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Self-consistent quantum effects in the quark meson coupling model
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We derive the equation of state of nuclear matter for the quark-meson coupling model taking into account
quantum fluctuations of thes meson as well as vacuum polarization effects for the nucleons. This model
incorporates explicitly quark degrees of freedom with quarks coupled to the scalar and vector mesons. Quan-
tum fluctuations lead to a softer equation of state for nuclear matter giving a lower value of incompressibility
than would be reached without quantum effects. Thein-mediumnucleon ands-meson masses are also calcu-
lated in a self-consistent manner. The spectral function of thes meson is calculated and thes mass has the
value increased with respect to the purely classical approximation at high densities.
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I. INTRODUCTION

The study of the high density and high temperature h
ronic matter is one of the most interesting subjects in nuc
many-body physics for the understanding of superdense
and relativistic heavy-ion collision. Usually the frame
quantum hadrodynamics~QHD! @1# is the departure to the
study of the nuclear many-body problem describing nucle
interacting with scalar and vector mesons. This meson fi
theory has quite successfully described the properties of
nuclear matter and finite nuclei using the mean field appro
mations for the meson fields. The vacuum polarization c
rections arising from the nucleon fields as well as the me
fields have also been considered to study the nuclear m
@2#. This is one way of obtaining a softer equation of sta
yielding a lower compressibility than would be reached wi
out quantum effects. This is an indication that even if one
interested in developing effective models for the descript
of such complex systems a description taking into acco
quantum fluctuations may be of relevance.

While descriptions of the nuclear phenomena have b
efficiently formulated using some hadronic degrees of fr
dom as in QHD, there have been interesting observat
that reveal the medium modification of the internal struct
of the nucleon. High density and temperature matter
been, and is being, investigated in RHIC and CERN andin
mediummodifications of the parameters of the theory us
for the description of the experimental observations mus
considered. Furthermore, quantum chromodynamics~QCD!
is expected to present a phase in which quarks and gluon
not confined inside hadrons at high densities and/or temp
tures. At such high densities and/or temperatures, asymp
freedom implies smaller coupling constants. Therefore
degrees of freedom from the fundamental theory of stro
interacting systems, QCD, must be considered. Due to
complex structure of this theory we are led to formulate
fective models that have the main properties and symme
of QCD as chiral symmetry and its spontaneously symme
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breaking. One of the first models put forward along the
lines was the quark-meson coupling~QMC! @3,4# model
which describes the different phases of hadronic matte
terms of explicit quark degrees of freedom. This model d
scribes nuclear matter with nucleons as nonoverlapping M
bags interacting through the scalar and the vector mes
very much in the same way as in the QHD@1#. The crucial
difference is that in the QMC, the mesons couple directly
the quarks in the interior of the baryon. Many applicatio
and extensions of the model have been made in the
years—see Refs.@5–10#, and references therein. Among se
eral aspects the density dependent bag constant has also
investigated within this frame@10#. The behavior of the orde
parameter of the chiral symmetry breaking has been focu
attention and is believed to have strong consequences
observations in relativistic heavy-ions collisions. There a
evidences for believing that the symmetry is restored at h
densities~and temperatures! making the order parameter t
vanish although the idea of further symmetry breaking w
increasing densities@11# has not been extensively studie
Although effective models are usually developed for clas
cal mean fields, one is often driven to the investigation of
contribution of quantum effects which modify dynamic
equations and observables.

In the present work, we investigate the role of the qua
tum fluctuations of thes meson in a nonperturbative sel
consistent way. Another effect we will consider are t
vacuum polarization corrections arising from nucleons as
ready done in the QHD@2,12,13#. The equation of state fo
dense matter is derived. We organize the paper as follows
Sec. II, we derive the equation of state~EOS! for dense mat-
ter including the quantum fluctuations from the nucleons a
the s mesons within the QMC model. We also show t
spectral function for the same level of approximation. In S
III, we discuss in detail the numerical results obtained in
present work and discuss possible outlook.

II. THEORY

The details of the QMC model have been given in Re
@3,4,6#. Since we now include the vacuum polarization e
©2002 The American Physical Society07-1
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fects of nucleons, we give here a few important steps
completeness.

