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ABSTRACT

The standard theoretical treatment of collisional cascades derives a steady-state size distribution assuming a
single constant velocity dispersion for all bodies regardless of size. Here we relax this assumption and solve
self-consistently for the bodies’ steady-state size and size-dependent velocity distributions. Specifically, we account
for viscous stirring, dynamical friction, and collisional damping of the bodies’ random velocities in addition to
the mass conservation requirement typically applied to find the size distribution in a steady-state cascade. The
resulting size distributions are significantly steeper than those derived without velocity evolution. For example,
accounting self-consistently for the velocities can change the standard q = 3.5 power-law index of the Dohnanyi
differential size spectrum to an index as large as q = 4. Similarly, for bodies held together by their own gravity, the
corresponding power-law index range 2.88 < q < 3.14 of Pan & Sari can steepen to values as large as q = 3.26.
Our velocity results allow quantitative predictions of the bodies’ scale heights as a function of size. Together with
our predictions, observations of the scale heights for different-sized bodies for the Kuiper belt, the asteroid belt,
and extrasolar debris disks may constrain the mass and number of large bodies stirring the cascade as well as the
colliding bodies’ internal strengths.
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1. INTRODUCTION

Believed to be a primary mechanism operating in circum-
stellar dusty debris disks as well as our own Kuiper and as-
teroid belts, collisional cascades—the transfer of mass from
larger to smaller sized bodies via collisions between those
bodies—are ubiquitous in our Galaxy. Their widespread oc-
currence and potential importance in understanding planet for-
mation and planet–disk interactions have naturally motivated
considerable study. Theoretical treatments predicting the colli-
sional size distribution have included analytic work as well as
numerical simulations. The pioneering treatment of Dohnanyi
(1969), who analytically calculated the size distribution for a
steady-state cascade of constant-strength bodies, has been elab-
orated upon, extended to size-dependent strength laws, and ap-
plied to different physical contexts by several authors, including
Williams & Wetherill (1994), Tanaka et al. (1996), O’Brien &
Greenberg (2003, 2005), Kenyon & Bromley (2004), Pan &
Sari (2005), and Löhne et al. (2008). Some of these also con-
sidered non-power-law features in the size distribution such
as waves due to the gravity-strength transition (O’Brien &
Greenberg 2003, 2005; Pan & Sari 2005) or changes in the
fragment size spectrum (Belyaev & Rafikov 2011). Many nu-
merical studies of collisional cascades have also been performed
(see, for example, Campo Bagatin et al. 1994; Durda & Dermott
1997; Kenyon & Bromley 2004, 2008; Krivov et al. 2005; Löhne
et al. 2008; Wyatt 2008; Fraser & Kavelaars 2009).

The analytic and most of the numerical works on collisional
cascades have generally assumed that the bodies’ velocity dis-
persion is independent of size and constant in time once the
cascade begins. Nevertheless, it is not obvious why we would
expect constant size-independent velocities in a typical cas-
cade. Indeed, processes like viscous stirring and collisional
damping should affect all bodies’ velocities at size-dependent
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rates throughout the cascade’s lifetime. Because the velocities
directly affect the frequencies of catastrophic collisions, de-
viations from the constant velocities typically assumed could
significantly change previous results on size distributions in
steady-state cascades. When extrapolated over many orders
of magnitude in size—for example, between ∼kilometer-
sized planetesimals and ∼millimeter-sized or smaller dust
particles—even small inaccuracies in the equilibrium size distri-
bution can mean large errors in the expected number of bodies
and/or in the bodies’ internal strengths as inferred from size
distribution observations.

Here we incorporate velocity evolution processes into our
treatment of collisional cascades and find the size spectrum
and size-dependent velocity dispersion self-consistently. In
Section 2 we give expressions for the physical processes
operating in the cascade. The well-known mass conservation
condition is the basis of previous work beginning with Dohnanyi
(1969), so we summarize it briefly in Section 2.1. In Section 2.2
we describe the stirring and damping processes affecting the
velocities, and in Section 2.3 we give expressions for the
velocity equilibrium required in a steady-state cascade. These
are the velocity analogs of the mass conservation conditions
of Section 2.1. In Section 3 we impose mass conservation
and velocity equilibrium together to find the size and velocity
power laws of steady-state cascades. As we explain, in a disk of
bodies with a power-law size distribution we expect to see up
to three different velocity regimes. We derive velocity and size
power laws in all three regimes for both gravity- and strength-
dominated bodies. In Section 4 we compare our analytic results
to those of our fragmentation simulations. Finally, in Section 5
we summarize and discuss our findings.

2. SIZE AND VELOCITY EVOLUTION PROCESSES

In order to find the size distribution and velocity function self-
consistently, we assume a debris disk that occupies an annulus
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with typical orbital angular frequency Ω. The bodies in the
cascade have uniform composition and body mass density ρ, and
their sizes r cover the range [rmin, rmax]. We write the differential
body size spectrum as dN/dr ∝ r−q and the velocity function
as v(r) ∝ rp. The number of bodies of size larger than or equal
to r is then N (r) ∝ r1−q . Because typically q > 1, N (r) is
also of order the number of bodies in a logarithmic size interval
about r, and we will use these two meanings interchangeably.
We consider in turn how mass conservation in the cascade
and velocity evolution via gravitational stirring and collisional
damping constrain q and p. Since our primary goal is to clearly
delineate the relevant physical processes, we work to order of
magnitude throughout.

2.1. Mass Conservation

We begin with mass conservation, the basis for most analytic
cascade treatments to date. Our discussion of mass conservation
parallels that of Pan & Sari (2005), and we refer readers to that
work for a more detailed description. In a steady-state collisional
cascade where mass is conserved in catastrophic collisions, the
total mass destroyed per unit time per logarithmic interval in
radius must be independent of size. This implies

constant = ρr3 · N (r) · N (rB(r))

volume
· r2 · vrel (1)

= ρr3 · N (r) · N (rB(r))r2Ω
area

, (2)

where rB(r) is the size of the smallest body, or bullet, that can
destroy a target of size r in a collision and vrel is the typical
relative velocity of bullets and targets. The second line follows
because we assume isotropic velocities, so that the scale height
of the disk is of order vrel/Ω. The volume of Equation (1) in
which the bodies move is the area occupied by the disk midplane
times this scale height, so the mass conservation relation for a
disk is independent of velocity.

