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Abstract

Message passing using theMessage Passing Interface(MPI) is at present the most widely adopted

framework for programming parallel applications for distributed-memory and clustered parallel systems.

For reasons of (universal) implementability, the MPI standard does not state any specific performance

guarantees, but users expect MPI implementations to deliver good and consistent performance in the

sense of efficient utilization of the underlying parallel (communication) system. For performance porta-

bility reasons, users also naturally desire communicationoptimizations performed on one parallel

platform with one MPI implementation to be preserved when switching to another MPI implementation

on another platform.

We address the problem of ensuring performance consistencyand portability by formulating per-

formance guidelines and conditions that are desirable for good MPI implementations to fulfill. Instead

of prescribing a specific performance model (which may be realistic on some systems, under some MPI

protocol and algorithm assumptions, etc.), we formulate these guidelines by relating the performance

of various aspects of the semantically strongly interrelated MPI standard to each other. Common-sense

expectations, for instance, suggest that no MPI function should perform worse than a combination of

other MPI functions that implement the same functionality,that no specialized function should perform

worse than a more general function that can implement the same functionality, that no function with

weak semantic guarantees should perform worse than a similar function with stronger semantics, and so

on. Such guidelines may enable implementers to provide higher quality MPI implementations, minimize

performance surprises, and eliminate the need for users to make special, non-portable optimizations by

hand.

We introduce and semi-formalize the concept ofself-consistent performance guidelinesfor MPI,

and provide a (non-exhaustive) set of such guidelines in a form that could be automatically verified by

benchmarks and experiment-management tools. We present experimental results that show cases where

guidelines are not satisfied in common MPI implementations,thereby indicating room for improvement

in today’s MPI implementations.
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I. INTRODUCTION

In the past decade, MPI (Message Passing Interface) [11], [31], [22] has emerged as thede

facto standard for parallel application programming in the message-passing paradigm. Despite

upcoming new languages, notably of thePartitioned Global Address Space(PGAS) family like

UPC [6], Titanium [41], X10 [30] and others, and frameworks like Google’s MapReduce [5],

MPI is likely to retain this position for its intended application domain (tightly coupled appli-

cations with non-trivial communication requirements and patterns on systems with substantial

communication capabilities) for the foreseeable future.

MPI deliberately comes without a performance model and, apart from some “advice to

implementers,” without any requirements or recommendations as to what a good implementation

should satisfy regarding performance. The main reasons arethat the implementability of the MPI

standard should not be restricted to systems with specific interconnect and hardware capabilities

and that implementers should be given maximum freedom in howthey realize the various MPI

constructs. The widespread use of MPI over an extremely widerange of systems, as well as the

many existing and quite different implementations of the standard, show that this was a wise

decision.

On the other hand, application programmers expect that their MPI library delivers good

performanceon their chosen hardware, and hope that their applications are portable to other

systems and MPI libraries in the sense that the communication parts of their code do not have

to be rewritten or tweaked for performance reasons. Even within a fixed environment, good

performance means not only that the communication capabilities of the underlying system are

used efficiently, but also that it is not be necessary to replace MPI constructs (typically collective

operations) by “hand-written” implementations in terms ofother MPI functions in order to

achieve the expected performance. That the latter is sometimes the case is unfortunate and known

to MPI implementers and users, but not often documented in the literature. One case where an

MPI Allreduce collective had to be rewritten by hand is insightfully documented in [38]. Some

examples of hand-improvements ofMPI Alltoall and point-to-point communication can be found
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in [13], [24]. In fact, a large number of papers on improvements to various collective operations

of MPI (sometimes for specific systems) are motivated by applications that did not perform well

using the native implementation of some collective operation; see for instance [18] for a different

example.

MPI has many ways of expressing the same communication patterns, with varying degrees

of generality and freedom for the application programmer. This kind of universality makes it

possible to relate aspects of MPI to each other, not only semantically but also in terms of the

expected performance. This interrelatedness is already used in the MPI standard itself, where

certain MPI functions are defined or explained in a semi-formal way in terms of other MPI

functions. For example, the semantics of many collective operations is illustrated in terms of

point-to-point operations [31, Chapter 4]. The MPI standard, however, does not take the (natural)

step to relate the performance of such alternative definitions.

The purpose of this paper is to discuss whether it is possible, sensible, and desirable to

formulate relative, system-independent, MPI intrinsic performance guidelines that MPI imple-

mentations would want to fulfill. Such guidelines should notmake any commitments to particular

system capabilities, but would encourage a high(er) degreeof performance consistency in an MPI

implementation. Such guidelines would also enhance performance portability by discouraging the

user from system- and implementation-specific communication optimizations that might not be

beneficial for other systems and MPI libraries. Finally, even if relatively trivial, such guidelines

would provide a kind of “sanity check” on an MPI implementation, especially if they could be

checked automatically.

We formulate a number of MPI intrinsic performance guidelines by semi-formally relating

different aspects of the MPI standard to each other with regard to performance. We refer to

such rules asself-consistent MPI performance guidelines. We believe that such concrete rules

can guide both the MPI user and the MPI implementer, and, in the cases where they are

fulfilled, aid both single-system performance and performance portability. By their very nature,

the rules can be used only to ensure performanceconsistency—a trivial, poor, but consistent MPI

implementation could fulfill them perhaps more easily than acarefully tuned library. In that sense

such rules raise the bar for the very ambitious MPI implementations. Clearly, the rules should not

be interpreted such as to exclude optimizations, but directthe attention of the MPI implementer

towards possibly negative side-effects that partial optimizations may have. Or more positively



4

put: if one part of an MPI library is improved that is performance-wise related to another part,

then the rules indicate an opportunity to also improve this other, related part. Otherwise, the user

would again be tempted to perform optimizations by hand to compensate for the performance-

inconsistency of his MPI library. The list of rules presented here is not exhaustive, but cover the

main communication models of MPI (point-to-point, collective, and one-sided), explicate some

non-trivial relationships, and in general indicate how andwhere different parts of MPI can be

related with respect to performance. More rules along theselines can surely be established, and

other aspects of the MPI standard covered by similar rules (although this becomes more subtle).