In this model, the nucleon in nuclear matter is assume
be described by a static MIT bag in which quarks inter
with the scalar (s) and the vector (v) mesons. The quark
field cq(r ,t) inside the bag then satisfies the equation

@ igm]m2~mq
02gs

qs0!2gv
q v0g0#cq~r ,t !50, ~1!

wheremq
0 is the current quark mass andgs

q and gv
q are the

quark couplings with thes andv mesons.
After putting the boundary condition at the bag surfa

we have the transcendental equation for the ground-state
lution of the quark~in s state! as

j 0~x!5bqj 1~x! ~2!

which determines the bag eigenfrequencyx. In the
above, bq5A(Vq2Rmq* )/(Vq1Rmq* ), with Vq5(x2

1R2mq*
2)1/2; mq* 5mq

02gs
qs0 is the effective quark mass

The form of the quark wave function is almost identical
that of the solution in free space. However, the parameter
the expression have been substantially modified by the
rounding nuclear medium. Thus the quarks in the nucle
embedded in the nuclear medium are more relativistic t
those in a free nucleon.

The energy of the nucleon bag is

M* 53
Vq

R
2

Z

R
1

4

3
pR3B, ~3!

whereB is the bag constant andZ parametrizes the sum o
the center-of-mass motion and the gluonic corrections. N
that this center-of-mass treatment is different from that of
and Jennings@10#. The bag radiusR is then obtained through
]M* /]R50. This is the stability condition for the bag. A
interesting fact related to the QMC model is that the b
volume changes in the medium through the mean value
the s field. This also implies that the bag eigenvalues
also modified.

A. Vacuum polarization for nucleons

We now proceed to study the EOS for nuclear ma
including the vacuum polarization effects from nucleons
zero temperature. The details of the theory have already b
discussed in the frame of QHD in Ref.@2# through an ex-
plicit construction of a state with nucleon-antinucleon co
densates which is identical to those obtained through s
ming of tadpole diagrams for the baryon propagator in
relativistic Hartree approximation. Only a few importa
steps are given here. The energy density after subtracting
the pure vacuum contribution becomes

e05eMFT1De, ~4!

with the mean field contribution given by
05520
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eMFT5
g

~2p!3Euku,kF

dk~k21M* 2!1/21
1

2
ms

2s0
21

1

2
mv

2 v0
2 ,

~5!

being the cutoff given by the~Fermi! momentum at the
Fermi surfacekF , and

De52
g

~2p!3E dkF ~k21M* 2!1/2

2~k21M2!1/22
gss0M

~k21M2!1/2G . ~6!

The above expression for the energy density is diverg
After renormalization by adding the counterterms@12#, we
have the expression for the finite renormalized energy d
sity,

e ren5eMFT1De ren , ~7!

where

De ren52
g

16p2 FM* 4lnS M*

M D1M3~M2M* !2
7

2
M2~M

2M* !21
13

3
M ~M2M* !32

25

12
~M2M* !4G . ~8!

The baryonic density is obtained by

r5
gkF

3

6p2
. ~9!

In the above,g is the spin-isospin degeneracy factor which
equal to 4 for nuclear matter and to 2 for neutron matter

B. Quantum fluctuations for the s

Next, we consider the quantum corrections due to the s
lar meson. Including a quartic scalar self-interaction,
Hamiltonian density for the scalar mesons becomes

Hs5
1

2
]ms]ms1

1

2
ms

2s21ls4, ~10!

with ms and l being the bare mass and coupling consta
respectively. The quantizeds field satisfies the algebra

@s~x!,ṡ~y!#5 id~x2y!. ~11!

We may expand the field operators in terms of creation
annihilation operators at timet50 as

s~x!5
1

~2p!3/2E dk

A2v~k!
@a~k!1a†~2k!#eik•x, ~12!
7-2
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ṡ~x!5
i

~2p!3/2E dkAv~k!

2
@2a~k!1a†~2k!#eik•x.

~13!

In the above,v(k) is an arbitrary function which for free
fields is given byv(k)5Ak21ms

2 and the corresponding
vacuum to this basis is defined throughauvac&50. We shall
now adopt a procedure as in Ref.@2# to calculate the quan
tum corrections arising from thes mesons. We consider a
ansatz for the ground state includings condensates as

uV&5Usuvac&, ~14!

with

Us5UII UI ~15!

whereUi5exp(Bi
†2Bi) ( i 5I ,II ). Explicitly theBi are given

as

BI
†5E dkAv~k!

2
f s~k!a†~k!, ~16!

and

BII
†5

1

2E dk g~k!a8†~k!a8†~2k!. ~17!