We further assume that the way the bodies break is indepen-
dent of size, that is, the shape of the average fragment size dis-
tribution is size-independent. We parameterize the bullet–target
size relation as a power law rB(r) ∝ rα . Then Equation (2)
yields

q = 6 + α

1 + α
. (3)

The value of α depends on how much energy is lost in the
post-impact destruction process. In the gravity regime, we can
think of the destruction as a shock induced in the target by the
bullet which propagates to the antipode of the impact site. The
limiting cases for the shock propagation are energy conservation
and momentum conservation in the shocked material; these give
respectively

ρr3v2
esc(r) ∼ ρr3

Bv2(r) −→ α = (5 − 2p)/3 (4)

ρr3vesc(r) ∼ ρr3
Bv(r) −→ α = (4 − p)/3. (5)

Here, we assumed p � 0: p < 0 would in principle require
arbitrarily large velocities for arbitrarily small sizes, so we
will not consider that case here. Numerical simulations of
catastrophic collisions find 1.37 < α < 1.66 with constant
collision velocities (see, for example, Stewart & Leinhardt 2009;
Benz & Asphaug 1999, and references therein); this is consistent

with the range 4/3 < α < 5/3 for p = 0 which we find above.
Together, Equations (3)–(5) imply

22 − p

7 − p
> q >

23 − 2p

8 − 2p
. (6)

The inequalities hold if p < 1, which as we will see in Section 3
is satisfied.

In the strength regime, α depends on the material properties
of the body, which are often parameterized as Q∗(r), the energy
per unit mass needed to destroy a body of size r. In the strength
regime simulations find Q∗(r) ∝ rγ where 0 � γ > −1/2
(Benz & Asphaug 1999; Stewart & Leinhardt 2009). Then

ρr3Q∗(r) = ρr3
Bv2(r) −→ α = 1 +

γ − 2p

3
(7)

where, again, we assume p � 0. With Equation (3) this gives

q = 21 + γ − 2p

6 + γ − 2p
. (8)

As an example, Dohnanyi (1969) used in effect γ = p = 0
in the strength regime; these immediately yield q = 7/2 in
Equation (8).

2.2. Velocity Evolution Processes

We now consider velocity evolution. Physically, v(r) depends
on stirring from larger bodies and damping from collisions with
and dynamical friction from smaller bodies. In the following,
we explore the stirring-damping balance in detail. Motivated
by observations of the asteroid and Kuiper belts, we work in
the regime where the typical relative velocity in an encounter
between two bodies is larger than either body’s Hill velocity,
which is of order a body’s escape velocity times the one-sixth
power of the ratio of the body’s mass and the central mass.

We begin by writing expressions for the rates at which viscous
stirring, collisional damping, and dynamical friction damping
affect a body of size r. Our treatment of velocity evolution is
similar to that given in Goldreich et al. (2004), and we refer
readers to that work for a clear and detailed description of the
stirring and damping rate expressions. The rate at which bodies
are viscously stirred by bodies of size R � r depends on which
of them is moving faster. If vesc(R) > v(R) > v(r), the rate is

1

v(r)

dv(r)

dt

∣∣∣∣
stir

∼ N (R)R2Ω
area

(
vesc(R)

v(R)

)2 (
vesc(R)

v(r)

)2

. (9)

This focusing factor applies because we need only double v(r),
not necessarily v(R). If v(R) < v(r) < vesc(R), we have

1

v(r)

dv(r)

dt

∣∣∣∣
stir

∼ N (R)R2Ω
area

(
vesc(R)

v(r)

)4

. (10)

Because vesc(R) ∝ R, the largest bodies in the system do most
of the stirring unless q > 5 when v(R) > v(r) or unless q > 7
when v(R) < v(r). We expect these conditions to hold in real
systems, so we will assume them throughout. We will show in
Section 3 that this assumption is self-consistent in the cascade.

The rate at which bodies of size r are damped by direct
collisions with bodies of size s � r is

1

v(r)

dv(r)

dt

∣∣∣∣
damp

∼ N (s)Ω
area

s3

r
. (11)
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There is no focusing factor here because, as we discuss later,
dynamical friction damping is faster than damping by direct
collisions only if v(r) � vesc(r).5 Note that bodies in the cascade
must have v(r) � vesc(r) because catastrophic collisions would
otherwise be impossible. Equation (11) implies that if q > 4,
collisional damping is dominated by the smallest bodies in the
disk, giving s = rmin.

When q � 4, collisions between equal-sized bodies
dominate,6 and Equation (11) becomes

1

v(r)

dv(r)

dt

∣∣∣∣
damp

∼ N (r)Ω
area

r2. (12)

However, in the cascade rB(r) � r . Then the collisional
destruction rate will be at least as fast as the damping rate
of Equation (12) as long as q > 1; the rates are equal
only when rB(r) = r . Simulations of catastrophic collision
ejecta indicate that nearly all the kinetic energy relative to the
bullet–target center of mass is lost to heat in a catastrophic
collision (see, for example, Jutzi et al. 2010). Then bodies whose
bullet–target mass ratio is not too small should lose most of their
velocity dispersion in a catastrophic collision. If we assume that
destructive collisions do indeed provide significant damping,

1

v(r)

dv(r)

dt

∣∣∣∣
damp

∼ 1

v(r)

dv(r)

dt

∣∣∣∣
coll

∼ N (rB(r))r2Ω
area

. (13)

Note that in this case “significant damping” means that the
largest collision fragments’ typical random velocities are much
less than those of the original targets. If instead destructive
collisions cannot damp effectively—that is, the largest fragment
retains most of its pre-collision velocity—then whether or not
collisional cooling is effective depends on the age of the disk.
Bodies of size r are collisionally cooled only if the disk age is
longer than the collision timescale implied by Equation (12).

The dynamical friction damping rate of size r bodies by size
s < r bodies also depends on whether v(r) > v(s) or vice
versa. By analogy to the expressions of Equations (9) and (10)
for viscous stirring, the two expressions for dynamical friction
are

1

v(r)

dv(r)

dt

∣∣∣∣
df

∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N (s)Ω
area

s3

r

(
vesc(r)

v(s)

)2 (
vesc(r)

v(r)

)2

v(s) < v(r) < vesc(r)

N (s)Ω
area

s3

r

(
vesc(r)

v(s)

)4

v(r) < v(s) < vesc(r).