More generally, this paper makes the software-engineeringsuggestion that performance guide-

lines and benchmark procedures be part of the initial designof communication and other

application-support libraries. Performance guidelines can be either self-consistent as discussed

here, or model based and more absolute. This would oblige thelibrary designer to think about

performance and performance portability from the outset, and contribute towards the internal

consistency of the concepts of a library design. MPI is an example of a library design that can be

retrofitted with and benefit from performance guidelines. Related work in this direction includes

quality of service for numerical library components [21], [23]. Because of the complexity of

these components, it is not possible to provide the sort of definitive ordering that we propose for

MPI communications. A recent, theoretical model for designof parallel algorithms called the

Parallel Resource Optimal(PRO) model [7] incorporates a notion of quality by relatingeach

parallel algorithm to a sequential reference algorithm. The requirement enforces performance

and scalability for algorithms to be acceptable in the model.

We stress that the performance guidelines presented in thispaper explicate common-sense

performance expectations, which MPI implementations would mostly want and be able to fulfill

without unnecessary burden. They are not intended to constrain or hamper implementations.

Rather, explicit performance guidelines should be an aid toimplementers to alert them of potential

performance inconsistencies in their libraries, which they may otherwise be unaware of. In many

cases, the fixes to revealed performance inconsistencies may be simple and implementers would

want to do them. In a few cases, there may be special considerations or trade-offs that prevent

easy fixes, and an implementer may therefore choose not to fix aparticular problem. Nonetheless,

that would be a deliberate choice rather than an unfortunateside-effect as is presently the case.

Performance guidelines therefore benefit both implementers and users. They help implementers
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deliver higher quality MPI implementations, help minimizeperformance surprises, and eliminate

the need for users to perform special, non-portable optimizations by hand.

A. Outline

The remainder of this article is organized as follows. Section II discusses performance models

and portability in more detail. Section III states performance meta-rules from which concrete,

self-consistent performance guidelines will be derived, and presents the notation that will be

used. Concrete performance guidelines for all MPI communication, in particular point-to-point

communication, are derived in Section IV. Collective communication guidelines, which due to

the strong interrelatedness of the MPI collectives form thebulk of the paper, are derived in

Section V. Rules governing MPI virtual topologies and process reorderings are discussed in

Section VI, and the more difficult to capture one-sided communication model of MPI is touched

upon in Section VII. A brief discussion of approaches to automatic validation of MPI libraries

with respect to conformance to self-consistent performance guidelines is given in Section VIII.

Summary and outlook conclude the paper in Section IX.

II. PERFORMANCEMODELS AND PORTABILITY

The notion ofperformance portabilityis hard to quantify (see e.g. [25], [19]), but at least

implies that some qualitative aspects of performance are preserved when going from one system

to another. For MPI applications, in particular, communication optimizations performed on one

system should not be counteracted by the MPI implementationon another. As argued we believe

that a degree of performance portability is attainablewithout an explicit performance model

by adhering instead to self-consistent performance guidelines. Similar notions of performance

portability, as well as the unfortunate consequences in required application restructuring, were

explored in [15] for shared virtual memory and hardware cache-coherent systems, and in [37].

In contrast to thesuggestiveapproach to performance portability advocated here which suggests

to delegate obtaining the best performance across systems of operations captured in a library to

the implementations of that library,descriptiveapproaches provide aids towards understanding

and translating performance across systems, but ultimately leaves the user with the responsibility

of restructuring the application to best fit the system and library at hand. The two approaches

are orthogonal, but more focus has so far been given to descriptive approaches.
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Detailed, public benchmarks of MPI constructs can help in translating the performance of an

application on one system and MPI library to another system with another MPI library [27],

[25], and can help the user both in choosing the right MPI construct for a given system, and

in indicating where rewrite may be necessary when switchingto another system and/or MPI

library. Unfortunately, such benchmarks are not widespread enough, and do not provide the detail

necessary to facilitate such complex decisions. Most established MPI benchmarks (Intel MPI

Benchmark, SpecMPI, NetPIPE, . . . ), after all focus on base performance of isolated constructs,

and not on comparisons of different ways of achieving a desired user functionality.

Accurate, detailed MPI performance models would make a quantitative translation between

systems and MPI libraries possible. Abstract models such asLogP [4] and BSP [36], that are

used in the design of applications and communication algorithms, tend to be too complex (for

full applications), too limited (enforcing a particular programming style), or too abstract to have

predictive power for actual MPI applications, even when characteristics of the hardware, e.g.

network topology and capabilities, are sometimes accounted for. Furthermore, MPI provides

much more flexible (but also much more complex) modes of communication than typically

catered to in such models (blocking and nonblocking communication with possibilities for

overlapping of communication and computation, optional synchronous semantics and buffering,

rich set of collective operations). An alternative is to useMPI itself as a model and analyze

applications in terms of certain basic MPI primitives. Thismay work well for restricted usages

of MPI to, say, the MPI collectives, but full MPI is surely toolarge to serve as a tractable model

for performance analysis and prediction.

An interesting approach to performance optimization and portability was advocated in [9],

[10]. In this approach, applications are designed at a high level using solely MPI collectives

for communication. Performance is improved and adapted to MPI implementations with specific

characteristics by the use oftransformation rules. Some of these aim at combining collectives

in a given context, whereas some decompose or rephrase collectives with presumably inefficient

implementations into sequences or instances of other MPI collectives. These latter type trans-

formations are intimately guided by knowledge of the targetsystem and MPI implementation

(performance model and concrete parameters). This is exactly the opposite of what we propose

in this paper. Indeed, many of the transformations of [9] could never be beneficial for MPI

libraries fulfilling the self-consistent performance guidelines derived in the following sections.
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In this sense, the paper [9] is an “afterthought” addressingand alleviating problems that a good

MPI library should in our opinion not have.