In the above, a8(k)5UIa(k)UI
215a(k)2Av(k)/2f s(k)

corresponds to a shifted field operator associated with
coherent state@14# and satisfies the same algebra as the c
ation and annihilation operators fors and ṡ. Thus in this
construct for the ground state we have two functionsf s(k)
andg(k) which will be determined through minimization o
energy density. Further, sinceuV& contains an arbitrary num
ber of a8† quanta,a8uV&5” 0. However, we can define th
basisb(k), b†(k) corresponding touV& through the Bogo-
liubov transformation. Further, to preserve translational
variance,f s(k) has to be proportional tod(k) and we take
f s(k)5s0(2p)3/2d(k). s0 will correspond to a classica
field of the conventional approach@14#. It is easy to evaluate
that

^VusuV&5s0 , ~18!

but,

^Vus2uV&5s0
21I , ~19!

where

I 5
1

~2p!3E dk

2v~k!
~cosh 2g1sinh 2g!. ~20!

We next calculate the expectation value of the Hamilton
density for thes meson given by Eq.~10!. Using Eqs.~18!–
~20! the energy density ofHs with respect to the trial state
becomes
05520
e
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es[^VuHsuV&5
1

2

1

~2p!3E dk

2v~k!
@k2~sinh 2g1cosh 2g!

1v2~k!~cosh 2g2sinh 2g!#1
1

2
ms

2 I 16ls0
2I 13lI 2

1
1

2
ms

2s0
21ls0

4 . ~21!

Extremizing the above energy density with respect to
function g(k) yields

tanh 2g~k!52
6lI 16ls0

2

v~k!216lI 16ls0
2 . ~22!

It is clear from the above equation that in the absence o
quartic coupling no such averaged value is favored since
function vanishes forl50. Now substituting this value o
g(k) in the expression for thes-meson energy density yield

es5
1

2
ms

2s0
21ls0

41
1

2

1

~2p!3E dk~k21Ms
2 !1/223lI 2,

~23!

where

Ms
25ms

2112lI 112ls0
2 ~24!

with

I 5
1

~2p!3E dk

2

1

~k21Ms
2 !1/2

~25!

obtained from Eq.~20! after substituting for the condensa
functiong(k) as in Eq.~22!. This expression~25! defines the
s massMs . In Eq. ~23! for the ‘‘effective potential’’ es

contains divergent integrals. However, our approximation
nonperturbatively self-consistent and it still contains the
finities in the integralI given by Eq.~25! which need to be
eliminated also in order to reinforce the meaning ofMs .
Therefore we first obtain a well-defined finite expression
Ms by renormalization. We use the regularization by cut
and the renormalization prescription of Ref.@15# and thus
obtain the renormalized massmR and couplinglR through

mR
2

lR
5

m2

l
112I 1~L!, ~26!

1

lR
5

1

l
112I 2~L,m!, ~27!

whereI 1 and I 2 are the integrals,

I 1~L!5
1

~2p!3Euku,L

dk

2k
, ~28!

I 2~L!5
1

m2~2p!3Euku,L
dkS 1

2k
2

1

2Ak21m2D , ~29!
7-3
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TABLE I. Parameters used in the calculation.

M ~MeV! mq ~MeV! R ~fm! B1/4 ~MeV! Z mR ~MeV! mv ~MeV!

939.0 0.0 0.6 211.303 3.9869 550.0 783.0
m
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wherem is a renormalization mass scale andL is the ultra-
violet cutoff. The resulting gap equation forMs

2 , which
minimizes the energy, in terms of the renormalized para
etersmR

2 andlR can be rewritten as

Ms
25mR

2112lRs0
2112lRI f~Ms!, ~30!

wheres0 is obtained from the minimization of the energ
density with relation tos,

de

ds U
s0

50, ~31!

and

I f~Ms!5
Ms

2

16p2
lnS Ms

2

m2 D . ~32!

Self-consistency in expression~30! makes thes mass to de-
pend on the nucleon polarization becauses0 does depend on
it. Using the above equations we obtain the energy den
for the s in terms ofs0 which is given by

es53lRS s0
21

mR
2

12lR
D 2

1
Ms

4

64p2 F lnS Ms
2

m2 D 2
1

2G
23lRI f

222ls0
4 , ~33!

wherem is a mass scale introduced in the renormalizat
procedure. The above expression is given in terms os
mass,mR , andlR . However, from the renormalization pro
cedure one sees that whenlR is kept fixed, the bare coupling
l→02 . Therefore the last term in Eq.~33! will be neglected
in the numerical calculations. This approximation is nea
equivalent to taking into account the so-called ‘‘cactus’’ d
grams@16# which correspond to a resummation of the ta
pole diagram with the loop propagator given by the se
energy self-consistently.

After subtracting the vacuum contribution we obtain

Des5es2es~s050!