(14)

As mentioned above, dynamical friction acts faster than direct
collisions by v4

esc(r)/(v(s)v(r))2 if v(r) > v(s) or by
(vesc(r)/v(s))4 if v(r) < v(s), so it applies to bodies with
v(r) < vesc(r) which have not entered the cascade. The dy-
namical friction damping rate scales as s4−q−2p if v(r) > v(s)
and as s4−q−4p if v(r) < v(s). Then the smallest bodies with
s = rmin dominate the damping if q + 2p > 4 when v(r) > v(s)
or if q + 4p > 4 when v(r) < v(s).

5 Indeed, if v(r) � vesc(r), dynamical friction is equivalent to elastic direct
collisions.
6 The q = 4 size spectrum is a marginal case in which collisions with bodies
of all sizes should contribute equally to the damping. Since this represents only
an order unity correction to the damping rate, the scalings given remain valid.

2.3. Velocity Equilibrium

With expressions in hand for rates of velocity evolution, we
can impose the steady-state condition that stirring and damping
balance. In addition to the size and velocity power laws q, p of
bodies in the cascade, we consider the analogous power laws
q ′, p′ for any bodies of size r > rmax which may be present
in the disk but are too large to have entered the cascade. If the
bodies in the disk formed through core accretion, we would
expect 1 < q ′ < 5 (see, for example, Kenyon & Bromley 2004,
2008; Schlichting & Sari 2011) as well as the q < 5 we already
assumed. Motivated by the discussion after Equation (10), we
let the largest bodies in the disk have size R.

We first consider bodies in the cascade. As explained in
Section 2.2, these bodies are viscously stirred and collisionally
damped. For cascades in which catastrophic collisions damp
velocities effectively, velocity equilibrium means

0 = 1

v(r)

dv(r)

dt
∼ 1

v(r)

dv(r)

dt

∣∣∣∣
stir

− 1

v(r)

dv(r)

dt

∣∣∣∣
coll

(15)

∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N (R)R2Ω
area

(
vesc(R)

v(r)

)2 (
vesc(R)

v(R)

)2

− N (rB(r))r2Ω
area

v(r) < v(R) < vesc(R)

N (R)R2Ω
area

(
vesc(R)

v(r)

)4

− N (rB(r))r2Ω
area
vesc(R) > v(r) > v(R)

(16)

where we have applied Equations (9), (10), and (13). Equiva-
lently, if v(R) > v(r) the ratio of stirring and collision rates is

1 ∼ N (R)

N (rB(r))

(
R

r

)2 (
vesc(R)

v(R)

)2 (
vesc(R)

v(r)

)2

(17)

∼
( rmax

r

)α(1−q)+2+2p

· N (R)

N (rB(rmax))

R2

r2
max

(
vesc(R)

v(R)

)2(
vesc(R)

v(rmax)

)2

(18)

and if v(R) < v(r) this ratio is

1 ∼
( rmax

r

)α(1−q)+2+4p

· N (R)

N (rB(rmax))

R2

r2
max

(
vesc(R)

v(rmax)

)4

. (19)

Note that we have transferred the coefficient of rα(1−q) in
N (rB(r)) to N (rB(rmax)) in the last step. In Equations (18)
and (19), the second through last terms on the right-hand side
are simply the ratio of the stirring and collision rates for size
rmax bodies, those at the top of the cascade: compare them,
for example, to the right-hand side of Equation (17), which is
the ratio of stirring and collision rates for size r bodies. This
indicates that if the stirring and collision rates for size rmax
bodies balance—which we expect since these bodies have just
entered the cascade—the rest of the cascade will also be in
velocity equilibrium if

q = 1 +
2 + 2p

α
v(R) > v(r)

q = 1 +
2 + 4p

α
v(R) < v(r).

(20)
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In the gravity regime, using Equations (4) and (5) together with
Equation (20) gives

10 + 5p

4 − p
> q >

11 + 4p

5 − 2p
v(R) > v(r)

10 + 11p

4 − p
> q >

11 + 10p

5 − 2p
v(R) < v(r).

(21)

The inequalities for q hold when −1/2 < p < 1, which as we
will see in Section 3 is satisfied. Similarly, in the strength regime
we use Equation (7) with Equation (20) to get

q = 9 + γ + 4p

3 + γ − 2p
v(R) > v(r)

q = 9 + γ + 10p

3 + γ − 2p
v(R) < v(r).

(22)

We next consider a disk in which catastrophic collisions
do not damp the velocities. This may occur, for example, if
rB(r) � r , in which case the center-of-mass velocity of a
colliding bullet–target pair is dominated by the target velocity.
Then conservation of momentum dictates that the velocity of
the largest collisional fragment will be quite similar to the
target’s velocity even if all of the relative kinetic energy between
the bullet and target is lost. If q � 4 and if the system’s
lifetime is at least as long the timescale for two bodies of
size rmax to collide, damping occurs through collisions between
equal-sized bodies according to Equation (12). This damping
mechanism dominates for all bodies with v(r) > vesc(r). While
this condition holds over the entire cascade, it may hold for
bodies outside the cascade as well. To see that all bodies in the
cascade are included, note that if v(r) < vesc(r), then the impact
energy in a collision between equal-sized bodies, ∼ρr3v2(r), is
less than the gravitational binding energy ∼ρr3v2

esc(r) of either
body. If p > 0, the impact energy in a collision with a smaller
bullet is likewise less than the gravitational binding energy of
the target. Since both gravity- and strength-dominated bodies
require impact energy at least as large as their gravitational
binding energies, v(r) > vesc(r) is required in the cascade.
However, v(r) > vesc(r) may also apply for some bodies larger
than rmax.

A calculation entirely analogous to that of Equations (16)–
(20) above which uses damping by Equation (12) rather than
Equation (13), and the size where v(r) ∼ vesc(r) instead of rmax,
gives

q = 3 + 2p v(R) > v(r)

q = 3 + 4p v(R) < v(r).
(23)

If q > 4, we substitute Equation (11) for Equation (12) in the
above calculation. In this case N (r) disappears from the ratio of
stirring and damping rates and we get a condition on p alone:

p = 1/2 v(R) > v(r)

p = 1/4 v(R) < v(r).
(24)

If the cascade lifetime is short compared to the timescale for
collisions between bodies of size rmax, then some bodies near
the top of the cascade will not have had time to damp. For these
undamped bodies, we expect shallower velocity power laws.

