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Abstract

Message passing using tMessage Passing Interfa¢MPl) is at present the most widely adopted
framework for programming parallel applications for distrted-memory and clustered parallel systems.
For reasons of (universal) implementability, the MPI stamddoes not state any specific performance
guarantees, but users expect MPI implementations to deajwed and consistent performance in the
sense of efficient utilization of the underlying parallebemunication) system. For performance porta-
bility reasons, users also naturally desire communicatptimizations performed on one parallel
platform with one MPI implementation to be preserved wheitcgving to another MPI implementation
on another platform.

We address the problem of ensuring performance consistendyportability by formulating per-
formance guidelines and conditions that are desirable éadgVIP1 implementations to fulfill. Instead
of prescribing a specific performance model (which may béstt@on some systems, under some MPI
protocol and algorithm assumptions, etc.), we formulatséhguidelines by relating the performance
of various aspects of the semantically strongly interegla1P| standard to each other. Common-sense
expectations, for instance, suggest that no MPI functiamukhperform worse than a combination of
other MPI functions that implement the same functionathgt no specialized function should perform
worse than a more general function that can implement thee damctionality, that no function with
weak semantic guarantees should perform worse than a siimilation with stronger semantics, and so
on. Such guidelines may enable implementers to provideenighality MPI implementations, minimize
performance surprises, and eliminate the need for usersate repecial, non-portable optimizations by
hand.

We introduce and semi-formalize the conceptseff-consistent performance guidelinies MPI,
and provide a (non-exhaustive) set of such guidelines inrm that could be automatically verified by
benchmarks and experiment-management tools. We prespatimental results that show cases where
guidelines are not satisfied in common MPI implementatithes,eby indicating room for improvement

in today’s MPI implementations.
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I. INTRODUCTION

In the past decade, MPI (Message Passing Interface) [11], [32] has emerged as thae
facto standard for parallel application programming in the mgssaassing paradigm. Despite
upcoming new languages, notably of tRartitioned Global Address Spa¢PGAS) family like
UPC [6], Titanium [41], X10 [30] and others, and frameworksel Google’s MapReduce [5],
MPI is likely to retain this position for its intended ap@iton domain (tightly coupled appli-
cations with non-trivial communication requirements arattgrns on systems with substantial
communication capabilities) for the foreseeable future.

MPI deliberately comes without a performance model andrtafpam some “advice to
implementers,” without any requirements or recommenaatias to what a good implementation
should satisfy regarding performance. The main reasonthatehe implementability of the MPI
standard should not be restricted to systems with specti&rdonnect and hardware capabilities
and that implementers should be given maximum freedom in they realize the various MPI
constructs. The widespread use of MPI over an extremely vdadge of systems, as well as the
many existing and quite different implementations of thendard, show that this was a wise
decision.

On the other hand, application programmers expect that tdé&l library delivers good
performanceon their chosen hardware, and hope that their applicatioagartable to other
systems and MPI libraries in the sense that the communica@ots of their code do not have
to be rewritten or tweaked for performance reasons. Evehimvia fixed environment, good
performance means not only that the communication capiakilof the underlying system are
used efficiently, but also that it is not be necessary to mepMPI constructs (typically collective
operations) by “hand-written” implementations in terms ather MPI functions in order to
achieve the expected performance. That the latter is sorastihe case is unfortunate and known
to MPI implementers and users, but not often documenteddrititrature. One case where an
MPI_Allreduce collective had to be rewritten by hand is insightfully docemted in [38]. Some

examples of hand-improvementsMPI_Alltoall and point-to-point communication can be found



in [13], [24]. In fact, a large number of papers on improvensen various collective operations
of MPI (sometimes for specific systems) are motivated byiappbns that did not perform well
using the native implementation of some collective opergtsee for instance [18] for a different
example.

MPI has many ways of expressing the same communicationrpatteith varying degrees
of generality and freedom for the application programmerisTkind of universality makes it
possible to relate aspects of MPI to each other, not only sgoadly but also in terms of the
expected performance. This interrelatedness is alreadyg usthe MPI standard itself, where
certain MPI functions are defined or explained in a semi-&drmvay in terms of other MPI
functions. For example, the semantics of many collectiverafons is illustrated in terms of
point-to-point operations [31, Chapter 4]. The MPI staxd&owever, does not take the (natural)
step to relate the performance of such alternative defirstio

The purpose of this paper is to discuss whether it is poss##asible, and desirable to
formulate relative, system-independent, MPI intrinsicfpenance guidelines that MPI imple-
mentations would want to fulfill. Such guidelines should matke any commitments to particular
system capabilities, but would encourage a high(er) degfreerformance consistency in an MPI
implementation. Such guidelines would also enhance pedace portability by discouraging the
user from system- and implementation-specific commurdoatiptimizations that might not be
beneficial for other systems and MPI libraries. Finally, revferelatively trivial, such guidelines
would provide a kind of “sanity check” on an MPI implementetj especially if they could be
checked automatically.

We formulate a number of MPI intrinsic performance guidetirby semi-formally relating
different aspects of the MPI standard to each other withrcega performance. We refer to
such rules aself-consistent MPI performance guidelin®¥e believe that such concrete rules
can guide both the MPI user and the MPI implementer, and, & dhses where they are
fulfilled, aid both single-system performance and perfarogaportability. By their very nature,
the rules can be used only to ensure performanmesistency-a trivial, poor, but consistent MPI
implementation could fulfill them perhaps more easily tharagefully tuned library. In that sense
such rules raise the bar for the very ambitious MPI impleratons. Clearly, the rules should not
be interpreted such as to exclude optimizations, but difeztattention of the MPI implementer

towards possibly negative side-effects that partial otons may have. Or more positively



put: if one part of an MPI library is improved that is perfomea-wise related to another part,
then the rules indicate an opportunity to also improve thieeq related part. Otherwise, the user
would again be tempted to perform optimizations by hand tmmensate for the performance-
inconsistency of his MPI library. The list of rules presehteere is not exhaustive, but cover the
main communication models of MPI (point-to-point, coliget and one-sided), explicate some
non-trivial relationships, and in general indicate how avitere different parts of MPI can be
related with respect to performance. More rules along thiess can surely be established, and
other aspects of the MPI standard covered by similar rulélsgagh this becomes more subtle).