5
1

2
mR

2s0
213lRs0

41
Ms

4

64p2 F lnS Ms
2

m2 D 2
1

2G
23lRI f

22
Ms,0

4

64p2 F lnS Ms,0
2

m2 D 2
1

2G13lRI f 0
2 ,

~34!

whereMs,0 and I f 0 are the expressions given by Eqs.~30!
and ~32! with s050.

The energy density and pressure with baryon and
sigma condensates0 are, respectively, done by
05520
-
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n

y
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e

e ren5e0
f inite1De ren , ~35!

and

P5
g

3~2p!3Euku,kF

dk
k2

~k21M* 2!1/2
1

1

2
mv

2 v0
2

2Des2De ren , ~36!

where

e0
f inite5

g

~2p!3Euku,kF

dk~k21M* 2!1/21
1

2
mv

2 v0
21Des

~37!

with De ren given by Eq.~8! and Des by Eq. ~34!. In the
above equation, the last term includes the contribution fr
the quantum correction of thes mesons. In the mean field
approximation, i.e., in normal QMC model,lR50, and the
energy density from thes meson is1

2 mR
2s0

2 . This then cor-
responds to the relativistic Hartree approximation~RHA!,
with the last term of Eq.~35! being the contribution arising
from the vacuum polarization effects from nucleon sect
The usual vector mean fieldv0 is obtained from its equation
of motion as

v05
3gv

q

mv
2

r. ~38!

The energy density from thes field as given by Eq.~34!
is still in terms of the renormalization scalem which is arbi-
trary. We choose this to be equal to the renormalizeds mass
mR in doing the numerical calculations. This is becau
changingm would mean changing the quartic couplinglR ,
and this coupling constant enters here as a parameter t
chosen to give the incompressibility for nuclear matter in
correct range. The parametersgs

q andgv (53gv
q ) are fitted

so as to describe the ground-state properties of nuclear
ter correctly. For a given baryon densityr, the energy den-
sity, the density dependent radius of the nucleon and
nucleon effective mass are calculated at zero temperatu

III. RESULTS AND DISCUSSION

We now proceed with the numerical calculations for t
nuclear matter taking into account both effects presen
above. We start fixing the bag properties in the vacuum.
use zero quark masses and the bag radiusR50.6 fm. There
are two unknowns,Z and the bag constantB. These are ob-
tained as usual by fitting the nucleon massM5939 MeV
and enforcing the stability condition for the bag. They a
given in Table I.
7-4
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We next calculate the ground-state properties of
nuclear matter and fit the scalar and vector coupling c
stantsgs

q and gv (53gv
q ) to reproduce the nuclear matte

binding energy (215.7 MeV! at the saturation density (r0
50.15 fm23) for a given renormalizeds mass and cou-
pling, mR andlR .

Initially, we investigate the effect of the quantum corre
tions on the binding energy per particle arising from t
nucleon and thes mesons. The results are shown in Fig.
where we plotEB as a function of the nuclear densityr/r0.
In this figure the coupling constantsgs

q andgv are the same
for the RHA, lR53.0, andlR54.5 cases. Observe that th
saturation density shifts by.0.15r0 for RHA and .0.5r0
for lR53.0 and the binding energy changes.1.5 MeV for
RHA and .4 MeV for lR53.0 when the fluctuations ar
included. In this way it is possible to assess the quantita
relevance of including quantum fluctuations for thes. How-
ever the parameters must be readjusted in order to des
ground-state nuclear matter properties.

We now readjust the coupling constantsgs
q and gv such

as to obtain the correct saturation binding energy of nuc
matter for RHA and for differentlR . Thev ands couplings
for givenlR are tabulated in Table II. Results from RHA a

FIG. 1. The energy per nucleon of nuclear matter as a func
of r/r0 for different corrections. All curves are for the same set
parameter of QMC.

TABLE II. Quark-s and v-nucleon coupling constants, in
medium nucleon properties at saturation density, and the nuc
matter incompressibility for different cases.

Case gs
q gv M* /MN R* ~fm! K ~MeV!

Normal QMC 5.98 8.96 0.775 0.5961 281
RHA 5.77 8.39 0.793 0.5967 272
lR52.0 5.60 8.02 0.809 0.5972 263
lR53.0 5.51 7.77 0.817 0.5975 256
lR54.5 5.37 7.36 0.830 0.5978 244
05520
e
-

-

,

e

ibe

ar

also shown. Little change is noted in the values of the
rameters for the range oflR which is considered here. Th
value of s0 which enters, for example, in thes mass, is
determined by the minimization of expression~35! with re-
spect tos at each density in a self-consistent manner. Us
these values, we plot the binding energy (EB5e/r2MN) for
nuclear matter as a function of density in Fig. 2. In the sa
figure we also plot the results for the RHA. Clearly, inclu
ing baryon ands-meson quantum corrections leads to
softer equation of state which is further softer for a high
value of lR . The equation of state, pressure,P versus as a
function of energy densitye is displayed in Fig. 3 for differ-
ent cases. For comparison, the causal limitP5e is also
shown in the figure. All the cases studied here respect

n
f

ar

FIG. 2. The binding energy of the nuclear matter as a funct
of r/r0. The parameters are refitted to the saturation propertie
nuclear matter at the minimum of the curves.