Finally, we consider any bodies in the disk whose velocities
are smaller than their escape velocities. They cannot be part of
the cascade, so we expect them to have sizes r > rmax. The

equilibrium velocities of these bodies follow from a balance
between viscous stirring and dynamical friction. If v(r) > v(R),
we equate the stirring rate of Equation (9) with the damping rates
of Equation (14) to get

v(r)

v(s)
∼

(
N (R)

N (s)

)1/2
R3

s3/2r3/2
v(s) < v(r)

v(r)

v(s)
∼

(
N (R)

N (s)

)1/4
R3/2

s3/4r3/4
v(s) > v(r).

(25)

Here, s is the size of bodies which dominate the dynamical
friction. Because we have broken power-law size and velocity
distributions, and because the power-law breaks do not occur at
r, we expect s to be independent of r. If v(r) ∝ rp′

, Equation (25)
implies

p′ = −3/2 v(s) < v(r)

p′ = −3/4 v(s) > v(r).
(26)

This is indeed consistent with the v(r) > v(R) we assumed.
Note that the kinetic energy per body, ∼ρr3v2(r) ∝ r3+2p′

,
cannot increase with decreasing body size, so these bodies lie
outside the cascade. For the same reason we can neglect any
dynamical friction heating effects, which contribute at most an
order unity correction.

If instead we assume v(r) < v(R) and replace Equation (9)
with Equation (10) above, no self-consistent solution for p′ is
possible.

3. STEADY-STATE SIZE AND VELOCITY
DISTRIBUTIONS

We now solve simultaneously the mass conservation and
velocity stirring/damping balance conditions of Section 2 to
find the steady-state size and velocity distributions in the disk.
We first confirm that the steady-state condition—equivalent to
requiring that N (rmax) changes on a timescale long compared to
collisions between and stirring of smaller bodies—is physical.
Since the stirring cross-section of size r bodies scales as r−2p,
smaller bodies are indeed stirred faster than the largest bodies
break. Similarly, since smaller bodies have more total surface
area than larger bodies as long as q > 3, smaller bodies
break faster than larger ones. Our assumption of a steady state
is therefore reasonable for all bodies smaller than rmax. Said
another way, rmax corresponds to the location of the break
seen in collisional size distributions separating collisional and
primordial bodies (O’Brien & Greenberg 2003; Kenyon &
Bromley 2004; Pan & Sari 2005). As bodies of size rmax break
and N (rmax) decreases, the normalization of the cascade below
rmax should follow adiabatically.

In addition, we can see that these solutions are stable by
considering a perturbed cascade. If for any reason stirring
becomes faster than catastrophic collisions, the velocities will
increase and rB(r) will decrease until the catastrophic collision
rate equals the new stirring rate. Similarly, if stirring becomes
slower than catastrophic collisions, the velocities will slow and
rB(r) will increase until collisions just balance stirring as long as
v(r) � vesc(r). The timescale for bodies smaller than some size
r to relax to this solution should be of order a few catastrophic
collision times for size r bodies.

We frame our discussion of the solutions via the velocity
stirring/damping equilibria listed in Section 2.3. They suggest
that given a disk in which a single rB(r) power-law relation
applies to all bodies, and in which cooling has had time to
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operate, up to three velocity regimes occur.7 First, the largest
bodies, which are stirred viscously and damped by dynamical
friction, have velocities that are below their escape velocities but
that increase with decreasing size according to Equation (26).
At the size for which the bodies’ velocity equals their escape
velocity, dynamical friction can no longer cool efficiently and
the second regime begins. Bodies slightly smaller than this first
transition size have velocities faster than both their own escape
velocities and the velocity of the largest bodies in the disk. In
this regime stirring proceeds according to Equation (10) and
damping proceeds by collisions. Third, if the cascade includes
sufficiently small bodies, we expect for p > 0 that the smallest
bodies’ velocities fall below the velocity of the largest body.
In this regime stirring proceeds according to Equation (9) and
collisional damping continues. While we would expect the
power-law breaks associated with transitions between regimes
will produce waves in the size and velocity distributions, we also
expect that, on average, the sizes and velocities in each regime
will be consistent with the q and p values we find. We discuss
these three regimes—first, v(r) < vesc(r); second, v(r) > vesc(r)
and v(R) < v(r); third, v(r) > vesc(r) and v(R) > v(r)—in turn
below.

The regime containing the largest bodies of sizes r > rmax
is simplest. Because its bodies are not part of the cascade, we
cannot constrain their size distribution except to require that
it satisfy the conditions for Equation (10) to hold. Instead we
expect that their size distribution N (r) ∝ r1−q ′

has not changed
since their formation. Regardless of whether the bodies are
gravity- or strength-dominated, Equation (26) gives

p = −3/2, 1 < q < 7 v(s) < v(r)

p = −3/4, 1 < q < 7 v(s) > v(r).
(27)

The remaining two velocity regimes, v(r) < v(R) and
v(r) > v(R), may support cascades. We consider cascades with
four different categories of rB(r) relations characterized by: (1)
whether the bodies are gravity- or strength-dominated and (2)
whether the bullet–target size ratio is close enough to unity for
catastrophic collisions to provide effective cooling.

First we assume cooling by catastrophic collisions. This case
requires a cascade. In the gravity regime, we solve Equations (6)
and (20) simultaneously to get

p = 17 − √
241

4
, q =

√
241 − 9

2
for α = 4 − p

3

p = 11 − √
85

4
, q =

√
85 − 3

2
for α = 5 − 2p

3
v(R) > v(r)

(28)

p = 31 − √
865

8
, q =

√
865 − 23

2
for α = 4 − p

3

p = 1

4
, q = 3 for α = 5 − 2p

3
v(R) < v(r).

(29)

7 If significant external stirring has occurred, not all of these three regimes
may occur. For example, if all the bodies in the disk have velocities larger than
their own escape velocities, dynamical friction will never be important.