More generally, this paper makes the software-engineeuggiestion that performance guide-
lines and benchmark procedures be part of the initial desifjrtommunication and other
application-support libraries. Performance guidelinas be either self-consistent as discussed
here, or model based and more absolute. This would obligdilirery designer to think about
performance and performance portability from the outset] eontribute towards the internal
consistency of the concepts of a library design. MPI is amgta of a library design that can be
retrofitted with and benefit from performance guidelineslaiss work in this direction includes
quality of service for numerical library components [2123]. Because of the complexity of
these components, it is not possible to provide the sort fafitiee ordering that we propose for
MPI communications. A recent, theoretical model for desigrparallel algorithms called the
Parallel Resource OptimalPRO) model [7] incorporates a notion of quality by relatiegch
parallel algorithm to a sequential reference algorithme Taquirement enforces performance
and scalability for algorithms to be acceptable in the model

We stress that the performance guidelines presented inpdpgr explicate common-sense
performance expectations, which MPI implementations wonbstly want and be able to fulfill
without unnecessary burden. They are not intended to ainstr hamper implementations.
Rather, explicit performance guidelines should be an aichfdementers to alert them of potential
performance inconsistencies in their libraries, whichytheay otherwise be unaware of. In many
cases, the fixes to revealed performance inconsistencigbenaimple and implementers would
want to do them. In a few cases, there may be special consmesar trade-offs that prevent
easy fixes, and an implementer may therefore choose not tqfxteular problem. Nonetheless,
that would be a deliberate choice rather than an unfortusigeeffect as is presently the case.

Performance guidelines therefore benefit both implemerdad users. They help implementers



deliver higher quality MPI implementations, help minimgerformance surprises, and eliminate

the need for users to perform special, non-portable op#tions by hand.

A. Outline

The remainder of this article is organized as follows. Setti discusses performance models
and portability in more detail. Section Il states performn@ meta-rules from which concrete,
self-consistent performance guidelines will be deriveald presents the notation that will be
used. Concrete performance guidelines for all MPlI commatiog, in particular point-to-point
communication, are derived in Section IV. Collective conmication guidelines, which due to
the strong interrelatedness of the MPI collectives form liék of the paper, are derived in
Section V. Rules governing MPI virtual topologies and pssceeorderings are discussed in
Section VI, and the more difficult to capture one-sided comication model of MPI is touched
upon in Section VII. A brief discussion of approaches to edatic validation of MPI libraries
with respect to conformance to self-consistent perforreagugidelines is given in Section VIII.

Summary and outlook conclude the paper in Section IX.

Il. PERFORMANCE MODELS AND PORTABILITY

The notion ofperformance portabilityis hard to quantify (see e.g. [25], [19]), but at least
implies that some qualitative aspects of performance asgoved when going from one system
to another. For MPI applications, in particular, commutiaa optimizations performed on one
system should not be counteracted by the MPI implementatioanother. As argued we believe
that a degree of performance portability is attainabi¢hout an explicit performance model
by adhering instead to self-consistent performance guegl Similar notions of performance
portability, as well as the unfortunate consequences inired application restructuring, were
explored in [15] for shared virtual memory and hardware eacbherent systems, and in [37].
In contrast to thesuggestiveapproach to performance portability advocated here whigjyests
to delegate obtaining the best performance across systeopewtions captured in a library to
the implementations of that librargescriptiveapproaches provide aids towards understanding
and translating performance across systems, but ultignkgaves the user with the responsibility
of restructuring the application to best fit the system abdaly at hand. The two approaches

are orthogonal, but more focus has so far been given to géiseriapproaches.



Detailed, public benchmarks of MPI constructs can help amgfating the performance of an
application on one system and MPI library to another systdath another MPI library [27],
[25], and can help the user both in choosing the right MPI tons for a given system, and
in indicating where rewrite may be necessary when switchm@nother system and/or MPI
library. Unfortunately, such benchmarks are not widespeaough, and do not provide the detail
necessary to facilitate such complex decisions. Most bskedadl MPI benchmarks (Intel MPI
Benchmark, SpecMPI, NetPIPE, ...), after all focus on basépnance of isolated constructs,
and not on comparisons of different ways of achieving a édsuser functionality.

Accurate, detailed MPI performance models would make a tipa#iwe translation between
systems and MPI libraries possible. Abstract models suchog$’ [4] and BSP [36], that are
used in the design of applications and communication dlgos, tend to be too complex (for
full applications), too limited (enforcing a particularggramming style), or too abstract to have
predictive power for actual MPI applications, even whenrabgeristics of the hardware, e.g.
network topology and capabilities, are sometimes accaufite Furthermore, MPI provides
much more flexible (but also much more complex) modes of comaation than typically
catered to in such models (blocking and nonblocking compatiin with possibilities for
overlapping of communication and computation, optionalckyonous semantics and buffering,
rich set of collective operations). An alternative is to U@l itself as a model and analyze
applications in terms of certain basic MPI primitives. Thiay work well for restricted usages
of MPI to, say, the MPI collectives, but full MPI is surely ttarge to serve as a tractable model
for performance analysis and prediction.

An interesting approach to performance optimization andgbility was advocated in [9],
[10]. In this approach, applications are designed at a hiylellusing solely MPI collectives
for communication. Performance is improved and adapted R ishplementations with specific
characteristics by the use @fansformation rulesSome of these aim at combining collectives
in a given context, whereas some decompose or rephrasetoa@kewith presumably inefficient
implementations into sequences or instances of other MPRdatives. These latter type trans-
formations are intimately guided by knowledge of the targgstem and MPI implementation
(performance model and concrete parameters). This is lgxaet opposite of what we propose
in this paper. Indeed, many of the transformations of [9]Idowever be beneficial for MPI

libraries fulfilling the self-consistent performance gelides derived in the following sections.



In this sense, the paper [9] is an “afterthought” addressimgdj alleviating problems that a good
MPI library should in our opinion not have.