Even for relatively simple models of point-to-point communication, establishing concrete

values for the model parameters for a given system is not simple, and a number of benchmarks

have been developed explicitly for this purpose [17], [14].Automatic generation of performance

models has been addressed by the DIMEMAS project [8], [29], but models for collective

communication operations are notoriously difficult to generate without apriori, (too) simplifying

assumptions about the underlying communication algorithms and system. A further complication

is that the concrete, physical topology under which an MPI application is running at a given time

may not be known apriori (due to a scheduler allocating different partitions of a large machine).

Methods and systems for predicting the performance of full applications without relying explicitly

on performance models in the simple sense described above have been explored in [20], [16]

and many other works.

III. M ETA-RULES

We first introduce a set of general principles,meta-rules, which capture user expectations on

how an MPI (or other communication) library should behave. We assume reasonable familiarity

with the MPI standard [11], [31], [22], although the discussion should be intuitively understand-

able to the general reader. The rationale captured by the meta-rules is that thelibrary-internal

implementation of any arbitrary MPI function in a given MPI library should not perform any

worse than anexternal, user-implementation of the same functionality in terms of otherMPI

functions. If such were the case, the performance of the library-internal MPI implementation

could, all other things being equal, be improved by replacing it with an implementation based

on the user implementation. Here we focus exclusively on the(communication) time taken by

MPI functions, and not on how this interacts with other computation time of the application.

Thus, we do not address the possibility of overlapping communication and computation as made

possible by the MPI standard and supported by some MPI implementations, and ignore also

other context-sensitive factors that could favor one way ofrealizing MPI communication over

another. The meta-rules are as follows.

(I) Subdividing messages into multiple smaller messages should not reduce the communication

time.
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(II) Replacing an MPI function with a similar function that provides additional semantic

guarantees should not reduce the communication time.

(III) Replacing a specific (collective) MPI operation with amore general operation by which

the same functionality can be expressed should not reduce communication time.

(IV) Replacing a (collective) operation by a sequence of other (collective) operations imple-

menting the same functionality should not reduce communication time.

(V) Reranking the processors through a new MPI communicatorshould not reduce the com-

munication time between processors.

(VI) A virtual process topology should not make communication between all pairs of topo-

logical neighbors slower than communication between the same pairs of processes in the

communicator from which the virtual topology was built.

Rule I reflects the understanding that MPI is designed to be particularly efficient for com-

munication of large messages. In situations where large messages have to be sent, all other

circumstances being equal, it should therefore not be necessary for the user to manually subdivide

messages. It is a meta-rule and covers all types of MPI communication, be it point-to-point, one-

sided, or collective. Rule II expresses the expectation that semantic guarantees usually come with

a cost. Were that not the case, instances of operations with weak semantic guarantees could be

replaced by the corresponding operations with stronger guarantees, which would not compromise

program correctness, but improve performance. An analogous meta-rule could be formulated for

MPI constructs that require certain semanticpreconditionsto be fulfilled. Such operations would

not be expected to be slower than corresponding operations not making such requirements. We

apply to this analogous meta-rule in two examples in SectionIV and V.

Rules III and IV were motivated above and relieve the user of the temptation to implement

MPI functions in terms of other MPI functions in order to improve performance.

Rules V and VI are rather MPI specific and cater to the various capabilities of MPI to change

the numbering (ranking) of the processors. Processes are bound to processors, and are identified

by an associated rank in their communication domain, thecommunicatorin MPI terms. MPI

provides constructs for creating new communicators from existing ones, and thereby to change

the ranking of the processors. Rule V states that the rank that a processor happens to have in a

communicator should not determine its communication performance. Rather the location of each

processor in the communication system is the determining factor. Indeed, if an MPI library had
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a preferred communicator (sayMPI_COMM_WORLD), in which communication between ranks

i and j was faster than communication between thesameprocessors with ranksi′ and j′ in

some other communicator, the user would be confronted with the option of manually mapping

communication betweeni′ and j′ in the new communicator back to communication betweeni

and j in the preferred communicator. This is a very strong meta-rule that is discussed in more

detail in Section VI.

MPI provides a means for designating processes asneighborsthat are expected to communicate

more intensively. In MPI terms such a specification is calleda virtual process topology[31,

Chapter 6]. An MPI library can use this specification to create a communicator in which

neighboring ranks will be bound to processors that can indeed communicate faster. Rule VI

states that communication between at least one pair of such neighbors should not be slower

(read: can be expected to be faster) in the reordered communicator. Indeed, if all neighbor pairs

communicate slower in the reordered communicator, the useris better off not creating the virtual

topology at all, and this is not what is expected of a good MPI implementation. This is explored

further in Section VI.

Similar meta-rules rules can most likely be formulated for other communication and application

specific libraries. The application to MPI is particularly meaningful since the operations of the

MPI standard are semantically strongly interrelated, and because MPI provides the additional

support functionality to make implementation of complex functions possible in terms of other,

simpler functions. In the following sections, we discuss the meta-rules in more detail and use

them to derive a list of concrete,self-consistent MPI performance guidelines.

A. Notation

As shorthand for the concrete examples, and to provide a quantitative measure we use the

semi-formal notation

MPI A(n) � MPI B(n)

to mean that MPI functionA is not slower (alternative reading:possibly or usually faster)

than MPI functionB implementing the same operation when evoked with parameters resulting

in at most the same amount of communication or computationn, all other circumstances

(communicator, datatypes, source and destination ranks, .. . ) being the same. When necessary, we
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usep to denote the number of processes involved in a call, andMPI A{c} for MPI functionality

A invoked on communicatorc. Note that the amount of communicationn in actual MPI calls

is not determined by a single argument but specified implicitly or explicitly by a combination

of arguments (datatypes, repetition counts, count vectors, etc.).

We use

MPI A � MPI B

to mean that functionalityA is possibly faster than functionalityB for (almost) all communication

amountsn.

Finally, we use

MPI A ≈ MPI B

to express that functionalitiesA andB perform similarly for almost all communication amounts

n. Quantifying the meaning of “similarly” is naturally contentious. A strong definition would

say that there is a small confidence interval independent ofn such that for any data sizen, the

running time of one construct is within the running time of the other plus/minus somesmall

additive constant. A weaker definition could require that the running time of the two constructs

is within a small constant factorof each other for any data sizen. The relation� should be an

order relation, and� and≈ defined such thatMPI A � MPI B andMPI B � MPI A implies

MPI A ≈ MPI B.