This implies

0.37 < p < 0.45

v(R) > v(r)

3.26 > q > 3.11
(30)

0.20 < p < 1/4

v(R) < v(r).

3.21 > q > 3
(31)

In the strength regime, we likewise solve Equations (8) and (20)
together for

p = 9 + γ −
√

69 + 6γ + γ 2

4
,

q = −1 − γ +
√

69 + 6γ + γ 2

2
v(R) > v(r) (32)

p = 15 + 2γ −
√

201 + 36γ + 4γ 2

8
,

q = −7 − 2γ +
√

201 + 36γ + 4γ 2

2
v(R) < v(r). (33)

For the range −1/2 < γ � 0, these give

0.090 < p � 0.17

v(R) > v(r)

3.82 > q � 3.65
(34)

0.054 < p � 0.10

v(R) < v(r).

3.78 > q � 3.59
(35)

Now we assume catastrophic collisions cannot damp the
velocities significantly, so that the cooling timescale is the time
it takes for a given body to collide with a total mass equal
to its own. We also assume the lifetime of the disk is longer
than this cooling timescale for all bodies with v(r) > vesc. In
the gravity regime, these bodies all participate in the cascade:
v(rmax) ∼ vesc(rmax). Their steady-state sizes and velocities
should follow from Equations (6) and (23). When α = (4−p)/3
this gives

p = 6 − √
34

2
, q = 9 − √

34 for α = 4 − p

3
v(R) > v(r)

p = 6 − √
34

4
, q = 9 − √

34 for α = 4 − p

3
v(R) < v(r).

(36)

We find, however, that no solution with p � 0 and q � 4
is possible when α = (5 − 2p)/3. It turns out q > 4 is also
impossible in the gravity regime. If q > 4, Equation (6) implies
p > 3/2, and since vesc(r) ∝ r , having p > 1 means that v(r)
will fall below vesc(r) at some r, stopping the cascade. Then the
maximum α allowed must lie between (4−p)/3 and (5−2p)/3.
To find this limiting value, we recast Equations (4) and (5) as

ρr3vβ
esc(r) ∼ ρr3

Bvβ(r) −→ α = 1 + β(1 − p)/3, (37)

5
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where 1 < β < 2. With Equations (3) and (23), this gives

p = 3

β
±

√
36 − 6β + 4β2

2β
v(R) > v(r)

p = 12 + β

4β
±

√
144 + 12β + 9β2

4β
v(R) < v(r).

(38)

A look at the zeros of dp/dβ shows that p is monotonic for
the relevant β, so the limiting α and β should occur at a
limiting value of p. For gravity-dominated bodies, 0 � p � 1
as discussed above; for both v(R) > v(r) and v(R) < v(r), the
only β between 1 and 2 that satisfies p = 0 or p = 1 is β = 3/2
at p = 0. When p = 0, Equation (23) gives q = 3. Then the
allowed p, q in the gravity regime are

0 � p < 0.085

v(R) > v(r)

3 � q < 3.17
(39)

0 � p < 0.042

v(R) < v(r).

3 � q < 3.17
(40)

In the strength regime, not all of the bodies with v(r) > vesc(r)
can participate in the cascade. For those in the cascade, we first
assume q � 4 and solve Equations (8) and (23) simultaneously.
This gives

p = 4 + γ −
√

4 + 16γ + γ 2

4

q = 10 + γ −
√

4 + 16γ + γ 2

2
v(R) > v(r) (41)

p = 5 + γ −
√

19 + 14γ + γ 2

4

q = 8 + γ −
√

19 + 14γ + γ 2 v(R) < v(r) (42)

When γ < 0, the only real solutions to Equation (41) have
q > 4, which is inconsistent. The allowed ranges in p, q are

p = 1/2 v(R) > v(r) (43)

q = 4 γ = 0 (44)

1/4 > p � 0.16 v(R) < v(r) (45)

4 > q > 3.64 − 1/2 < γ � 0. (46)

The q > 4 which arose above when v(R) > v(r) and γ < 0
suggests that we look for a solution where the smallest bodies
in the system dominate the collisional damping, that is, a
solution using Equation (24) instead of Equation (23). Indeed,
Equations (8) and (24) together give

p = 1/2, q = 20 + γ

5 + γ
v(R) > v(r) (47)

and, for −1/2 < γ � 0,

p = 1/2

v(R) > v(r).

13/3 > q > 4
(48)

For bodies with v(r) > vesc(r) but r > rmax—those not in the
cascade—the primordial size distribution q ′ applies. As long as
q ′ satisfies the conditions on Equation (9), the velocities follow
from this and Equation (23) if q ′ < 4 or Equation (24) if q ′ > 4.

Finally, if the collisional cooling timescale is shorter than the
age of the cascade, the velocity distribution will be shallower
than predicted in the relevant regime above. How much shal-
lower depends on particulars of the stirring timescale and the
energy loss per collision. For example, if the kinetic energy lost
in a catastrophic collision is so small that the kinetic energy
retained by the fragments is larger than the energy they gain via
stirring in one collision time, p will instead depend on exactly
how much energy is lost in an average collision. In turn the
energy loss per collision depends heavily on the bodies’ inter-
nal structure, which is very poorly constrained (Leinhardt et al.
2008, and references therein). We will not discuss this uncooled
regime in detail here.

In the above we neglected any inward orbital drift caused
by the energy loss in inelastic collisions. Since smaller bod-
ies collide more frequently, and since the velocities are size-
dependent, we might expect the orbital drift rates to be depen-
dent on body size. Indeed, we can estimate the maximum drift
rates by assuming that over one velocity damping timescale,
the fractional orbital energy lost by a body of size r is of order
v(r)/[orbital velocity]. Using Equations (12), (13), (20), and
(23), this gives

orbital drift ∼ N (rB(r))r2Ω
area

v(r)

vorbital
∝

{
r−p v(R) > v(r)
r−3p v(R) < v(r)

(49)

when catastrophic collisions provide significant damping and

orbital drift ∼ N (r)r2Ω
area

v(r)

vorbital
∝

{
r−p v(R) > v(r)
r−3p v(R) < v(r)

(50)

when they do not. However, this orbital drift significantly
affects the collisional cascade’s progress only if the rate of
relative drift between bullets and targets is faster than the
catastrophic collision rate. If catastrophic collisions provide
effective damping, the bullets and targets must differ in size
by at most order unity. In this case we expect no significant
relative drift because the power of r in the drift rate is always
less than unity. If catastrophic collisions do not provide effective
damping, the damping rate is much slower than the catastrophic
collision rate, so again we expect no significant relative drift on
the catastrophic disruption timescale.