Even for relatively simple models of point-to-point comnzation, establishing concrete
values for the model parameters for a given system is notlsinamd a number of benchmarks
have been developed explicitly for this purpose [17], [¥jtomatic generation of performance
models has been addressed by the DIMEMAS project [8], [29], mnodels for collective
communication operations are notoriously difficult to gere without apriori, (too) simplifying
assumptions about the underlying communication algostand system. A further complication
is that the concrete, physical topology under which an MPliagtion is running at a given time
may not be known apriori (due to a scheduler allocating dbffié partitions of a large machine).
Methods and systems for predicting the performance of fapliaations without relying explicitly
on performance models in the simple sense described abaedeen explored in [20], [16]

and many other works.

I1l. M ETA-RULES

We first introduce a set of general principl@seta-rules which capture user expectations on
how an MPI (or other communication) library should behave &gsume reasonable familiarity
with the MPI standard [11], [31], [22], although the disdaossshould be intuitively understand-
able to the general reader. The rationale captured by tha-méds is that thdibrary-internal
implementation of any arbitrary MPI function in a given MRBbrary should not perform any
worse than arexternal, useiimplementation of the same functionality in terms of oth&PI
functions. If such were the case, the performance of thetbinternal MPI implementation
could, all other things being equal, be improved by replgdinwith an implementation based
on the user implementation. Here we focus exclusively on(teenmunication) time taken by
MPI functions, and not on how this interacts with other cotagion time of the application.
Thus, we do not address the possibility of overlapping comipation and computation as made
possible by the MPI standard and supported by some MPI ingiiéations, and ignore also
other context-sensitive factors that could favor one wayeaflizing MPI communication over

another. The meta-rules are as follows.

() Subdividing messages into multiple smaller messagesldmot reduce the communication

time.



(I Replacing an MPI function with a similar function thatrqvides additional semantic
guarantees should not reduce the communication time.

(Il1) Replacing a specific (collective) MPI operation withnaore general operation by which
the same functionality can be expressed should not reduoencmication time.

(IV) Replacing a (collective) operation by a sequence ofebtftollective) operations imple-
menting the same functionality should not reduce commuioicdime.

(V) Reranking the processors through a new MPI communicsitould not reduce the com-
munication time between processors.

(VI) A virtual process topology should not make communicatbetween all pairs of topo-
logical neighbors slower than communication between timeespairs of processes in the
communicator from which the virtual topology was built.

Rule | reflects the understanding that MPI is designed to bcptarly efficient for com-
munication of large messages. In situations where largesages have to be sent, all other
circumstances being equal, it should therefore not be sacg$or the user to manually subdivide
messages. It is a meta-rule and covers all types of MPI conuation, be it point-to-point, one-
sided, or collective. Rule Il expresses the expectationdbmantic guarantees usually come with
a cost. Were that not the case, instances of operations vatk wemantic guarantees could be
replaced by the corresponding operations with strongeragiees, which would not compromise
program correctness, but improve performance. An analegoeta-rule could be formulated for
MPI constructs that require certain semamtreconditiongo be fulfilled. Such operations would
not be expected to be slower than corresponding operationmaking such requirements. We
apply to this analogous meta-rule in two examples in SedNoand V.

Rules Il and IV were motivated above and relieve the usemeftemptation to implement
MPI functions in terms of other MPI functions in order to imge performance.

Rules V and VI are rather MPI specific and cater to the vari@gabilities of MPI to change
the numbering (ranking) of the processors. Processes amedbio processors, and are identified
by an associated rank in their communication domain,dbmunicatorin MPI terms. MPI
provides constructs for creating new communicators fromstag ones, and thereby to change
the ranking of the processors. Rule V states that the rartkatipgocessor happens to have in a
communicator should not determine its communication perémce. Rather the location of each

processor in the communication system is the determiniogpfalndeed, if an MPI library had



a preferred communicator (sayPl _COMM WORLD), in which communication between ranks
1 and 7 was faster than communication between Haneprocessors with ranks and ;' in
some other communicator, the user would be confronted vaghaption of manually mapping
communication betweeit and ;' in the new communicator back to communication betwéen
and j in the preferred communicator. This is a very strong meta-that is discussed in more
detail in Section VI.

MPI provides a means for designating processasaghborghat are expected to communicate
more intensively. In MPI terms such a specification is caléedirtual process topolod@1,
Chapter 6]. An MPI library can use this specification to ogeat communicator in which
neighboring ranks will be bound to processors that can iddemmmunicate faster. Rule VI
states that communication between at least one pair of samhivors should not be slower
(read: can be expected to be faster) in the reordered conmatoni Indeed, if all neighbor pairs
communicate slower in the reordered communicator, the igdegtter off not creating the virtual
topology at all, and this is not what is expected of a good Midlementation. This is explored
further in Section VI.

Similar meta-rules rules can most likely be formulated fttvews communication and application
specific libraries. The application to MPI is particularlyeamingful since the operations of the
MPI standard are semantically strongly interrelated, aadalbbse MPI provides the additional
support functionality to make implementation of complexdtions possible in terms of other,
simpler functions. In the following sections, we discuss theta-rules in more detail and use

them to derive a list of concretsglf-consistent MPI performance guidelines

A. Notation

As shorthand for the concrete examples, and to provide atatwre measure we use the

semi-formal notation
MPI_A(n) =< MPI_B(n)

to mean that MPI functiomd is not slower (alternative readingpossibly or usually fastér
than MPI functionB implementing the same operation when evoked with parasmegsulting
in at most the same amount of communication or computatiprall other circumstances

(communicator, datatypes, source and destination ranksbeing the same. When necessary, we
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usep to denote the number of processes involved in a call,Rtl A{c} for MPI functionality
A invoked on communicatot. Note that the amount of communicatianin actual MPI calls
is not determined by a single argument but specified imptiat explicitly by a combination
of arguments (datatypes, repetition counts, count vecHics).

We use
MPI_A < MPI_B

to mean that functionalityl is possibly faster than functionality for (almost) all communication
amountsn.

Finally, we use
MPI_A ~ MPI_B

to express that functionalitied and B perform similarly for almost all communication amounts
n. Quantifying the meaning of “similarly” is naturally comtgous. A strong definition would
say that there is a small confidence interval independent sich that for any data size the
running time of one construct is within the running time oé thther plus/minus somemall
additive constantA weaker definition could require that the running time oé tivo constructs
is within a small constant factoof each other for any data size The relation= should be an
order relation, andk and~ defined such thatlPI_A < MPI_B and MPI_B < MPI_A implies
MPI_A ~ MPI_B.

