For very

which tends to destroy the coherent motion of the two-levesmall w. the bath is too slow to cause effective energy ex-

system. The coherent to incoherent transition along thehange and therefor@(t) exhibits pronounced coherent os-

T-axis is of particular interest from an experimental point of cillations. Asw, increases, the bath becomes faster and thus

view because, in contrast tp and w., the temperature can the energy exchange between the two-level system and the

be controlled more easily. bath becomes more efficient. Already at a rather small value
This low to high temperature coherent to incoherentof w./A=0.25, the dynamics of the electronic population is

transition is illustrated in Fig. 9. Pan@) showsP(t) inthe  dominated by incoherent decay.

adiabatic, moderate-coupling regime for different tempera-

tures. It is seen that in this regime a rather high temperature

(BA~0.05) is necessary to obtain a purely incoherent decay.

In the nonadiabatic regime illustrated in paiel, the tran-

sition occurs already at lower temperatu@A(=0.5). ' ——yeryes

-—== 0 /A=0.25
—-= 0/A=5

3. Along the w-axis

While in many solid-state physics applications of the
spin-boson model the nonadiabatit/w.<1) regime is pri- = \
marily of interest, in chemical physics, and in particular in g 057 Y
the context of electron-transfer reactions, both the adiabatic N
and intermediate regime have many applications. Therefore, N
it is interesting to study the coherent to incoherent transition N T
along thew.-axis. The physics behind this transition is that N
the bath has to be sufficiently fast in order to facilitate an 0
incoherent decay of the electronic population. 0 2

To observe the coherent to incoherent transition along Az
the w¢-axis one has to choose a rather strong coupling ang. 10. coherent to incoherent transition along theaxis for SA=0.5
not too low a temperature. Figure 10 sho®ét) in this  and7/A=5.

h
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C. Electron transfer rates t )
| . K;\IIBA(t) —2A2 Ref dre2ier—Q(7)
In this subsection we present some results for electron- 0

transfer rates. In particular, we will compare results obtained . " "

from numerically exact or approximate dynamical ap- xexpi(1+yo)(Q"(H) - Q" (t=m)}. (3.9
proaches with commonly used rate expressions. Stationarphis so-called nonequilibrium golden rule rate was derived
electron-transfer rates are only well defined if the populatiorby Coalson and co-workers some years®dgsee also Ref.
of the donor(or acceptor state(possibly after a short period 91). The standard golden rule rat@.8) is obtained from Eq.
of nonexponential dynamigexhibits an exponential decay. (3.9) if the long-time limit is taken and the nuclear degrees
As illustrated by the results in the previous section, electronoef freedom are initially in equilibrium at the donor stdie.,
transfer dynamics is in general more complicated than &,=—1). In the high-temperaturlassical limit the inte-
simple exponential decay. But for sufficiently high tempera-gration in Eq.(3.8) can be carried out and one obtains the
ture and/or strong coupling to the bath the electronic popuclassical golden rule expressith’?

lation dynamics shows exponential relaxation toward the

equilibrium state. In this case the electronic population dy- | CLGR_ 52, /77_'89—;;[(5,—25)2/45] (3.10
namics can be described by the simple kinetic equations, f E, ' '
: _ In the opposite(adiabati¢ limit, the electron-transfer
Pi(t)=— kP (1) + kP 4 R . .
1V «iPa(U)+ koPa(L), (3.43 rate is primarily determined by the dynamics of the nuclear
PL(t) = — kpPo(t) + KP4 (1), (3.4b) degrees of freedom on the lower adiabatic potential energy

surface and can be well described by transition state theory.
wherex; and k, denote the forward and backward electron-In this case the rate becomes independent on the electronic
transfer rates, respectively, which are related by the principleoupling and reads°(in the high-temperature limit

of detailed balance, BE
TsT_%c  [PEr _BI(E,-26)24E,]
kp=€ 2Pi;. (3.5 Ki 4 T © Cee (311
The corresponding kinetic equation for the difference in elecSeveral approaches have been used to obtain a simple rate
tronic population reads expression which can tune between the adiabatic and nondia-
. batic regime. In the classical limit Zusm&mnd later Garg
P(t)= — (k= kp) — (k¢ + kp) P(1). (3.6) et al’ utilizing different methods, have derived the following

. . . . . _formula:
In this section we will focus on systems without electronic

bias (e=0). In this case the forward and backward rate are A2 T
. ZUS_ B —BI(E,—2€)%4E,]
the same and the electron-transfer rate can be obtained as the K __1+g E € ' . (3.12
r

long-time limit of a time-dependent decay rate in the follow-
ing way: Here, g denotes the so-called “adiabaticity parametey”