Our results for p and q in all the velocity and strength law
regimes discussed in this work are summarized in Table 1.
Note that all the size distributions are steeper than those that
obtain when fixed velocities are used (p = 0); these are
3.14 > q > 2.88 for the gravity regime (Pan & Sari 2005)
and 3.72 > q � 3.5 for the strength regime. The steepening is
certainly consistent with smaller velocities for smaller bodies:
lower velocities mean larger bullets are needed to break a target
of a given size; an increase in bullet size corresponds to a
decrease in the number of bullets for q > 0; and a steeper
size distribution offsets this decrease. Table 1 also confirms that
our assumption p < 1 of Section 2.1 is self-consistent.

4. COMPARISON WITH NUMERICAL SIMULATIONS

To test the analytic results above we used a numerical cascade
simulation based on the coagulation code of Schlichting &

6
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Table 1
Summary of Velocity Power Laws p and Size Power Laws q in Steady-state

Damping v(R) > v(r) v(R) < v(r) References
Mechanism

v(r) > vesc(r): Gravity regime Catastrophic 0.37 < p < 0.45 0.20 < p < 1/4 Equations (30), (31)
includes all collisions 3.26 > q > 3.11 3.21 > q > 3
bodies in Collisions with 0 � p < 0.085 0 � p < 0.042 Equations (39), (40)

cascade equal-sized 3 � q < 3.17 3 � q < 3.17
bodies

Strength regime Catastrophic 0.090 < p � 0.17 0.054 < p � 0.10 Equations (34), (35)
collisions 3.82 > q � 3.65 3.78 > q � 3.59

Collisions with p = 1/2 1/4 > p > 0.16 Equations (44), (46)
equal-sized q = 4 4 > q � 3.64

bodies
Collisions with p = 1/2 · · · Equation (48)
smallest bodies 13/3 > q � 4 · · ·

v(r) < vesc(r): Gravity or Dynamical · · · p = −3/2 or p = −3/4 Equation (27)
bodies too strength frictiona · · · 1 < q < 7
large for regime
cascade

Note. a p = −3/2 applies when vesc(r) > v(r) > v(s); p = −3/4 applies when v(r) < v(s) < vesc(r). Here v(s) is the velocity of the bodies providing the
dynamical friction.

Sari (2011). Because our goal here is to study the dominant
physical processes in the cascade—viscous stirring, collisional
and dynamical friction damping, and mass transfer from larger
to smaller body sizes—we neglect factors of order unity in the
stirring and damping rates. We study a single belt of bodies
orbiting in an annulus about a much more massive star. We
take the initial total mass in bodies to be about 1MEarth, and we
assume the bodies have bulk density 1 g/cc and follow the mass
and velocity evolution of bodies with radii ranging from 1 m to
3000 km, a few times the size of Pluto.

As a first test of our velocity evolution theory, we artificially
fix the size spectrum in the simulations and allow only the
velocities to evolve. In Figure 1 we show as an example the
test results with strength-dominated γ = 0 bodies and a fixed
q = 3.6 size spectrum. Since we do not allow for catastrophic
collisions in this run and since we fix the size spectrum at q < 4,
the collisional damping is dominated by collisions between
similarly sized bodies as given in Equation (12). The resulting
steady-state velocities obey Equation (23), which for q = 3.6
means p = 0.3 if v(R) > v(r) and p = 0.15 if v(R) < v(r). We
expect the velocities for large bodies with velocities below their
own escape velocities to follow Equation (26). Our simulations
agree well with these numbers.

Similarly, we test our mass cascade implementation by
artificially fixing the velocity as a function of size and allowing
only the size distribution to evolve. Figure 2 shows the results
of a test with strength-dominated γ = 0 bodies and velocities
fixed to a broken power law with p = 1/4, p = 1/8. For these
Equation (8) gives q = 3.73, q = 3.61; these agree well on
average with our simulations. Our simulations also show waves
as mentioned in Section 3; these are induced by the break in
the velocity distribution as well as the artificial “breaks” in the
mass power law created by the finite range of body sizes in our
simulations.

Finally, we allow both the size and velocity distributions to
evolve in the simulations. Figure 3 shows an example again
using strength-dominated bodies with γ = 0. We assumed in
this run that the collisional damping of the velocity disper-
sion is dominated by collisions between like-sized bodies (see

Equation (12)). This criterion applies when catastrophic colli-
sions do not damp the velocity dispersion significantly, which
may occur for small bullet-to-target ratios. Here the steady-state
solution of Equation (41) applies, and γ = 0 implies p = 1/2,
q = 4 when v(R) > v(r) and p = 0.16, q = 3.64 when
v(R) < v(r). Again, these agree well with our simulations on
average in each of the three different velocity regimes.

This model and the results shown in Figure 3 may, for exam-
ple, apply at the end of protoplanetary growth in a planetesimal
disk. Initially, the velocity dispersion is so small that collisions
lead to growth. As the largest bodies—“protoplanets”—grow,
they continue to excite the small planetesimals’ velocity disper-
sion; their velocities grow on the same timescale as the large pro-
toplanets’ sizes (for a comprehensive description of this growth
phase, see Schlichting & Sari 2011). Once the system reaches
an age comparable to the small planetesimals’ collision time,
but before collisions become destructive, the balance between
gravitational stirring and collisional damping determines the
planetesimals’ velocity dispersion. This phase is similar to the
situation shown in Figure 1, but with a mass spectrum that con-
tinues to evolve due to planetesimal accretion. Finally, the plan-
etesimals’ velocity dispersion is excited sufficiently above their
escape velocities that destructive collisions set in. This stage is
shown in Figure 3. The mass spectrum now no longer reflects
the growth history; instead it is determined by the collisional
evolution.