As we discuss in Section VIII, it is not necessary to actuditkythe (constant factors in
the) relations< and~ as described above in order to be able to check to what exteMRi

implementation fulfills a set of self-consistent perforroarguidelines.

V. GENERAL AND POINT-TO-POINT COMMUNICATION

The following performance guidelines are concrete appbcs of meta-rule 1. Splitting a
communication buffer ofén units into k£ buffers of n units, and communicating the pieces

separately, should not pay off in an MPI implementation.

MPI_A(kn) = MPI_A(n) + - -+ MPI_A(n) (1)
k
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Likewise, splitting possibly structured data into its cotuent blocks of fixed sizé: should

also not be faster than communicating the data in one operati

MPI_A(kn) =< MPI_A(k) + -+ MPI_A(k) )

n

Guideline (2) ensures that “blocking by hand”, that is, mallyusplitting buffers into smaller

parts of fixed size, will not pay off performance wise, all ethcircumstances being equal.
Of course, in pipelined algorithms or in situations whereréhis a possibility for overlapping
communication with computation, blocking by hand could Ipeoption. The guideline makes
no statement about such situations.

The guidelines (1) and (2) are nevertheless non-triviatl axany MPI libraries will violate
them for point-to-point communication for some rangerofbecause of the use of different
(short, eager and rendezvous) message protocols. An egasngiven in Figure 1 for a particular
system and MPI implementation. The performanc#éi_Send has been measured (with another
process performing the matchingPl_Recv) for varying data sizen. Because of the large,
discrete jump in communication time around= 1K, a user with a 1500-byte message will
achieve better performance on this system by sending mhstea 750-byte messages. This
example illustrates an optimization that competes witliggerance portability—in this case, the
use of small, preallocated message buffers and speciabqmigt To satisfy guideline (1), an
MPI implementation would need a more sophisticated buffanragement strategy, but in turn
this could decrease the performance of all short messages.

An example of an MPI library and system that violates guitel{1) with A = Bcast was
given in [1, p. 68]. For this case the broadcast operation ehagnge of data sizes where
splitting into 2 or 4 blocks of size:/2 and n/4 respectively and performing instead 2 or 4
broadcast operations is faster than a single broadcastdaith sizen.

In both examples users are tempted to improve performanaplitying messages by hand in
his code, and in both examples performance portabilityessifbecause other systems and MPI
libraries may either not have the problem, or the ranges td dize where the problem appears
may be completely different.

MPI has a very general mechanism for communicating nonigootis data by means of
so-called user-defined (or derived) datatypes [31, ChapjteDerived datatypes can be used

universally in communication operations. L&{(k) be an MPI derived datatype containirg
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Fig. 1. Measured performance of short message point-totoimmunication on IBM BG/L witiMPI_Send and MPI_Recv.
Because of the switch from eager to rendezvous protocol énMiPl implementation, there is a large jump in performance
around 1024 bytes. A user could get better performance fdBGD-byte message by sending this as two 750-byte messages

instead. This behavior is typical of many (most) current Nt@plementations.

basic elements. We would expect the handling of datatypesynMPI operationA to be at
least as good as first packing the non-contiguous data intenaigcious block using the MPI
packing functionality [31, Chapter 3, page 175], followeyg &perationA on the consecutive

buffer. Semi-formally this can be expressed as follows.
MPI_A(n/k, T(k)) < MPI_Pack(n/k,T(k))+ MPI_A(n) 3

where MPI_A(n/k,T'(k)) means that operatiord is called withn/k elements of typel’(k)
(for a total of n units). Hence MPI_Pack(n/k, T'(k)) packsn/k elements of typel'(k) into a
consecutive buffer of size. There would be a similar guideline fadPI_Unpack.

The pack and unpack functionalities should be constrainet that packing by subtype does
not pay off. This is captured by the following guideline.

MPI_Pack(n/k, T(k)) = (4)

MP'_PaCk(no/ko, T(](ko)) 4+ ...+ I\/IPI_Pack(nt_l/kn_l, Tt_l(/{:t_l))
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whereT;(k;) for : =0,...,t — 1 are the subtypes df (k), each ofk; elements, and, + ... +
ki1 = k andng + ...+ n,_1 = n. Note that guideline (3) does not require MPI handling
of non-consecutive data described by derived datatypes tddster” than what can be done
by hand, but solely relates datatype handling implicit ie MPI communication operations to
explicit handling by the user with the MPI pack and unpackctfionality. Recursive application
of guideline (4) does, however, limit the allowed overheaderived-datatype handling, and thus
reassures the user of a certain, relative base performantieeiuse of derived datatypes. The
derived datatype functionality powerfully illustratesetigains in (performance) portability that
would be offered by even relatively weak self-consistentglines like the above. The decision
whether to use derived datatypes often has a major impacipphcation code-structure, and
maintaining code versions with and without derived datatyjs often not feasible. In other
words, the amount of work required to port a complex applocaimplemented with MPI derived
datatypes that performs well on a system with a good impléatiem of the datatype functionality
to a system with poor datatype support can be considerainiee $nany early MPI libraries had
relatively poor implementations of the derived datatypectionality, this fact did and still does
detract users from relying on a functionality that can oftemplify the coding. Performance
guidelines would assure that the performance of MPI comoaiian with structured data would
be at least as good as a certain type of hand-coding, andhisabase performance would be
portable across systems.

Application of meta-rule Il toMIPI_Send and MPI_Isend first gives
MPI_Isend(n) = MPI_Send(n)

since MPI_Send provides the additional semantic guarantee that the sefférbg free for
use after the call. Of course it rarely makes sense to repack!Pl_Send operation with a
nonblockingMPI_lsend without at some point issuing a correspondM@I_Wait call. Since an
MPI_Wait has no effect and therefore should be practically for freettie MPI_Send operation,
we infer the guideline

MPI_Isend(n) + MPI_Wait < MPI_Send(n) (5)
By meta-rule IV we also have that

MPI_Send(n) = MPI_Isend(n) + MPI_Wait (6)
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and in combination with guideline (5) it can be deduced tmal/i®|_Send operation should be

in the same ballpark as aviPI_Isend followed by anMPI_Wait:
MPI_Send(n) ~ MPI_lsend(n) + MPI_Wait (7)
Another similar application of meta-rule Il leads to the dgline that
MPI_Send(n) =< MPI_Ssend(n) (8)

Since the synchronous send operation has the additionargenguarantee that the function
cannot return until the matching receive has started, itilshnot be faster than the regular send.