As we discuss in Section VIII, it is not necessary to actuallyfix the (constant factors in

the) relations� and≈ as described above in order to be able to check to what extent an MPI

implementation fulfills a set of self-consistent performance guidelines.

IV. GENERAL AND POINT-TO-POINT COMMUNICATION

The following performance guidelines are concrete applications of meta-rule I. Splitting a

communication buffer ofkn units into k buffers of n units, and communicating the pieces

separately, should not pay off in an MPI implementation.

MPI A(kn) � MPI A(n) + · · ·+ MPI A(n)
︸ ︷︷ ︸

k

(1)
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Likewise, splitting possibly structured data into its constituent blocks of fixed sizek should

also not be faster than communicating the data in one operation.

MPI A(kn) � MPI A(k) + · · ·+ MPI A(k)
︸ ︷︷ ︸

n

(2)

Guideline (2) ensures that “blocking by hand”, that is, manually splitting buffers into smaller

parts of fixed size, will not pay off performance wise, all other circumstances being equal.

Of course, in pipelined algorithms or in situations where there is a possibility for overlapping

communication with computation, blocking by hand could be an option. The guideline makes

no statement about such situations.

The guidelines (1) and (2) are nevertheless non-trivial, and many MPI libraries will violate

them for point-to-point communication for some range ofn because of the use of different

(short, eager and rendezvous) message protocols. An example is given in Figure 1 for a particular

system and MPI implementation. The performance ofMPI Send has been measured (with another

process performing the matchingMPI Recv) for varying data sizen. Because of the large,

discrete jump in communication time aroundn = 1K, a user with a 1500-byte message will

achieve better performance on this system by sending instead two 750-byte messages. This

example illustrates an optimization that competes with performance portability—in this case, the

use of small, preallocated message buffers and special protocols. To satisfy guideline (1), an

MPI implementation would need a more sophisticated buffer-management strategy, but in turn

this could decrease the performance of all short messages.

An example of an MPI library and system that violates guideline (1) with A = Bcast was

given in [1, p. 68]. For this case the broadcast operation hasa range of data sizesn where

splitting into 2 or 4 blocks of sizen/2 and n/4 respectively and performing instead 2 or 4

broadcast operations is faster than a single broadcast withdata sizen.

In both examples users are tempted to improve performance bysplitting messages by hand in

his code, and in both examples performance portability suffers because other systems and MPI

libraries may either not have the problem, or the ranges of data size where the problem appears

may be completely different.

MPI has a very general mechanism for communicating non-contiguous data by means of

so-called user-defined (or derived) datatypes [31, Chapter3]. Derived datatypes can be used

universally in communication operations. LetT (k) be an MPI derived datatype containingk
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Fig. 1. Measured performance of short message point-to-point communication on IBM BG/L withMPI Send andMPI Recv.

Because of the switch from eager to rendezvous protocol in the MPI implementation, there is a large jump in performance

around 1024 bytes. A user could get better performance for a 1500-byte message by sending this as two 750-byte messages

instead. This behavior is typical of many (most) current MPIimplementations.

basic elements. We would expect the handling of datatypes inany MPI operationA to be at

least as good as first packing the non-contiguous data into a contiguous block using the MPI

packing functionality [31, Chapter 3, page 175], followed by operationA on the consecutive

buffer. Semi-formally this can be expressed as follows.

MPI A(n/k, T (k)) � MPI Pack(n/k, T (k)) + MPI A(n) (3)

where MPI A(n/k, T (k)) means that operationA is called with n/k elements of typeT (k)

(for a total of n units). Hence,MPI Pack(n/k, T (k)) packsn/k elements of typeT (k) into a

consecutive buffer of sizen. There would be a similar guideline forMPI Unpack.

The pack and unpack functionalities should be constrained such that packing by subtype does

not pay off. This is captured by the following guideline.

MPI Pack(n/k, T (k)) � (4)

MPI Pack(n0/k0, T0(k0)) + . . . + MPI Pack(nt−1/kn−1, Tt−1(kt−1))
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whereTi(ki) for i = 0, . . . , t− 1 are the subtypes ofT (k), each ofki elements, andk0 + . . . +

kt−1 = k and n0 + . . . + nt−1 = n. Note that guideline (3) does not require MPI handling

of non-consecutive data described by derived datatypes to be “faster” than what can be done

by hand, but solely relates datatype handling implicit in the MPI communication operations to

explicit handling by the user with the MPI pack and unpack functionality. Recursive application

of guideline (4) does, however, limit the allowed overhead in derived-datatype handling, and thus

reassures the user of a certain, relative base performance in the use of derived datatypes. The

derived datatype functionality powerfully illustrates the gains in (performance) portability that

would be offered by even relatively weak self-consistent guidelines like the above. The decision

whether to use derived datatypes often has a major impact on application code-structure, and

maintaining code versions with and without derived datatypes is often not feasible. In other

words, the amount of work required to port a complex application implemented with MPI derived

datatypes that performs well on a system with a good implementation of the datatype functionality

to a system with poor datatype support can be considerable. Since many early MPI libraries had

relatively poor implementations of the derived datatype functionality, this fact did and still does

detract users from relying on a functionality that can oftensimplify the coding. Performance

guidelines would assure that the performance of MPI communication with structured data would

be at least as good as a certain type of hand-coding, and that this base performance would be

portable across systems.