= 47A%/E,w.. In the adiabatic 1) or nondiabatic g
k= lim x4(t), (3.78  <1) regime the Zusman rate approaches the expressions
e (3.10 and (3.11), respectively. From the point of view of
1 P(1) reaction rate theory, the quantum/classical Golden Rule for-
7 (3.7H mulas (3.8), (3.10 as well as Eq.(3.11), correspond to
2 P(t) quantum/classical transition state theory which is a very
If the definition of a rate is meaningful, the time—dependentgOOd approximation for “direct” reactions. The Zusman rate,

decay ratec;(t) will reach a plateau after a certain time. In on ,the other hand, can to some extent account for “recross-
contrast to the use of the approximate rate expressions did9
cussed below, the monitoring af;(t) therefore allows one

to explicitly verify whether a rate constant description is

meaningful for the particular case under consideration. : .
J P regime®~% In particular, Stockburger and Mak have

A commonly used approximation for the electron- 98 . . . .
transfer rate in the nonadiabatic regime is the so-called quarf—how. that the adiabaticity parametgrin .general 'S alsq a
tum Golden Rule rafef5-8° unction of the temperature and can deviate from the simple

form (3.12.
QGR__ o A 2 * L dler—Q(n) We first consider the moderately adiabatic regime with
kf =24 Refo dre , (38 AJw,=4. As was discussed above, electron-transfer rates are
only well-defined for sufficiently high temperature and/or
with Q(7) defined in Eq(2.11). This quantum Golden Rule strong coupling. Figure 1 demonstrates, for example, that for
rate is closely related to the kernel of the NIBA integro- a temperature ofBA=0.5 the definition of an electron-
differential equatior{2.9). If the typical time scale oP(t) is  transfer rate is only meaningful for coupling strengike 2.
slow compared to the decay time of the kerrt€ls,K _, the  Figure 11 shows the time dependent réBe7b) [extracted
NIBA equation (2.9) can be approximated by the kinetic from a GSE calculation, which in this parameter regime is a
equation(3.6) with time-dependent rates;(t), x,(t), €.9., rather good approximatiofef. Fig. 1)] for two different cou-

ki(t)=—

" dynamics.

More recently, methods based on imaginary time formu-
lations as well as real time path integral approaches have
been applied to derive rate expressions in the crossover
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FIG. 11. Time-dependent electron transfer rate in the adiabatic regim&IG. 13. Time-dependent electron transfer rate in the nonadiabatic regime
(A/wc,=4) obtained from the GSE fg8A=0.5: »/A=5 (full line); n/A (A/w:.=0.2) obtained from NIBA forBA=0.5: »/A=5 (full line); n/A
=10 (dashed ling =10 (dashed ling

pling strengths. It is seen that after a period of transient=10 this is a poor approximation in the present case. The
nonexponential dynamigshe details of which depend on the Zusman rate is overall in good agreement with the GSE and
initial state the time dependent rate reaches a plateau whicH€ Simulation results. For stronger coupling the Zusman rate
corresponds to the electron-transfer rfteshould be noted shows a significant deV|at!on from the GSE rate. Since the
that for smaller coupling (2 7<5) this rate describes only ZusSman rate can be derived as an approximation to the
the slow long-time decay of the population of the donorSmallest real eigenvalue of the G&ee, for example, Ref.
state] Figure 12 displays electron-transfer rates obtained): thiS deviation signals a breakdown of the Zusman rate
from the GSE, quantum and classical Golden Rule rates, £L€Scription and the seemingly better agreement with the rate
well as the Zusman rate as a function of the coupling™®m the simulation can only be fortuitous. S
strength. Also shown are some results obtained with the hy- Finally, we consider an example in the nonadiabatic re-
brid approach. The GSE and the simulation results are i§iMe With wc/A=S5. In this case the study of the population
rather good agreement for small to moderate couplingynamics(cf. Fig. 2 shows that NIBA is an excellent ap-
strength. For very strong coupling the GSE tends to underRroximation and, th_erefore, rates obtained from NIBA will
estimate the electron-transfer rate. As to be expected, th&€ Used for comparison. At a temperaturesdf =0.5 a cou-
Golden Rule formulas cannot describe the electron-transfe?!ing strength of approximately/A >3 is necessary to have
rate in this regime. In fadfor not too strong couplingthese ~ & meaningful electron-transfer_ rate. Figure 13 displays the
rates are closer to the maximum of the time-dependent raféMe dependent rate for two different coupling strengths. In
(3.7b (cf. Fig. 11, confirming the transition-state theory na- contrast to the a_dlabatlc case, here the _chargctenshc time
ture of these formulas. Because of the strong recrossing dy:cal€ Of the bath is faster than the electrdfimneling time
namics(the difference between the maximum and the platea@d: therefore, the stationary rate plateau is reached much
value of the rate is about an order of magnitude fgn faster and there is very little recrossing dynamics. Figure 14
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FIG. 12. Electron transfer rate in the adiabatic regiméd.=4) for BA FIG. 14. Electron transfer rate in the nonadiabatic regihéw(=0.2) for
=0.5 as a function of the coupling strength to the bath. Shown are result8A=0.5 as a function of the coupling strength to the bath. Shown are
from the hybrid approach simulatididiamond$, GSE (full line), quantum results from the hybrid approach simulati¢diamondg, NIBA (full line),
Golden Rule(dashed ling classical Golden Rul&dotted ling, Zusman rate  quantum Golden Rulédashed ling classical Golden Rulédotted ling,
(dashed-dotted line Zusman ratg¢dashed—dotted line
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compares rates obtained from NIBA with quantum/classicathe quantum interference effects between the electronic
Golden Rule rates as well as Zusman rates. It is seen thatates and the “reaction coordinate,” which is included to
(except for small couplingthere is excellent agreement be- some extent in the GSE but missing from the classical
tween the NIBA result and the quantum Golden Rule rateEhrenfest model. A better approximation would be to use the
Because of the rather low temperature, however, the classicahme strategy as in the GSE, i.e., to form a composite quan-
Golden Rule, as well as the Zusman rate, are about a factdtum subsystem by including the two electronic states as well