Along the same lines it can be expected that
MPI_Rsend(n) =< MPI_Send(n) 9)

If the semantigpreconditionthat the receiver is already ready is fulfilled the specialdse
send should not be slower than an ordinary send operatighatfwould be the case, the library
(and user) should simply ugdPI_Send instead. We did not explicitly introduce a meta-rule on
semantic preconditions.

Guidelines for other point-to-point communication opemas can be similarly deduced. For

MPI_Sendrecv it is for instance sensible to expect that

MPI_Sendrecv =< MPI_lsend + MPIl_Recv + MPI_Wait (20)

MPI_Sendrecv < MPI_Irecv + MPI_Send + MPI_Wait 11

which follows from meta-rule IV.

V. COLLECTIVE COMMUNICATION

The MPI collectives [31, Chapter 4] are semantically sttgngterrelated, and often one
collective operation can be implemented in terms of one oremuther, related collectives.
A general guideline to an MPI implementation is that a sgeed collective should not be
slower than a more general collective, as stated by me&atullf such guidelines are fulfilled,
users can, with good conscience, be given the advice to alwsg the most specific collective
applicable in the given situation. Naturally, this is onetloé motivations for having so many
collectives in MPI, and many current MPI implementationsuse specialized, more efficient

algorithms for specific collectives. The literature on tlesxtensive.
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A general, very MPI specific set of guidelines, that folloverfr meta-rule Il concern the
use of theMPl _| N_PLACE option. For some collectives it can be used to specify thét gfa
the input has already been placed at its correct positiorutpud buffer, leading to a potential
reduction in local memory copies or communication and thysedormance benefit. In such
cases théWPl _| N_PLACE option is a semantiprecondition(similar to the precondition in

guideline (9)), leading to guidelines like
MPI_A(MPI_IN_PLACE,n) =< MPI_A(n) (12)

for collectivesA where theMPl _I N_PLACE option has the meaning described above. This is
the case foMMPI_Gather, MPI_Scatter, MPI_Allgather (and their irregular counterparts). In the
reduction collectives likeMPI_Allreduce the MPl _I N_PLACE option is partly a precondition,
partly a semantic guarantee (that a replacement has befmrped), and therefore performance

guidelines are more difficult to argue.

A. Regular Communication Collectives

Most MPI collectives exist in regular and irregular (vegteariants. In the former the involved
processes contribute the same amount of data. These ar#éhaigoally easier and usually per-
form better than their corresponding irregular variangswél be discussed further in Section V-C.

The following two guidelines are obvious instances of nreta-Ill.

MPI_Gather(n) =< MPI_Allgather(n) 13)

MPI_Allgather(n) =< MPI_Alltoall(n) (14)

These expectations also follow from the fact that the moreegsd collectives on the right hand
side of the equations require more communication, and an ikiBlementation that does not
fulfill them asn grows would indeed be problematic. For instanceVlidl_Allgather each process
eventually sends (onlyy/p data and receives data, whereadMPI_Alltoall both sends and
receivesn data. An implementation d¥IPI_Allgather in terms ofMPI_Alltoall would furthermore
require each process to makecopies of then/p contributed data prior to callinylPI_Alltoall.

This alone should eventually cause the performance exjattél4) to hold.
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The next guideline follows by meta-rules 11l and 1V from aaght-forward implementation

of the collectiveMPI_Allgather operation in terms of two other.

MPI_Allgather(n) =< MPI_Gather(n) + MPI_Bcast(n) (15)

The MPI library implemented/PI_Allgather should not be slower than the user implemen-
tation in terms ofMPI_Gather and MPI_Bcast. This is not as trivial as it may look. If, for
instance, a linear ring algorithm is used for the natWBI_Allgather implementation, and tree-
based algorithms foMPI_Gather and MPI_Bcast, the relationship will not hold, at least not
for small data sizes. Such guidelines thus contribute towards consistent padace between
different MPI collectives, and would render user optimiaas based on inconsistently optimized
collectives unnecessary.

A less obvious guideline relat@dPI_Scatter to MPI_Bcast. By meta-rule 1l
MPI_Scatter(n) =< MPI_Bcast(n) (16)

since theMPI_Scatter operation can be done by more generally broadcasting:tdata and
then letting each process filter out the subset of the dataetis. For MPI libraries with an
efficient implementation oMPI_Bcast, this is a nontrivial guideline for smalt, and enforces
an equally efficient implementation MPI_Scatter. An example where this guideline is violated
was found with the IBM Blue Gene/P MPI library, which contn optimized implementation
of MPI_Bcast, but not of MPI_Scatter. As a result,MPI_Scatter is about four times slower
than MPI_Bcast as shown in Figure 2. This is certainly not what a user woulgeex, and such
behavior would encourage non-portable replacementdif Scatter by MPI_Bcast.

A currently popular implementation of broadcast for largessages reduces broadcast to a
scatter followed by an allgather operation [2], [3], [32]Jn& this algorithm can be expressed
purely in terms of collective operations, it makes senseetjuire that the native broadcast of

an MPI library should behave at least as well:

MPI_Bcast(n) =< MPI_Scatter(n) + MPI_Allgather(n) 17)
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Fig. 2. Performance oMPI_Scatter versusMPI_Bcast on IBM Blue Gene/P. For both collectives the size is the teta¢
of the buffer sent from the root. A natural expectation worgduire the scatter operation to be no slower than the besddc

This is violated here.

B. Reduction Collectives

The reduction collectives perform an operation on datardauted from all involved processes,
and come in several variants in MPI.

The second half of the next rule states that a good MPI imphatien should have an
MPI_Allreduce that is faster than the trivial implementation of reducttonroot followed by a

broadcast. It follows from meta-rule IV, whereas the firsttgg a trivial instantiation of rule Ill.