Application of meta-rule II toMPI Send andMPI Isend first gives

MPI Isend(n) � MPI Send(n)

since MPI Send provides the additional semantic guarantee that the send buffer is free for

use after the call. Of course it rarely makes sense to replacean MPI Send operation with a

nonblockingMPI Isend without at some point issuing a correspondingMPI Wait call. Since an

MPI Wait has no effect and therefore should be practically for free for theMPI Send operation,

we infer the guideline

MPI Isend(n) + MPI Wait � MPI Send(n) (5)

By meta-rule IV we also have that

MPI Send(n) � MPI Isend(n) + MPI Wait (6)
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and in combination with guideline (5) it can be deduced that an MPI Send operation should be

in the same ballpark as anMPI Isend followed by anMPI Wait:

MPI Send(n) ≈ MPI Isend(n) + MPI Wait (7)

Another similar application of meta-rule II leads to the guideline that

MPI Send(n) � MPI Ssend(n) (8)

Since the synchronous send operation has the additional semantic guarantee that the function

cannot return until the matching receive has started, it should not be faster than the regular send.

Along the same lines it can be expected that

MPI Rsend(n) � MPI Send(n) (9)

If the semanticpreconditionthat the receiver is already ready is fulfilled the special ready-

send should not be slower than an ordinary send operation. Ifthat would be the case, the library

(and user) should simply useMPI Send instead. We did not explicitly introduce a meta-rule on

semantic preconditions.

Guidelines for other point-to-point communication operations can be similarly deduced. For

MPI Sendrecv it is for instance sensible to expect that

MPI Sendrecv � MPI Isend + MPI Recv + MPI Wait (10)

MPI Sendrecv � MPI Irecv + MPI Send + MPI Wait (11)

which follows from meta-rule IV.

V. COLLECTIVE COMMUNICATION

The MPI collectives [31, Chapter 4] are semantically strongly interrelated, and often one

collective operation can be implemented in terms of one or more other, related collectives.

A general guideline to an MPI implementation is that a specialized collective should not be

slower than a more general collective, as stated by meta-rule III. If such guidelines are fulfilled,

users can, with good conscience, be given the advice to always use the most specific collective

applicable in the given situation. Naturally, this is one ofthe motivations for having so many

collectives in MPI, and many current MPI implementations douse specialized, more efficient

algorithms for specific collectives. The literature on thisis extensive.
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A general, very MPI specific set of guidelines, that follow from meta-rule II concern the

use of theMPI_IN_PLACE option. For some collectives it can be used to specify that part of

the input has already been placed at its correct position in output buffer, leading to a potential

reduction in local memory copies or communication and thus aperformance benefit. In such

cases theMPI_IN_PLACE option is a semanticprecondition(similar to the precondition in

guideline (9)), leading to guidelines like

MPI A(MPI IN PLACE, n) � MPI A(n) (12)

for collectivesA where theMPI_IN_PLACE option has the meaning described above. This is

the case forMPI Gather, MPI Scatter, MPI Allgather (and their irregular counterparts). In the

reduction collectives likeMPI Allreduce the MPI_IN_PLACE option is partly a precondition,

partly a semantic guarantee (that a replacement has been performed), and therefore performance

guidelines are more difficult to argue.

A. Regular Communication Collectives

Most MPI collectives exist in regular and irregular (vector) variants. In the former the involved

processes contribute the same amount of data. These are algorithmically easier and usually per-

form better than their corresponding irregular variants, as will be discussed further in Section V-C.

The following two guidelines are obvious instances of meta-rule III.

MPI Gather(n) � MPI Allgather(n) (13)

MPI Allgather(n) � MPI Alltoall(n) (14)

These expectations also follow from the fact that the more general collectives on the right hand

side of the equations require more communication, and an MPIimplementation that does not

fulfill them asn grows would indeed be problematic. For instance, inMPI Allgather each process

eventually sends (only)n/p data and receivesn data, whereasMPI Alltoall both sends and

receivesn data. An implementation ofMPI Allgather in terms ofMPI Alltoall would furthermore

require each process to makep copies of then/p contributed data prior to callingMPI Alltoall.

This alone should eventually cause the performance expectation (14) to hold.
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The next guideline follows by meta-rules III and IV from a straight-forward implementation

of the collectiveMPI Allgather operation in terms of two other.

MPI Allgather(n) � MPI Gather(n) + MPI Bcast(n) (15)

The MPI library implementedMPI Allgather should not be slower than the user implemen-

tation in terms ofMPI Gather and MPI Bcast. This is not as trivial as it may look. If, for

instance, a linear ring algorithm is used for the nativeMPI Allgather implementation, and tree-

based algorithms forMPI Gather and MPI Bcast, the relationship will not hold, at least not

for small data sizesn. Such guidelines thus contribute towards consistent performance between

different MPI collectives, and would render user optimizations based on inconsistently optimized

collectives unnecessary.

A less obvious guideline relatesMPI Scatter to MPI Bcast. By meta-rule III

MPI Scatter(n) � MPI Bcast(n) (16)

since theMPI Scatter operation can be done by more generally broadcasting then data and

then letting each process filter out the subset of the data it needs. For MPI libraries with an

efficient implementation ofMPI Bcast, this is a nontrivial guideline for smalln, and enforces

an equally efficient implementation ofMPI Scatter. An example where this guideline is violated

was found with the IBM Blue Gene/P MPI library, which contains an optimized implementation

of MPI Bcast, but not of MPI Scatter. As a result,MPI Scatter is about four times slower

thanMPI Bcast as shown in Figure 2. This is certainly not what a user would expect, and such

behavior would encourage non-portable replacements ofMPI Scatter by MPI Bcast.

A currently popular implementation of broadcast for large messages reduces broadcast to a

scatter followed by an allgather operation [2], [3], [32]. Since this algorithm can be expressed

purely in terms of collective operations, it makes sense to require that the native broadcast of

an MPI library should behave at least as well:

MPI Bcast(n) � MPI Scatter(n) + MPI Allgather(n) (17)
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of the buffer sent from the root. A natural expectation wouldrequire the scatter operation to be no slower than the broadcast.

This is violated here.

B. Reduction Collectives

The reduction collectives perform an operation on data contributed from all involved processes,

and come in several variants in MPI.

The second half of the next rule states that a good MPI implementation should have an

MPI Allreduce that is faster than the trivial implementation of reductionto root followed by a

broadcast. It follows from meta-rule IV, whereas the first part is a trivial instantiation of rule III.