FIG. 3. The pressure versus energy density of the nuclear ma
7-5
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causal condition]P/]e<1, so that the speed of sound r
mains lower than the speed of light.

In Fig. 4 we plot the effective nucleon mass as a funct
of density. At the saturation density we getM* 50.817M
and 0.83M for lR53.0 and lR54.5, respectively. These
values may be compared with the results ofM* 50.775M
for normal QMC model and of 0.793M with the relativistic
Hartree approximation in the QMC model keeping the co
pling constants fixed. This influence is much higher at h
nuclear densities. We can conclude that quantum effect
the level we consider, increase the effective massM* .

We plot the in-mediumeffective radius of the nucleon
(R* ) as a function of density in Fig. 5.R* is also increased
in relation to the mean field approximation mainly for high
densities.

Next, the spectral function for thes mesons including the

FIG. 4. Effective baryon masses in the medium.

FIG. 5. The effective radius of the nucleon as a functi
of r/r0.
05520
n

-
h
at

quantum correction effects is examined@17#. It is very inter-
esting to study these functions because, for example,
thermal model the dilepton yields in heavy-ion collisio
would be proportional to the spectral function. It gives
more complete account of thein-mediums properties as
mass and width.

The spectral function in the quantum theory can be
pressed in terms of the retarded self-energy,SR5ReSR
1 i Im SR , as

rs~v,p!

5
22 ImSR~v,p!

@v22p22mR
22ReSR~v,p!#21@ Im SR~v,p!#2

.

~39!

By definition the width of the corresponding mode, thes, is
given by G52Im SR(v,p)/v. While the real part of the
self-energy is directly related to the~density dependent! s
mass, which was calculated in the preceding section,
imaginary part will be defined by a width of thes considered
to be constant at this level of approximation. It will be give
by G(r)5300 MeV @18#. This is anad hocprescription that
does not prevent the imaginary part of the spectral funct
from varying with the density. The spectral function atp
50 can then be written in terms of it as

rs~v,0!5
2vG

~v22Ms
2 !21v2G2

, ~40!

whereMs
2 is given by expression~30!.

In Fig. 6, we plot the spectral function of thes meson as
a function of the energy and of the density. The spec
function becomes more strengthened as density increase
its center moves slightly for higher energies. We found the
fore that Ms increases with density aslR is positive, al-
though this is not so clear in the graph. The resulting wid
of the spectral function is smaller at higher densities. In F
7, it is explicitly shown thes mass as a function of the rati

FIG. 6. The spectral function~in units of M 22) of s meson
for lR53.0.
7-6
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r/r0 for two couplingslR52.0 andlR53.0 with and with-
out the nucleon polarization effects. We note that while
nucleon polarization effects~RHA for a fixed couplinglR)
tend to make thes mass smaller, the quantum fluctuations
the s make its mass to increase. This last effect is domin
at finite densities even for couplings as weak aslR52.0.

FIG. 7. Thes self-consistent mass forlR53.0 andlR52.0
with and without considering the polarization effects for nucleo
.

W
,

s,

cl

y

05520
e

f
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The difference of thes mass due to the nucleon polarizatio
is nearly independent oflR . The higher is the (s) coupling
lR the higher is the increase of thes mass with density. This
seems to be rather an indication of a further symmetry bre
ing instead of its restoration@11#.

To summarize, we have used a nonperturbative appro
to include the quantum effects in nuclear matter in the fram
work of QMC. The calculations of the scalar meson quant
corrections was done here in a self-consistent manner inc
ing multiloop effects. This leads to a softening of the equ
tion of state. We have also calculated the spectral function
the s and, in particular, the effectivein-mediummass of the
s meson modified by the quantum corrections. The effect
s mass increases with density although the polarization
to nucleons contributes to diminish this mass. This may
understood as a tendency to a prevention from~chiral! sym-
metry restoration. These features deserve further invest
tion as well as the role of the coupling constantlR and its
influence on the chiral symmetry behavior at high densit
and temperatures.
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