MPI_Reduce(n) =< MPI_Allreduce(n)

=< MPI_Reduce(n) + MPI_Bcast(n) (18)

A similar rule can be formulated fdvIPl_Reduce_scatter. This is an irregular collective, since

the result blocks eventually scattered over the processssdiffer in size:

MPI_Reduce_scatter(n) < MPI_Reduce(n) + MPI_Scatterv(n) (19)
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The next two rules implememPI_Reduce andMPI_Allreduce in terms ofMPI_Reduce_scatter

and are similar to the broadcast implementation of guige(itir).

MPI_Reduce(n) =< MPI_Reduce_scatter(n) + MPI_Gather(n) (20)

MPI_Allreduce(n) =< MPI_Reduce_scatter(n) + MPI_Allgather(n) (21)

SinceMPI_Allreduce is a more general operation th&PI_Reduce_scatter it should, similarly
to guideline (16), hold that

MPI_Reduce_scatter(n) < MPI_Allreduce(n) (22)

MPI libraries with trivial implementations oMPI_Reduce_scatter but efficient implementa-
tions of MPI_Allreduce will fail this guideline. A further complication arises bmase MPI_-
Reduce_scatter is an irregular collective, allowing result blocks of diféat sizes to be scattered
over the MPI processes. In extreme cases where the compki# is scattered to one process
only, the guideline could be difficult to meet. The paper [3ows that the guideline is
nevertheless reasonable by giving an adaptive algorithmttis collective with comparable
performance to similar, good algorithms fotPI_Allreduce.

For the reduction collectives, MPI provides a set of builteinary operators, as well as the
capability for users of defining their own operators. A natuexpectation is that a user-defined
implementation of the functionality of a built-in operatsiould not be faster. By meta-rule 11l

this gives rise to guidelines like the following.
MPI_Reduce(n,MPI_SUM) =< MPI_Reduce(user_sum) (23)

whereuser _sumimplements element-wise summation just as the built-iratpe MPI _SUM
A curious example of a vendor MPI implementation where dyabis is violated is again given
in [1, p. 65]. For this particular system it turned out thatrgnation with a user-defined operation
was a factor 2-3 faster than summation with the built-in eparfor larger problem sizes.

The following observation relates gather operations touctdns for consecutive data. A
consecutive block of data; can gathered from each procedsy summing contributions of size

n; with all processes exceptontributing blocks of:; zeroes (neutral element for the operation).
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This gives rise to two non-trivial performance guidelineamely

MPI_Gather(n) < MPI_Reduce(n) (24)

MPI_Allgather(n) < MPI_Allreduce(n) (25)

which also hold for the irregulaMPl_Gatherv and MPI_Allgatherv collectives. The guidelines
could also be extended to non-consecutive data by using adefieed reduction operator
operating on non-consecutive data, and thus to cover thiegatllectives in full generality. The
IBM Blue Gene/P has very efficient hardware support for réidacand broadcast (collective
network). The equations above suggest that similar pedone be achieved foMP1_Gather(v)

and MPI_Allgather(v). In the Blue Gene/P MPI library the observation above is useattly

for this purpose (Sameer Kumar, personal communicatiorgreMraditional mesh- or ring-
algorithms forMPI_Gather or MPI_Allgather would have difficulties fulfilling such guidelines,
and the example show that self-consistent performanceetings, if formulated carefully, do
not compromise the use of special hardware support to opgimn MPI library. But they oblige

(and show how) to exploit such hardware support consistentl

C. Irregular Communication Collectives

The irregular collectives of MPI, in which the amount of da@mmunicated between pairs
of processes may differ, are obviously more general thaim tegular counterparts. It would be
desirable for the performance to be similar when an irregatdlective is used to implement
the functionality of the corresponding regular collectifdis would releive the user of irregular
collectives of the temptation to detect regular patternd eall the regular operations in such

cases. The< part of this optimistic expectation follow from meta-ruli: |

MPI_Gather(n) < MPI_Gatherv(v) (26)
MPI_Scatter(n) =< MPI_Scatterv(v) (27)
MPI_Allgather(n) =< MPI_Allgatherv(v) (28)
MPI_Alitoall(n) < MPI_Alitoallv(v) (29)

for uniform p element vectors with v[i] = n/p,0 < i < p. Strengthening these t& and
requiring the performance dfPI_Gatherv to be in the same ballpark as the regléiPl_Gather
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would be a highly non-trivial guideline. For instance, thesire easy tree-based algorithms
for MPI_Gather that do not easily generalize tdPI_Gatherv, because the MPI definition of
MPI_Gatherv is such that the count vectoris not available on all processes. Thus, performance
characteristics of these collectives may be quite differanleast for smalh [33].

The MPI_Alltoallv andMPI_Alltoallw functions are universal collectives capable of expressing
each of the other data-collecting collectives. Also, brazet can be implemented by an irregular
MPI_Allgatherv operation by a gather-vectoy with v,[r] > 0 for root r andw,[i] = 0 for i # r.

Again, by rule 1ll, the following further guidelines can bewvtally deduced.

MPI_Bcast(n) =< MPI_Allgatherv(v,) (30)
MPI_Gatherv(v,) =< MPI_Alltoallv(v,) (31)
MPI_Scatterv(vs) < MPI_Alltoallv(vy) (32)

MPI_Allgatherv(v,) =< MPI_Alltoallv(v,) (33)

wherewy, vy, vs, v, arep element vectors expressing the broadcast, irregular gegbatter and
all-gather problems, respectively. Strengtheningta@oes not follow from the meta-rules and
is too strict a guideline which no current MPI libraries wdidatisfy.

A similar guideline to (16) foMPI_Scatterv would not hold:
MPI_Scatterv(n) =< MPI_Bcast(n)

is, due to the asymmetry of the rooted, irregular collectiegplained above, too strong. Only
the root has all data sizes and therefore the non-root psesesannot know the offset from
which to filter out their blocks. Further communication iscassary, therefore the performance

guideline is rather
MPI_Scatterv(n) =< MPI_Scatter(p) + MPI_Bcast(n)

< MPI_Bcast(p) + MPI_Bcast(n) (34)

where latter part follows by application of guideline (16).