MPI Reduce(n) � MPI Allreduce(n)

� MPI Reduce(n) + MPI Bcast(n) (18)

A similar rule can be formulated forMPI Reduce scatter. This is an irregular collective, since

the result blocks eventually scattered over the processes may differ in size:

MPI Reduce scatter(n) � MPI Reduce(n) + MPI Scatterv(n) (19)
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The next two rules implementMPI Reduce andMPI Allreduce in terms ofMPI Reduce scatter

and are similar to the broadcast implementation of guideline (17).

MPI Reduce(n) � MPI Reduce scatter(n) + MPI Gather(n) (20)

MPI Allreduce(n) � MPI Reduce scatter(n) + MPI Allgather(n) (21)

SinceMPI Allreduce is a more general operation thanMPI Reduce scatter it should, similarly

to guideline (16), hold that

MPI Reduce scatter(n) � MPI Allreduce(n) (22)

MPI libraries with trivial implementations ofMPI Reduce scatter but efficient implementa-

tions of MPI Allreduce will fail this guideline. A further complication arises becauseMPI -

Reduce scatter is an irregular collective, allowing result blocks of different sizes to be scattered

over the MPI processes. In extreme cases where the complete result is scattered to one process

only, the guideline could be difficult to meet. The paper [34]shows that the guideline is

nevertheless reasonable by giving an adaptive algorithm for this collective with comparable

performance to similar, good algorithms forMPI Allreduce.

For the reduction collectives, MPI provides a set of built-in binary operators, as well as the

capability for users of defining their own operators. A natural expectation is that a user-defined

implementation of the functionality of a built-in operatorshould not be faster. By meta-rule III

this gives rise to guidelines like the following.

MPI Reduce(n, MPI SUM) � MPI Reduce(user sum) (23)

whereuser_sum implements element-wise summation just as the built-in operatorMPI_SUM.

A curious example of a vendor MPI implementation where exactly this is violated is again given

in [1, p. 65]. For this particular system it turned out that summation with a user-defined operation

was a factor 2-3 faster than summation with the built-in operator for larger problem sizes.

The following observation relates gather operations to reductions for consecutive data. A

consecutive block of datani can gathered from each processi by summing contributions of size

ni with all processes excepti contributing blocks ofni zeroes (neutral element for the operation).
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This gives rise to two non-trivial performance guidelines,namely

MPI Gather(n) � MPI Reduce(n) (24)

MPI Allgather(n) � MPI Allreduce(n) (25)

which also hold for the irregularMPI Gatherv andMPI Allgatherv collectives. The guidelines

could also be extended to non-consecutive data by using a user-defined reduction operator

operating on non-consecutive data, and thus to cover the gather collectives in full generality. The

IBM Blue Gene/P has very efficient hardware support for reduction and broadcast (collective

network). The equations above suggest that similar performance be achieved forMPI Gather(v)

and MPI Allgather(v). In the Blue Gene/P MPI library the observation above is usedexactly

for this purpose (Sameer Kumar, personal communication). More traditional mesh- or ring-

algorithms forMPI Gather or MPI Allgather would have difficulties fulfilling such guidelines,

and the example show that self-consistent performance guidelines, if formulated carefully, do

not compromise the use of special hardware support to optimize an MPI library. But they oblige

(and show how) to exploit such hardware support consistently.

C. Irregular Communication Collectives

The irregular collectives of MPI, in which the amount of datacommunicated between pairs

of processes may differ, are obviously more general than their regular counterparts. It would be

desirable for the performance to be similar when an irregular collective is used to implement

the functionality of the corresponding regular collective. This would releive the user of irregular

collectives of the temptation to detect regular patterns and call the regular operations in such

cases. The� part of this optimistic expectation follow from meta-rule III:

MPI Gather(n) � MPI Gatherv(v) (26)

MPI Scatter(n) � MPI Scatterv(v) (27)

MPI Allgather(n) � MPI Allgatherv(v) (28)

MPI Alltoall(n) � MPI Alltoallv(v) (29)

for uniform p element vectorsv with v[i] = n/p, 0 ≤ i < p. Strengthening these to≈ and

requiring the performance ofMPI Gatherv to be in the same ballpark as the regularMPI Gather
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would be a highly non-trivial guideline. For instance, there are easy tree-based algorithms

for MPI Gather that do not easily generalize toMPI Gatherv, because the MPI definition of

MPI Gatherv is such that the count vectorv is not available on all processes. Thus, performance

characteristics of these collectives may be quite different, at least for smalln [33].

TheMPI Alltoallv andMPI Alltoallw functions are universal collectives capable of expressing

each of the other data-collecting collectives. Also, broadcast can be implemented by an irregular

MPI Allgatherv operation by a gather-vectorvb with vb[r] > 0 for root r andvb[i] = 0 for i 6= r.

Again, by rule III, the following further guidelines can be trivially deduced.

MPI Bcast(n) � MPI Allgatherv(vb) (30)

MPI Gatherv(vg) � MPI Alltoallv(vg) (31)

MPI Scatterv(vs) � MPI Alltoallv(vs) (32)

MPI Allgatherv(va) � MPI Alltoallv(va) (33)

wherevb, vg, vs, va are p element vectors expressing the broadcast, irregular gather, scatter and

all-gather problems, respectively. Strengthening to≈ does not follow from the meta-rules and

is too strict a guideline which no current MPI libraries would satisfy.

A similar guideline to (16) forMPI Scatterv would not hold:

MPI Scatterv(n) � MPI Bcast(n)

is, due to the asymmetry of the rooted, irregular collectives explained above, too strong. Only

the root has all data sizes and therefore the non-root processes cannot know the offset from

which to filter out their blocks. Further communication is necessary, therefore the performance

guideline is rather

MPI Scatterv(n) � MPI Scatter(p) + MPI Bcast(n)

� MPI Bcast(p) + MPI Bcast(n) (34)

where latter part follows by application of guideline (16).

