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We have calculated the self-consistent Green’s function for a number of atoms and diatomic
molecules. This Green’s function is obtained from a conserving self-energy approximation, which
implies that the observables calculated from the Green’s functions agree with the macroscopic
conservation laws for particle number, momentum, and energy. As a further consequence, the kinetic
and potential energies agree with the virial theorem, and the many possible methods for calculating
the total energy all give the same result. In these calculations we use the finite temperature
formalism and calculate the Green’s function on the imaginary time axis. This allows for a simple
extension to nonequilibrium systems. We have compared the energies from self-consistent Green'’s
functions to those of nonselfconsistent schemes and also calculated ionization potentials from the
Green’s functions by using the extended Koopmans' theoren2085 American Institute of
Physics [DOI: 10.1063/1.1884965

I. INTRODUCTION coordinates. But while we know from DFT that the observ-
%bles are functionals of the electron density alone, these

Recent progress in molecular electronics has exposed ﬂ}unctionals are in most cases unknown and presumably

need for better theoretical methods fal initio studies of hihl licated. Th b bl iole f
nonequilibrium many-electron systerhdVhen describing 1ighly complicate ", € same observables are simpie func-
gonals of the Green’s function. Furthermore, there is no ob-

transport through a single molecule one must account for th _ N ) X
details of the electronic structure in the molecule and in the/ious path towards improved apprOX|mff1t|ons in DFT, while
contacts. Unfortunately, the currently used theoretical methiMProved approximations for the Green’s functions can sys-
ods typically predict values for the conductivity that differ by tematically be derived from diagrammatic techniques. In
orders of magnitude from the experimentally measured valfact; the Green's-function formalllszm is highly useful also for
ues. Most of these methods aim only at describing thél€riving approximations in DFY.
steady-state properties of these nonequilibrium systems, but N this paper, we will present results of Green’s-function
this also requires taking the correlated dynamics of thecalculations for equilibrium systems as a first step towards
many-electron systems into account. A first-principles delime propagation of the full nonequilibrium Green’s func-
scription of nonequilibrium systems is highly complicated.tions. The use of ground-state Green's-function techniques
Time-dependent density-functional thebDFT) offers an  has a long history in quantum chemistiy’ The most at-
exact description and is also suitable for treating the quanturiactive feature of this formalism is that the Green’s function
conduction probleni. At present, however, density- provides expectation values of all one-body operators, the
functional calculations for quantum conduction have onlytotal energy, ionization potentials, and spectral function,
been carried out at the level of the adiabatic local-densitywhile being a much simpler object than the many-particle
approximation"’, which corresponds to using exchange-wave function. Our approach differs in two important ways
correlation functionals without memory. from this earlier work. Firstly, we use the finite temperature
How to construct such improved functionals that canformalism and calculate the Green’s function on the imagi-
take dissipation properly into account is far from obvious.nary time axis. This choice leads to a number of computa-
Solving the time-dependent Schrodinger equation for the fultional simplifications but is ultimately motivated by the pos-
many-particle system is not an option due to the large comsibility of easily extending the calculations to nonequilibrium
putational effort. Instead, Green’s-function techniques offer aystems. The second characteristic feature is that we have
natural and relatively simple method for describing a noncarried out the calculations such that the observables ob-
equilibrium correlated many-particle systeM8Within this  tained from the Green’s function agree with the macroscopic
formalism, we can systematically improve our approxima-conservation laws of the underlying Hamiltonian, e.g., con-
tions, also including eIeCtron-phonon interactions. Compare@er\/aﬂon of partide number, momentum, angu|ar momen-
to denSity'fUnCtional theory, the Green’s function tum, and energy. This requires the use of Conserving
G(ryty,ry,tp) is obviously more complicated than the elec- gpproximationg®*® a concept which is rarely discussed in
tron density since it is a time-dependent function of twoguantum chemistry literature, but which is particularly im-
portant for calculations on nonequilibrium systems. Another
¥Electronic mail: n.e.dahlen@rug.nl essential part of these calculations is that the Green’s func-
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tions should be calculated self-consistently, i.e., should nostance, mean that the trace of the density matrix gives the
depend on a reference state. Such calculations have, to taong particle number, that the energy will depend on the
best of our knowledge, never been carried out on moleculesnethod used for calculating it, or that the potential and ki-
though partially self-consistent solutions exist® If the  netic energies do not satisfy the virial theorem. We will in
Green'’s function is not self-consistent, the particle numbethis paper stress the importance of calculating the Green’s
will be incorrect™® and the kinetic and potential energy will function from so-called conserving approximati&ﬁ’é?
not be in agreement with the virial theorem. A further advan-which ensures the physicality and internal consistency of the
tage of the conserving approximations is that the many difcalculated observables.
ferent methods for calculating the total energy from the  Our system is described by the Hamiltonian
Green'’s function will give the same results.