5. SUMMARY

We have found self-consistent steady-state solutions for the
velocity function and size distribution of collisional cascades
in the super-Hill regime. These solutions occur when mass
conservation is satisfied and when viscous stirring balances
velocity damping. Three kinds of velocity equilibrium may
occur. For the biggest bodies, which have velocities slower than
their escape velocities, viscous stirring and dynamical friction
balance. These bodies’ velocities increase with decreasing size
until the size at which the velocity and escape velocity are equal.
Since dynamical friction is inefficient for bodies with velocities
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Figure 1. Comparison between analytic results (dashed blue line) and simu-
lations (solid orange curve) for steady-state velocities in a system of strength-
dominated bodies with γ = 0. The top panel shows the mass in a given loga-
rithmic mass bin as a function of radius, which in this run is fixed with q = 3.6;
the bottom panel shows the simulations and analytic results for the velocities.
Since we do not allow for catastrophic collisions in this run and since we fix the
size spectrum at q < 4, the collisional damping is dominated by collisions be-
tween similarly sized bodies as given in Equation (12). There is good agreement
in each of three velocity regimes. The smallest bodies, which have velocities
greater than their own escape velocities but less than v(R), follow p = 0.3 (see
Equation (23)). Larger bodies still small enough to have velocities larger than
their own escape velocities, but which have velocities greater than v(R), follow
p = 0.15 (see Equation (23)). Finally, the largest bodies have p′ = −3/2
because they are subject to dynamical friction by small bodies with velocity
dispersion v(r) < v(R) (see Equation (26)).

(A color version of this figure is available in the online journal.)

faster than their escape velocities, stirring balances damping
by direct collisions for all smaller bodies. Bodies just smaller
than this first transition size have velocities faster than both
their escape velocities and the velocity of the largest bodies in
the system. A second transition occurs at the body size whose
velocity equals that of the largest bodies in the system. Bodies
smaller than this second transition have velocities slower than
the largest bodies in the system, so their stirring requires a
different cross-section. The resulting size distributions for the
gravity- and strength-dominated regimes are steeper than the
ones expected with size-independent velocities. We find good
agreement between the predictions of our theory and the results
of our numerical simulations.

To our knowledge, previous analytic treatments of collisional
cascades have not considered velocity stirring or damping.
Wyatt (2008) and Kennedy & Wyatt (2010) study disks in
which the cascade start time depends on orbital radius because
the large bodies needed to excite the velocity dispersion and
initiate a cascade take longer to accrete at larger orbital radii.
However, they do not consider the effects of stirring or damping
on colliding bodies’ velocities as the cascade proceeds.
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Figure 2. Comparison between analytic results (dashed blue line) and simula-
tions (solid orange curve) in a steady-state system of strength-dominated bodies
with γ = 0 and fixed velocity distribution. The top panel shows the resulting
mass spectrum plotted as mass in a given logarithmic mass bin as a function
of radius (solid orange curve) and the corresponding analytic results (dashed
blue line); the bottom panel shows the fixed velocity distribution. We begin
the simulations with an initial size distribution q = 3.6, which evolved to the
q = 3.61 for v(r) > v(R) and q = 3.73 for v(r) < v(R) as expected from
Equation (8) with p = 1/4, p = 1/8. Waves are clearly visible as oscillations
in the steady-state mass spectrum. We note here that the wavelength of the
waves changes as one transitions from the p = 1/4 to the p = 1/8 velocity
distribution. This change in wavelength reflects the velocity dependence in the
bullet-to-target ratio.

(A color version of this figure is available in the online journal.)

Kenyon & Bromley (2008) do account for simultane-
ous velocity and size spectrum evolution in their numerical
coagulation/fragmentation code. Our results here are not di-
rectly comparable to theirs because the largest bodies in their
simulations continue to accrete while their collisional cascades
operate. We plan to extend and modify our calculations to en-
able comparison with their findings. Other areas for future in-
vestigation include incorporating velocity stirring and damping
into collisional cascades covering both the gravity and strength
regimes as well as the waves induced in the size and velocity
power laws due to transitions between regimes. A good knowl-
edge of the size and velocity distributions will also allow us to
predict observables such as the dust production rate as a function
of time and the scale height of the disk as a function of size or,
for the smallest bodies, observing wavelength. For the small-
est dust particles a complete velocity treatment must account
for excitation by radiation effects such as radiation pressure and
Poynting–Robertson drag. This calculation would be an analytic
extension of the work of Thébault (2009), who used numerical
simulations to study the balance between radiation pressure and
collisions in a disk with a fixed size distribution. There may also
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Figure 3. Comparison between analytic results (dashed blue line) and simu-
lations (solid orange curve) in which the size distributions and velocities are
both evolved together. The top panel shows the mass spectrum; the bottom
panel shows the velocity distribution. In this run we assumed that the collisional
damping of the velocity dispersion is dominated by collisions between like-sized
bodies (see Equation (12)). This damping criterion applies when catastrophic
collisions do not damp the velocity dispersion significantly, which may oc-
cur for small bullet-to-target ratios. The agreement between the simulations
and our analytic results in Equations (41) and (26) is good on average for the
v(R) < v(r) and v(R) > v(r) regimes in both the mass and velocity plots as
well as for the v(r) < vesc(r) regime (see the caption of Figure 1 for a descrip-
tion of the regimes). Waves due to both the transition between v(R) > v(r) and
v(R) < v(r) and the ends of our simulation range are again visible in the data.

(A color version of this figure is available in the online journal.)

be some separation in orbital radius between the large planetes-
imals and the dust due to radiation drag as well as the relative
drift described by Equations (49) and (50).