D. Constraining Implementations

The guidelines deduced in the previous sections, which relate the performance of collective

operations to that of other collective operations, could beexpanded to more absolute performance
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guidelines by requiring collective performance to be boundby the performance of a set of

predefined, standard algorithms (implemented in MPI). Suchmore elaborate performance bounds

would actually follow by repeated application of meta-ruleIV. The MPI standard already explains

many of the collectives in terms of send and receive operations. This for instance leads to the

following, basic performance guideline forMPI Gather.

MPI Gather(n) � MPI Recv(n/p) + · · ·+ MPI Recv(n/p)
︸ ︷︷ ︸

p

(35)

Although we do not include them here, such additional, implementation constraining guidelines

based on point-to-point implementations of the MPI collectives would bound the collective

performance from above. Such a set of upper bound guidelineswould include for instance

algorithms based on meshes, binomial or binary trees, linear pipelines and others forMPI Bcast,

MPI Reduce and similar collectives. If a sufficiently large and broad set of constraining imple-

mentations were defined and incorporated into an automatic validation tool (see Section VIII),

reflecting common networks and assumptions on communication systems, useful performance

guarantees clearly showing where simple user-optimizations make no sense could be given.

VI. COMMUNICATORS AND TOPOLOGIES

In this section we expand on the meta-rules V and VI.

Let c be a communicator (set of processes) of sizep representing an assignment ofp processes

to p processors. Withinc processes have consecutive ranks0, . . . , p−1. Let c′ be a communicator

derived fromc (by MPI Comm split or other communicator creating operation) representing a

different (random) assignment to the same processors. Leti′ be the rank inc′ of the process

with rank i in c. Rule V states that

MPI A(i, n){c} � MPI A(i′, n){c′} (36)

whereMPI A(i, n){c} is an MPI operationA performed by ranki in communicatorc. In other

words, switching to the ranking provided by the new communicatorc′ should not be expected, all

other things being equal, to lead to a performance improvement. Note that this guideline is not

requiring that ranki performs similarly inc andc′, which would only be possible in special cases
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(e.g. systems with a homogeneous communication system). Indeed, since ranki can have been

remapped to another processor inc′, communication performance can be completely different.

Rule VI addresses this point. If ranksi and j have been specified as neighbors in a virtual

topologyc′ derived fromc, at least for one such neighbor pair it should hold that

MPI Sendrecv(i, j, n){c′} � MPI Sendrecv(i, j, n){c} (37)

This is possible because, as explained above, ranksi and j in c′ may be “closer” to each other

than they were inc by being mapped to different processors. In an MPI library not fulfilling

such guidelines, there is little (performance) advantage in using the virtual topology mechanism.

The user is better advised staying with the original communicatorc.

Guidelines derived from rule V are far from trivial to meet byMPI implementations. Consider

for instance theMPI_Allgather collective. A linear ring or logarithmic tree algorithm de-

signed on the assumption of a homogeneous system may, when executed on a SMP system and

depending on the distribution of the MPI processes over the SMP nodes, have communication

rounds in which more than one MPI process per SMP node have to communicate with processes

on other nodes. This would lead to serialization and slow-down of such rounds and thus break

guideline (36). The extent to which this can degrade performance is shown in Figure 3, where

the running times ofMPI Allgather for two different communicators are plotted against each

other. A non-SMP aware algorithm will be highly sensitive tothe process numbering, whereas

the SMP-aware algorithms is only to a small extent, which shows that guideline (36) can be

fulfilled by a corresponding algorithm modification.

A further difficulty for collective operations to fulfill guideline (36) is that resulting data must

be stored in rank (or, for the irregular collectives, in a user-defined) order in the output buffer.

Thus, even thoughMPI Allgather collects the same data (on all processes) whether it is called

over communicatorc or c′, the order in which data are received may be different in the two cases

depending on the algorithm used to implement the collectiveoperation. Gathering in rank order

may sometimes be easier than gathering in some random order,for instance because intermediate

buffering may not be needed. Therefore, the running time on acommunicatorc′ with an easy

ordering could be smaller than on the originalc′, thus violating guideline (36). Such algorithm

dependent factors need to be taken into account when making the performance guidelines

quantitative. Figure 3 (right) illustrates such a case: forsmall data sizes the performance on the
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Fig. 3. Left: performance of a simple, non-SMP-aware linearring algorithm for MPI Allgather when executed on the

orderedMPI_COMM_WORLD communicator and on a communicator where the processes havebeen randomly permuted. Right:

performance of an SMP-aware algorithm forMPI Allgather on ordered and random communicator. The non-SMP aware

algorithm violates the performance expectations capturedin the guidelines, whereas the SMP-aware algorithm arguably does

not.

random communicator is up to a factor two worse than on the sequentialMPI_COMM_WORLD

communicator. The algorithm in this example uses an intermediate buffer for small data. If

data are received in rank order in this buffer, copying into the user buffer can be done in

one operation, which is significantly faster than the sequence of copy operations needed if the

intermediate buffer stores data in some random order.

For reduction collectives with non-commutative operatorsmeta-rule V will not hold. It is

therefore formulated as a rule purely for communication operations.

As discussed for guideline (24), guideline (36) does not preclude optimizations based on

hardware support. For instance the NEC SX-8 communication network provides a small number

of hardware counters that can be used for efficient barrier synchronization. This is exploited in the

NEC MPI/SX library [28] which allocates a barrier counter toeach new communicator if one is

available. Thus, it is possible forMPI Barrier to be significantly slower on a new communicator

c′ than on the original communicatorc—which is not in violation of (36), all other things being

equal (concretely, that a hardware counter has not become available whenc′ is created from ac
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without counter). Guideline (36) does suggest, however, that MPI_COMM_WORLD, from which

all other communicators are derived, be assigned such special resources.

A. Hierarchical Implementations

For systems with a hierarchical communication structure, e.g. clusters of SMP nodes, some

collective operations can conveniently and efficiently be implemented by hierarchical algorithms.

It would therefore be sensible to require a good MPI implementation to do this, instead of tempt-

ing the user into writing his own, hierarchical algorithms.The guideline below forMPI Allreduce

formalizes this. Similar guidelines can easily be formulated for other collectives admitting of

hierarchical implementations of this kind.