As a first step towards studying the nonequilibrium sys- = J dxp O[T+ w(r)Jg(x)
tems, it is necessary to calculate the self-consistent Green'’s
function of the initial equilibrium system. Such self- 1
consistent solutions have earlier been obtained for model +_defdX/lﬂT(X)lﬂT(X,)U(I',r’)lﬁ(X/)l//(X), (2
systems such as the homogenous eIectroﬁlgmi the Hub- 2
bard modef,” and lately also for the silicon crystdland  wheret=-v2/2 is the operator for the kinetic energy(r) is
atoms.” While the two latter calculations aimed at calculat- the external potential and(r,r’)=1/|r=r’| is the electron
ing spectral properties and ionization potentials, we have ifnteraction. We use atomic units throughout this paper. In an
our Ca|Cu|ati0nS a|SO been able to Calculate the Self'consisteﬁhak)gy with the Heisenberg picture' the Operators are given
toFaI energies. We will, in the fpllowmg discussions, ste}rt bya time dependence according (Anm(,r):ef(H—;LN)ée—f(H—p,N)_
briefly explal.nlng' th.e (_equatlo.ns for Fhe self—con3|stent-|-he Green'’s function is then defined as the expectation value
Green'’s function, indicating which conditions must be ful-
filled for obtammg physically consistent results_. At the end  G(x,7,Xp7) = (T[ by (Xe ) i (X0, 7))
of Sec. I, we will put our equilibrium calculations in the

context of nonequilibrium many-particle physics. We will in- =0(r - 72)(1}H(x171) pr(xzrz))
dicate there how our representation of the Green’s function ~ A
on the imaginary time axis corresponds to a branch of the = (= 1)y (Xom) Yy (X1 7)), 3)

Keldysh contouP, on which the nonequilibrium Green’s ~ ~ , I .
functions are represented. In Sec. Il we will present theWhere¢H(XT) and yy(x) are field annihilation and creation

details on how the calculations were implemented, and Se”c_nperators in the Heisenberg .plcture. The tme-ordermg op-
. . o eratorT moves the operator with the largest time argument to
consistent results for total energies and the ionization pote

tials obtained from the extended Koopmans’ theofém. r}he Ie_ft. The equilibrium Greens_; function .depends only on
the difference between the two time coordinates, and we can

thus write G(X;71,X>7)=G(Xq,Xy; 71— 7). The Green's
function solves the equation of motion

We study a system in thermal equilibrium characterizedi V2

Il. SELF-CONSISTENT GREEN’'S FUNCTIONS

by a temperatur@ and a chemical potential. Although we -d.+ 5 w(r) — uy(r) + ,u]G(x,x’ i 7)
are here only interested in the zero-temperature limit, th

finite-temperature formalis?rsimplifies the notation and also , B

allows for a simple generalization to time-dependent non- = A(7)dX =X )+f dTlf dx; %X, Xg; 7= 71)
equilibrium systems. The equilibrium Green’s function de- 0

pends on the imaginary-time coordinatgin the range B XG(x1,X";71), (4)

<7< B=1/(kgT), wherekg is the Boltzmann constant. With
the notationx=(r, o), the Green’s functiorG(xy,X,;7) is a
relatively simple quantity which provides a wealth of infor-
mation. In particular, the one-particle density matrix is given
by p(x,x’)=lim,_,G(x,x";-7), and the expectation value
of any one-body operator can be written according to

where the Hartree potentiab,(r) and the self-energy
2(x,x";7) account for the effects of the electron-electron
interaction. Both the Hartree potential and the self-energy are
functionals of the Green’s function, which means that the
Dyson equation[Eqg. (4)] should be solved to self-
consistency. The self-energy functional must be approxi-
mated, but for any approximation beyond Hartree—Fock the