D. Constraining Implementations

The guidelines deduced in the previous sections, whicherdtee performance of collective

operations to that of other collective operations, couléxganded to more absolute performance
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guidelines by requiring collective performance to be bodnydthe performance of a set of
predefined, standard algorithms (implemented in MPI). Suoke elaborate performance bounds
would actually follow by repeated application of meta-rieThe MPI standard already explains
many of the collectives in terms of send and receive opearatidhis for instance leads to the

following, basic performance guideline fdAPI_Gather.

MPI_Gather(n) < MPI_Recv(n/p) + - - - + MPI_Recv(n/p) (35)
p

Although we do not include them here, such additional, imq@atation constraining guidelines

based on point-to-point implementations of the MPI collesd would bound the collective
performance from above. Such a set of upper bound guidelvasdd include for instance
algorithms based on meshes, binomial or binary trees,Hipip&lines and others faviPI_Bcast,
MPI_Reduce and similar collectives. If a sufficiently large and broad seconstraining imple-
mentations were defined and incorporated into an automatidation tool (see Section VIiI),
reflecting common networks and assumptions on communitaystems, useful performance

guarantees clearly showing where simple user-optiminatimake no sense could be given.

VI. COMMUNICATORS AND TOPOLOGIES

In this section we expand on the meta-rules V and VI.

Let ¢ be a communicator (set of processes) of gizepresenting an assignmentyoprocesses
to p processors. Withim processes have consecutive rafiks ., p—1. Let¢ be a communicator
derived fromce (by MPI_Comm_split or other communicator creating operation) representing a
different (random) assignment to the same processorsi’' s the rank inc’ of the process

with rank: in c. Rule V states that
MPI_A(i,n){c} =< MPI_A(/',n){} (36)

whereMPI_A(i,n){c} is an MPI operatiomA performed by rank in communicator. In other
words, switching to the ranking provided by the new commatacc should not be expected, all
other things being equal, to lead to a performance improweniote that this guideline is not

requiring that rank performs similarly inc and¢’, which would only be possible in special cases
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(e.g. systems with a homogeneous communication systengeth since rank can have been
remapped to another processordncommunication performance can be completely different.
Rule VI addresses this point. If ranksand j have been specified as neighbors in a virtual

topology ¢ derived frome, at least for one such neighbor pair it should hold that
MPI_Sendrecv(i, j,n){c'} =< MPI_Sendrecv(i,j,n){c} (37)

This is possible because, as explained above, ramksl j in ¢ may be “closer” to each other
than they were inc by being mapped to different processors. In an MPI library fodfilling
such guidelines, there is little (performance) advantagesing the virtual topology mechanism.
The user is better advised staying with the original commaiar c.

Guidelines derived from rule V are far from trivial to meet BMPI implementations. Consider
for instance thevPl _Al | gat her collective. A linear ring or logarithmic tree algorithm de-
signed on the assumption of a homogeneous system may, whented on a SMP system and
depending on the distribution of the MPI processes over & ®odes, have communication
rounds in which more than one MPI process per SMP node haventoncinicate with processes
on other nodes. This would lead to serialization and slowsdof such rounds and thus break
guideline (36). The extent to which this can degrade peréoree is shown in Figure 3, where
the running times oMPI_Allgather for two different communicators are plotted against each
other. A non-SMP aware algorithm will be highly sensitivetb@ process numbering, whereas
the SMP-aware algorithms is only to a small extent, whichwghthat guideline (36) can be
fulfilled by a corresponding algorithm modification.

A further difficulty for collective operations to fulfill gadieline (36) is that resulting data must
be stored in rank (or, for the irregular collectives, in amdefined) order in the output buffer.
Thus, even thougIMPI_Allgather collects the same data (on all processes) whether it isdcalle
over communicatoe or ¢, the order in which data are received may be different in W@ ¢ases
depending on the algorithm used to implement the collecjperation. Gathering in rank order
may sometimes be easier than gathering in some random &oderstance because intermediate
buffering may not be needed. Therefore, the running time @oramunicatorc’ with an easy
ordering could be smaller than on the origingl thus violating guideline (36). Such algorithm
dependent factors need to be taken into account when makegpérformance guidelines

guantitative. Figure 3 (right) illustrates such a case:diorall data sizes the performance on the
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MPI_Allgather, 36 nodes, Linear algorithm, MPI_COMM_WORLD versus random MPI_Allgather, 36 nodes, New algorithm, MPI_COMM_WORLD versus random
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Fig. 3. Left: performance of a simple, non-SMP-aware lindag algorithm for MPI_Allgather when executed on the
orderedMPl _COMM_WORLD communicator and on a communicator where the processeshe@rerandomly permuted. Right:
performance of an SMP-aware algorithm fbfPI_Allgather on ordered and random communicator. The non-SMP aware
algorithm violates the performance expectations captimethe guidelines, whereas the SMP-aware algorithm argudbés

not.

random communicator is up to a factor two worse than on theiesel MPI _COVM WORLD
communicator. The algorithm in this example uses an intdrate buffer for small data. If
data are received in rank order in this buffer, copying inte wuser buffer can be done in
one operation, which is significantly faster than the seqeaesf copy operations needed if the
intermediate buffer stores data in some random order.

For reduction collectives with non-commutative operatorsta-rule V will not hold. It is
therefore formulated as a rule purely for communicationrapens.

As discussed for guideline (24), guideline (36) does notlpe optimizations based on
hardware support. For instance the NEC SX-8 communicataiwark provides a small number
of hardware counters that can be used for efficient barrieclssonization. This is exploited in the
NEC MPI/SX library [28] which allocates a barrier counterdgach new communicator if one is
available. Thus, it is possible faiPI_Barrier to be significantly slower on a new communicator
¢ than on the original communicater—which is not in violation of (36), all other things being

equal (concretely, that a hardware counter has not becoaible whend is created from a
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without counter). Guideline (36) does suggest, howevet MPI _COVM WORLD, from which

all other communicators are derived, be assigned suchapesiources.

A. Hierarchical Implementations

For systems with a hierarchical communication structurg, elusters of SMP nodes, some
collective operations can conveniently and efficiently in@liemented by hierarchical algorithms.
It would therefore be sensible to require a good MPI impletaon to do this, instead of tempt-
ing the user into writing his own, hierarchical algorithriiie guideline below foMPI_Allreduce
formalizes this. Similar guidelines can easily be formethfor other collectives admitting of
hierarchical implementations of this kind.