Let c0, . . . ck−1 be a partition of the given communicatorc into k parts, and letC be a

communicator consisting of one process from each of the communicatorsci.

MPI Allreduce{c} � (38)

‖k−1

i=0
MPI Reduce{ci} + MPI Allreduce{c}+ ‖k−1

i=0
MPI Bcast{ci}

The guideline states that the library implementation ofMPI Allreduce should not be slower than

a set of local, concurrentMPI Reduce operations on theci communicators followed by a global

MPI Allreduce and followed by a set of local, concurrentMPI Bcast of the final result. This is

supposed to hold for all splits of the communicatorc.

In [38] a case where exactly this kind of tedious rewrite was necessary for the user to attain

the expected performance is described. Other users of SMP-like systems often raise similar

complaints. Encouraging MPI libraries to fulfill performance guidelines like (38) would save the

user from that kind of trouble, and make application codes (more) performance portable across

different libraries and systems.

VII. ONE-SIDED COMMUNICATION

The one-sided communication model of MPI-2 is related to both point-to-point and collective

communication, and a number of performance guidelines can be formulated. However, because

of the different semantics of the point-to-point, one-sided and collective communication models,

much more care is required when formulating guidelines for this communication model. We only
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point out the kind of guidelines that can be formulated, but do not explicitly state such because

of the subtle semantic differences of especially the point-to-point and one-sided communication

models.

Assuming a communication window spanning only two processes, and assuming that data are

sent as a consecutive block (no derived datatype), it might be reasonable to expect a blocking

send to perform comparably to anMPI Put with the proper synchronization, at least for larger

data sizesn.

MPI Send(n) ≈ MPI Win fence + MPI Put(n) + MPI Win fence

Such a guideline ignores overhead for tag matching in point-to-point communication, may

severely underestimate the synchronization overhead in the semantically strongMPI Win fence

mechanism, and cannot cater for derived datatypes that havean inherent overhead in one-sided

communication, and other factors. Great care is needed for an actual set of fair guidelines.

The issues may be less involved when relating one-sided to collective communication. The

following guideline can be seen as a further example of a constraining implementation in the

sense of Section V-D.

MPI Gather(n) �

MPI Win fence + MPI Get(n/p) + · · ·+ MPI Get(n/p)
︸ ︷︷ ︸

p

+MPI Win fence

VIII. V ERIFICATION OF CONFORMANCE

Although the number of performance guidelines derived in the previous sections is already

large, the list is not (and cannot be) exhaustive. Furthermore, each guideline is intended to hold for

all system sizes, all possible communicators, all datatypes, etc, except where noted otherwise.

These factors have to be considered when attempting to assess or validate the performance

consistency of a given MPI implementation. The form of the guidelines is to contrast two

implementations of the same MPI functionality. One of theseimplementations can be quite

elaborate, as shown in the example for hierarchical collectives in Section VI-A.

To aid in the validation, a flexible MPI benchmark is therefore needed that makes it possible

to script implementations of some functionality at a high-level and contrast the performance of
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various alternatives. One such benchmark isSKaMPI [1], [26], [27], which already containspat-

terns that correspond to some of the implementation alternativesof the performance guidelines.

SKaMPI can easily be customized with more such alternatives. The benchmark also makes it

possible to compare different measurements.

To assess whether performance guidelines are violated and to what extent, an experiment-

management system is needed to go through the large amount ofdata produced, and to compare

results between different experiments. An example of such asystem isPerfbase[39], [40], which

can be used to mine a performance database for cases where theperformance of two alternative

implementations differ by more than a preset threshold. ThePerfbasesystem allows a flexible

notion of threshold, thus it is not necessary for the validation to quantify exactly the� and≈

relations.

Building a tool for extensive, semi-automatic verificationof performance guidelines for MPI

is an an extensive and challenging task, that is beyond the scope of this paper.

IX. CONCLUDING REMARKS

Users of MPI often complain about the poor performance (relatively speaking) of some of the

MPI functions in their MPI libraries, and about obstacles towriting code whose performance

is portable. Defining a performance model for something as complex as MPI is untenable and

infeasible. We instead propose self-consistent MPI performance guidelines to help in ensuring

performance consistency of MPI libraries and a degree of performance portability of application

codes. Conformance to such guidelines could, in principle,be checked automatically. We believe

that good MPI implementations are developed with some such guidelines in mind, at least

implicitly, but we also showed examples of MPI libraries andsystems where some of the rules are

violated. Further experiments and benchmarks with other MPI implementations will undoubtedly

reveal more such violations. This would be a positive contribution, revealing where more work

in improving the quality of MPI implementations is needed. Of course, in some cases, system,

resource, or other constraints may lead an implementation to choose not to fix a particular

violation of the guidelines.

We think that a similar approach may be possible and beneficial for other software libraries.

In this wider context, MPI is an example of a library with a high degree of internal consistency
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between concepts and functionality, and this made it feasible to formulate a large set of self-

consistent performance guidelines.

For MPI, similar performance guidelines can also be formulated for the parallel I/O function-

ality defined in MPI-2 [11, Chapter 7], but that topic is too specialized, subtle (as was already

the case for one-sided communication in Section VII), and extensive to be considered here. I/O

performance is crucially influenced by factors that can onlypartially be controlled by the MPI

library, possibly only through hints that an MPI implementation is not obliged to take. Therefore,

many desirable rules can only be formulated asperformance expectationsto the MPI library.

Our initial thoughts are detailed in [12].

Another interesting direction for further work is to consider whether sensible, self-consistent

guidelines to thescalability propertiesof an MPI implementation can be formulated, again

without constraining the underlying hardware or prescribing particular algorithms and imple-

mentations.

The most important, imminent work, however, is to constructa tool to assist in the verification

of conformance of an MPI library to a set of performance guidelines as formulated in this paper.

As explained this would comprise a flexible, easily extensible MPI benchmark and a performance

management system that would together make it possible to contrast the two sides of the equations

making up the performance guidelines and discover points ofviolation.
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