of 2 too small. as the reaction coordinate, and treat the remaining bath
modes classically. Such a strategy will also likely improve
IV. CONCLUSION the efficiency of our self-consistent hybrid approach: one ex-

pects the most important quantum effects to be captured by
II‘he interaction of electronic states with the reaction coordi-
ate, and thus may require putting a smaller percentage of

In this work we have applied the self-consistent hybrid
approach proposed in paper | to a spin-boson model wit
Debye spectral density which describes electron-transfer prdl .
cesses in a Debye solvent. With the hybrid approach it Wagther modes into the qyantum core.
possible to study this system in essentially all the parameter The. overall comparisons also show that tht_are are at least
regimes in a numerically exact and reasonably efficient mant-W0 regimes where none of the tested approximate methods

ner. In particular, we have studied the characteristics of thd'Ve I_rellable_ resultj:tr:he méermte?'at?%b‘"t?)' stroyg-
population dynamics in the adiabatic, nonadiabatic, and incoupPIing régime an e moderately adiabatic {0,

termediate regime, as well as the coherent to incoherent tratﬁl)' low-temperature, strong-coupling regime. This is an

sition along the three different parameter axes important parameter range, for example, for electron-transfer
Furthermore, using the results of the hybrid approach gleactions n m|xed—valence. compounds_. . .

a benchmark, we have tested several approximate methods The spm—bosqn model investigated n t.h's paper includes

which have been widely used to describe the dynamics of '[h8nIy two electronic energy levels, describing the donor and

spin-boson model. The results of these tests can be summacceptor state, respectively. To model long-distance electron-

rized as follows: If the temperature is not too low, NIBA is transfer reactions in bridged systerssich as, for example,

found to give good results in the nonadiabatit/ ¢.<1), eDIIE\EI(Xron translfert n _ph?ut)synthet;cb retacktlon_ (E[enters ort |tn
unbiased é=0) regime for a broad range of electron— ) more electronic states must be taken into account to

phonon coupling. As the temperature is lowered, NIBA maydles?'be_ the dynamics ctorre_c tly. As tlhg appllctatlton t'?h thﬁ

deviate from the simulation results to some extent for larg (_a; ronic reio_nancltla Sy.f Zn: mtpgp?{] e;nons r? es’bl € ny-

electron—phonon coupling strengths, but can still provid rid approach 1s wetl suited to study these types of problems.
| In the present study of a solvent exhibiting Debye elec-

qualitative answers. However, as for the spin-boson model . i . . .
with Ohmic spectral densitywith exponential cutoft™? it tronic relaxation the reaction coordinate is overdamped and,

yields qualitatively incorrect results for systems with a siz-therefore, all coherent features in the dynamics are of elec-

able electronic energy bias. Also, our results show that NIBAtror?IC origin. In syste.ms with an underdamped reaction co-
cannot be used in the intermediatd~ w.) and adiabatic ord_ln_ate(or combinations Of_ different reactlon_mod_esle- .
(A>w.) regimes(except for very weak coupling to the §cr|b|ng, for - example, high frquency : V'bfa“ons N
bath. This latter conclusion also applies to the Markovian'mrammecu'ar electron-transfergleagts:tlons, vibrational coher-
and non-Markovian BRE. ThiRE) approach is in general ence may a!so be of 'mpo”‘f"!"%- . part_|cular mt_ere_st

a good approximation in the nonadiabatic, weak-coupling relS the question of observability and quenching of this vibra-
gime. Different from NIBA, however, it is :;1Iso applicable to tional coherent motion if the system is interacting with its

systems with an electronic energy biand weak electron— 2[22;:’;;2?2:1(;;'3 :giezzse(: ifr?ﬁ;rximrﬂlciggﬁggi?of;i‘g:?;
phonon coupling In cases wher@./A is not too large we P Y P

have found that the non-Markovian variant of BRE is some-WOrk in this direction is in progress.

what better than the Markovian BRE, although the difference
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