Let ¢,...cr_1 be a partition of the given communicaterinto k£ parts, and letC be a

communicator consisting of one process from each of the comzatorsc;.

MPI_Allreduce{c} = (38)
1=} MPI_Reduce{c;} + MPI_Allreduce{c}+ ||*=3 MPI_Bcast{c;}

The guideline states that the library implementatiomdtl_Allreduce should not be slower than
a set of local, concurre¥lPl_Reduce operations on the; communicators followed by a global
MPI_Allreduce and followed by a set of local, concurreMtP|_Bcast of the final result. This is
supposed to hold for all splits of the communicator

In [38] a case where exactly this kind of tedious rewrite wasassary for the user to attain
the expected performance is described. Other users of $dPsystems often raise similar
complaints. Encouraging MPI libraries to fulfill perform@guidelines like (38) would save the
user from that kind of trouble, and make application codesrénperformance portable across

different libraries and systems.

VIlI. ONE-SIDED COMMUNICATION

The one-sided communication model of MPI-2 is related td lpaint-to-point and collective
communication, and a number of performance guidelines eafotmulated. However, because
of the different semantics of the point-to-point, one-di@dad collective communication models,

much more care is required when formulating guidelines g tommunication model. We only
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point out the kind of guidelines that can be formulated, buindt explicitly state such because
of the subtle semantic differences of especially the pmoint and one-sided communication
models.

Assuming a communication window spanning only two procgsard assuming that data are
sent as a consecutive block (no derived datatype), it mightelasonable to expect a blocking
send to perform comparably to &dPI1_Put with the proper synchronization, at least for larger
data sizess.

MPI_Send(n) =~ MPI_Win_fence + MPI_Put(n) + MPI_Win_fence

Such a guideline ignores overhead for tag matching in pmifgeint communication, may
severely underestimate the synchronization overheadeirs¢imantically stronIP1_Win_fence
mechanism, and cannot cater for derived datatypes that draweherent overhead in one-sided
communication, and other factors. Great care is needednf@actual set of fair guidelines.

The issues may be less involved when relating one-sided ltectge communication. The
following guideline can be seen as a further example of atcangng implementation in the

sense of Section V-D.

MPI_Gather(n) =

MPI_Win_fence + MPI_Get(n/p) + - - - + MPI_Get(n/p) +MPI_Win_fence

p

VIIl. V ERIFICATION OF CONFORMANCE

Although the number of performance guidelines derived ia pinevious sections is already
large, the listis not (and cannot be) exhaustive. Furthespeach guideline is intended to hold for
all system sizes, all possible communicators, all datatyp&c, except where noted otherwise.
These factors have to be considered when attempting to sassegalidate the performance
consistency of a given MPI implementation. The form of thedglines is to contrast two
implementations of the same MPI functionality. One of th@splementations can be quite
elaborate, as shown in the example for hierarchical callestin Section VI-A.

To aid in the validation, a flexible MPI benchmark is thereforeeded that makes it possible

to script implementations of some functionality at a higldl and contrast the performance of
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various alternatives. One such benchmarBkaMPI[1], [26], [27], which already containgat-
ternsthat correspond to some of the implementation alternatifeébe performance guidelines.
SKaMPI can easily be customized with more such alternatives. Timehreark also makes it
possible to compare different measurements.

To assess whether performance guidelines are violated anehat extent, an experiment-
management system is needed to go through the large amodataoproduced, and to compare
results between different experiments. An example of susystem isPerfbasd39], [40], which
can be used to mine a performance database for cases wheyertbenance of two alternative
implementations differ by more than a preset threshold. Pldgbasesystem allows a flexible
notion of threshold, thus it is not necessary for the valaato quantify exactly the< and ~
relations.

Building a tool for extensive, semi-automatic verificatiohperformance guidelines for MPI

is an an extensive and challenging task, that is beyond thygesof this paper.

IX. CONCLUDING REMARKS

Users of MPI often complain about the poor performance fixadly speaking) of some of the
MPI functions in their MPI libraries, and about obstacleswmting code whose performance
is portable. Defining a performance model for something asptex as MPI is untenable and
infeasible. We instead propose self-consistent MPI peréorce guidelines to help in ensuring
performance consistency of MPI libraries and a degree dbpmaance portability of application
codes. Conformance to such guidelines could, in principechecked automatically. We believe
that good MPI implementations are developed with some sugtelines in mind, at least
implicitly, but we also showed examples of MPI libraries aydtems where some of the rules are
violated. Further experiments and benchmarks with othet isiBlementations will undoubtedly
reveal more such violations. This would be a positive cbution, revealing where more work
in improving the quality of MPI implementations is needed.ddurse, in some cases, system,
resource, or other constraints may lead an implementatbonhbose not to fix a particular
violation of the guidelines.

We think that a similar approach may be possible and benkfariather software libraries.

In this wider context, MPI is an example of a library with a lhigegree of internal consistency
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between concepts and functionality, and this made it fémadd formulate a large set of self-
consistent performance guidelines.

For MPI, similar performance guidelines can also be forrmddor the parallel I/O function-
ality defined in MPI-2 [11, Chapter 7], but that topic is tocesjalized, subtle (as was already
the case for one-sided communication in Section VII), aneéresive to be considered here. 1/0
performance is crucially influenced by factors that can quaytially be controlled by the MPI
library, possibly only through hints that an MPI implemeiua is not obliged to take. Therefore,
many desirable rules can only be formulatedpgsformance expectatiorte the MPI library.
Our initial thoughts are detailed in [12].

Another interesting direction for further work is to considwvhether sensible, self-consistent
guidelines to thescalability propertiesof an MPI implementation can be formulated, again
without constraining the underlying hardware or presagpparticular algorithms and imple-
mentations.

The most important, imminent work, however, is to constautbol to assist in the verification
of conformance of an MPI library to a set of performance glings as formulated in this paper.
As explained this would comprise a flexible, easily extelesNdP| benchmark and a performance
management system that would together make it possiblentivast the two sides of the equations

making up the performance guidelines and discover pointgaétion.
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