A A . ,
(O)=Tr{pO} = | dx xl’lmx O(X)G(x,x",— 7). @) computational effort involved in solving this equation is
0 rather larger. Self-consistent calculations for real systems

have only recently appearédEarlier calculations on mol-
The trace indicates a summation over a complete set of state@gules and atoms have, however, obtained partially self-
in Hilbert space and the equilibrium density operator is givergonsistent solutiont”?°

by p=ePH-1N/Tr{eFH-4N1 From a given Green’s func- While we in this paper are concerned with atoms and
tion, there is also a large number of methods for obtainingsmall molecules at zero temperature, the calculations will
the total energy>?® It is not automatically true that these have to be carried out at a finite temperature. The tempera-
calculated observables agree with the macroscopic conservare must be low enough such that we can clearly distinguish
tion laws of the underlying Hamiltonian. This could, for in- between occupied states with energies below the chemical
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potential and unoccupied states with energies below the 1 1 1

chemical potential. This presents no problem for systems ¢ = -3 @ T4 %'Z

with a finite highest occupied molecular orbital-lowest unoc-

cupied molecular orbita HOMO-LUMO) gap, and the exact 8

value of the chemical potential is not important as long as s = & + + m

the value is in the gap. In the zero-temperature limit, shifting
the chemical potential by a small value will obviously FIG. 1. The second-order approximation to the self-en&rgyan be derived
change the Green’s function, but not the value of the obsens a functional derivative of a functiondl. The first diagram ofb and3
ables ’ are the exchange-energy and self-energy diagrams, respectively.
Expanding the Green’s function in a one-particle basis
{¢(x)}, the Dysor{Eq. (4)] becomes an equation to the time-

dependent matrig;; (7). It is convenient to write the Green’s
function on the form  Gj(nD=0(nG; (7)
+6(—T)Gﬁ(r), as indicated in Eq(3). This notation clearly
displays the discontinuity of the Green’s function &t0
given by

v.jkl=fdrfdr’¢?(r)¢}(r’)v(r—r’)¢k(r’)¢|(r)- (8)

The two remaining diagrams represent the correlation contri-

bution.

Sei(M== 2 Gu(NGmi(DGpq(~ 7)

kimnpq

“LT?)[G”(T) - Gij(_ T)] = [Gi(o) - GF(O)] == 5IJ' : (5)

X vlqu[zunpj - Unlpj]- (9

To solve Eq.(4) we also need the boundary conditi@y(- 1€ factor 2 that appears in EqS) and (9) comes from

antiperiodic in ther variable?’ This follows from the defi- Green’s function and the self-energy are real, symmetric,
nition of the Green’s function in E¢3). To illustrate these m-dependent matrices. The second-order diagrams resemble
and other properties of the Green’s function, it is useful tothose evaluated in second-order Mgller—Plesset perturbation
' 15 . .
consider a noninteracting Green’s functif, which results ~ theory.” The most important difference between our calcu-
from approximating the self-energy with a r-independent lations and second-order perturbation theory is that we solve
one-particle potential. Finding the Green’s function then corthe Dyson equati.on to self-consistency, and the final result is,
responds to solving a set of one-particle equations. Using thto" this reason, independent of any reference state. It also
corresponding orbitals as eigenfunctiof®,is diagonal and Means that the self-energiq. (9)] is evaluated using a non-

given in terms of the eigenvaluesaccording t8 diagonal Green’s function matrix.
The second-order approximation is an example of a con-

G2<(9) = &:n(e)e™™ (6a)  Serving approximation**which means that the self-energy
ij 1 1 . . .. .
can be obtained as the functional derivative of a functional
_ P[G,v],
G~ (D =-¢[1-n(g)le™. (6b)
(X7 = 10
Here,e=¢—u, and the terrm(e)=1/(ef®+1) is the Fermi (x,x";7) = SG(X' x;= 1) (10

distribution. The fact tha@® is antiperiodic and has the dis-
continuity [Eq. (5)] is easily verified. We now see that ff
—, then GY=(0)=-G” (B)=1 if <u, and O if > pu.
Conversely, we have{~(-8)=-G°%>(0)=0 if <pu, and 1
otherwise. Due to the exponential dependence mprihe
Green'’s function will be peaked around the times0 and
t=+. This is true also for the fully interacting Green'’s
function as well as the self-enerdy7), although the values
at the endpoints will then not be exactly 0 and 1.