Ongoing surveys of the Kuiper and asteroid belts provide
observational size distribution and velocity data to which we
can compare our results. Kuiper belt surveys indicate that its
size spectrum follows a broken power law whose break falls at
a body size of several tens of kilometers (Bernstein et al. 2004;
Fraser 2009); this break is interpreted as the top of a collisional
cascade. Typical Kuiper belt velocities are about 1 km s−1, of
order 30 times larger than the escape velocities from the largest
bodies in the cascade, so the typical bullet/target size ratio is
far from unity. Then cooling by catastrophic collisions should
be ineffective. Also, the timescales for the observed Kuiper belt
objects (KBOs) to collide with bodies of equal size are longer
than the age of the solar system. These KBOs have therefore
not had time to cool; we would expect their average velocities
should be very similar to those of the primordial KBOs. Indeed,

small KBOs’ eccentricities and inclinations show no significant
trends with size. As for the size distribution, assuming the break
exists, surveys find a range of size distributions 1.9 < q < 3.9
for KBOs smaller than the break size (Bernstein et al. 2004;
Fraser et al. 2008; Fraser 2009; Schlichting et al. 2009; Bianco
et al. 2010). This is consistent with the 2.88 < q < 3.14 we
expect if p 
 0 but not strongly constraining. In the asteroid
belt, typical relative velocities of ∼5 km s−1 suggest catastrophic
collisions are likewise ineffective at cooling. Surveys of the
asteroid belt indicate a size distribution of q 
 3.5 for large
bodies of H magnitude smaller than about 15, or size larger
than ∼1 km (Gladman et al. 2009, and references therein). For
smaller bodies, however, the slope becomes shallower; different
surveys report slopes ranging from q = 2 to q = 2.8 (Ivezić
et al. 2001; Yoshida et al. 2003; Yoshida & Nakamura 2007;
Wiegert et al. 2007). While the overall size distribution slope
is roughly consistent with the expected 2.88 < q < 3.14, we
would predict that the average slope steepen for bodies smaller
than about 100 m in size. Still, our theory alone suggests several
possible causes for waves that might explain the observed break
and its location. This again makes strong constraints difficult
without further data on smaller bodies.

We look forward to future observations of smaller KBOs and
asteroids whose cooling time may be shorter than the belts’
lifetimes and which will provide a longer size baseline with
which to compare our theory. Future survey results of this
kind will provide more stringent tests of our results and may
shed light on the catastrophic collision process in our solar
system. In particular, measurements of the slopes of the size
and velocity distributions would provide a direct probe of the
bodies’ strengths. Similarly, observations of debris disk scale
heights as a function of wavelength at millimeter wavelengths,
for example with the Atacama Large Millimeter/Submillimeter
Array, would provide direct tests of our velocity power laws
as well as constraints on the internal strengths of pebble-sized
particles in those disks.
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Krivov, A. V., Sremčević, M., & Spahn, F. 2005, Icarus, 174, 105

9

http://dx.doi.org/10.1016/j.icarus.2011.04.002
http://adsabs.harvard.edu/abs/2011Icar..214..179B
http://adsabs.harvard.edu/abs/2011Icar..214..179B
http://dx.doi.org/10.1006/icar.1999.6204
http://adsabs.harvard.edu/abs/1999Icar..142....5B
http://adsabs.harvard.edu/abs/1999Icar..142....5B
http://dx.doi.org/10.1086/422919
http://adsabs.harvard.edu/abs/2004AJ....128.1364B
http://adsabs.harvard.edu/abs/2004AJ....128.1364B
http://dx.doi.org/10.1088/0004-6256/139/4/1499
http://adsabs.harvard.edu/abs/2010AJ....139.1499B
http://adsabs.harvard.edu/abs/2010AJ....139.1499B
http://dx.doi.org/10.1016/0032-0633(94)90008-6
http://adsabs.harvard.edu/abs/1994P&SS...42.1079C
http://adsabs.harvard.edu/abs/1994P&SS...42.1079C
http://dx.doi.org/10.1029/JB074i010p02531
http://adsabs.harvard.edu/abs/1969JGR....74.2531D
http://adsabs.harvard.edu/abs/1969JGR....74.2531D
http://dx.doi.org/10.1006/icar.1997.5803
http://adsabs.harvard.edu/abs/1997Icar..130..140D
http://adsabs.harvard.edu/abs/1997Icar..130..140D
http://dx.doi.org/10.1088/0004-637X/706/1/119
http://adsabs.harvard.edu/abs/2009ApJ...706..119F
http://adsabs.harvard.edu/abs/2009ApJ...706..119F
http://dx.doi.org/10.1088/0004-6256/137/1/72
http://adsabs.harvard.edu/abs/2009AJ....137...72F
http://adsabs.harvard.edu/abs/2009AJ....137...72F
http://dx.doi.org/10.1016/j.icarus.2008.01.014
http://adsabs.harvard.edu/abs/2008Icar..195..827F
http://adsabs.harvard.edu/abs/2008Icar..195..827F
http://dx.doi.org/10.1016/j.icarus.2009.02.012
http://adsabs.harvard.edu/abs/2009Icar..202..104G
http://adsabs.harvard.edu/abs/2009Icar..202..104G
http://dx.doi.org/10.1146/annurev.astro.42.053102.134004
http://adsabs.harvard.edu/abs/2004ARA&A..42..549G
http://adsabs.harvard.edu/abs/2004ARA&A..42..549G
http://dx.doi.org/10.1086/323452
http://adsabs.harvard.edu/abs/2001AJ....122.2749I
http://adsabs.harvard.edu/abs/2001AJ....122.2749I
http://dx.doi.org/10.1016/j.icarus.2009.11.016
http://adsabs.harvard.edu/abs/2010Icar..207...54J
http://adsabs.harvard.edu/abs/2010Icar..207...54J
http://dx.doi.org/10.1111/j.1365-2966.2010.16528.x
http://adsabs.harvard.edu/abs/2010MNRAS.405.1253K
http://adsabs.harvard.edu/abs/2010MNRAS.405.1253K
http://dx.doi.org/10.1086/423697
http://adsabs.harvard.edu/abs/2004AJ....128.1916K
http://adsabs.harvard.edu/abs/2004AJ....128.1916K
http://dx.doi.org/10.1086/591794
http://adsabs.harvard.edu/abs/2008ApJS..179..451K
http://adsabs.harvard.edu/abs/2008ApJS..179..451K
http://dx.doi.org/10.1016/j.icarus.2004.10.003
http://adsabs.harvard.edu/abs/2005Icar..174..105K
http://adsabs.harvard.edu/abs/2005Icar..174..105K


The Astrophysical Journal, 747:113 (10pp), 2012 March 10 Pan & Schlichting

Leinhardt, Z. M., Stewart, S. T., & Schultz, P. H. 2008, in Physical Effects
of Collisions in the Kuiper Belt, ed. M. A. Barucci, H. Boehnhardt, D. P.
Cruikshank, A. Morbidelli, & R. Dotson (Tucson, AZ: Univ. Arizona Press),
195
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