The ® functional corresponding to the second-order approxi-
mation is shown in Fig. 1. The observables calculated from
the Green’s function will then agree with the macroscopic
conservation laws of the underlying Hamiltonian. The Har-
tree potential is also a functional of the Green’s function
since the density given by(x)=p(x,x)=lim,_,G(x,X;
-7). In calculations, one will start with an initial guess f8r
e.g., the Hartree—FockHF) Green’s function on the form
We will in the following consider unpolarized systems, indicated in Eq(6). One then calculates the Hartree potential

such thate;; =, = . While the Dyson equatiofEq. (4)] and the seIfTenergy from Eq$7) and (9) and solves_ the
is exact, the self-energy[G] must be approximated in prac- Dyson equatiofiEq. (4)]. If the self-consistency cycle is not

tical calculations. In these calculations we have chosen to uéé)ntinued: the resulting observables will depend on the ini-
the second-order approximation to the self-energy, as ilustial Green’s function. The results can be unphysical and can

trated in Fig. 1. Since the electron interaction is instantaProduce e.g., an incorrect particle number. Partial self-
neous, this self-energy has a particularly simple form. Th&onsistency, which means that the correlation part of the self-

first diagram in Fig. 1 is the exchange diagram, energy[Eqg. (9)] is fixed while the Hartree—Fock potential
vy+3, is updated, can significantly improve the restitsut

will, in general, not remove the unphysical features of the
calculated observables.

Another advantage of self-consistent calculations, is that
where the two-electron integrals are here defined accordingll the various methods for calculating the total energy from
to the Green’s function give the same reqfittr a detailed dis-

2ij(n=- 25(7')% Gy (0) ;. (7)
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cussion, see Refs. 19 and)28he most straightforward of order approximation, the self-consistent Green’s function is

these methods is to evaluate the individual energy terms, real and symmetric, which implies that both the matrides
andp are symmetric. The eigenvalue problem can therefore

=T+ + +
E=T+Vnet Veet Vin (19 be rewritten according to

where the kinetic energy and the nuclear-electron attraction ~ em_ ~ ~m

energyV, are trivially obtained from the density matrix. The 2 AU = = Al (16)

electron interaction energy i8/c=Uq+U,.,, where Ug !

=1/2fdrdr'n(r)v(r,r’)n(r’) is the Hartree energy, and the \where Zijz(p—lﬂAp—l/Z)ij and ljimzzj(pl/z)ikum The eigen-

exchange and correlation energy can be calculated from “\‘?alues give the EKT ionization potentials accordingﬁq

expression =Ny EN+ uN= p+ ENTEN= | EKT )
1 (" As we mentioned in the Introduction, one of the main
ch=§ . dTZ (= 7G;i(7). (12)  reasons why we choose to work in the finite-temperature
i

formalism is that the equations can easily be generalized to
When the Green’s function is obtained from a conservingionequilibrium systems. For a system initially in equilibrium
approximation, the kinetic and potential energy will agreeatt=0, the time-dependent value of the expectation value is
with the virial theorem(see Appendixsuch that Z=-V,,  given by{O)(t)=Tr{pOy(t)}, where the subscripd indicates
~Vee™ Vin the Heisenberg picture. The time-dependence of the operator

The Green's functions have frequently been used to objg given by the evolution operatoéH(t)=U(0,t)éO(t,O),
tain removal and addition energies, since these correspond t -

poles in the Fourier-transformed Green’s functidB(w) v9r3ere 'a‘y(t’t_ )=KOUE,t ) a_nd we h_ave defm?dK(t)

= [dtG(t)é“!, where the time variablecorresponds to a real- —H()~#N. Since the equilibrium density operatpr can
time variable® Such calculations has recently been carried@lso be written as an evolution operatgr=U(-i3,0)/
out on atoms; where the Green's function was calculated T{U(=i8,0)}, the time-dependent expectation value of the
self-consistently from a self-energy with a dynamically operatorO can be written as

screened coulomb interactigthe GW approximatior®) the e

one-particle Green’s function with screened coulomb inter- (&, = T{U(i8,0U(0,H0U(,0)} 17
action (GW) approximatior12.8 In the present work, we have T{U(-iB,0)}

empl_oye(_j the f|n|te-temperatur§ forr_nallsm and the Green Yhe numerator, read from right to left, describes an evolution
function is represented on the imaginary rather than on the

. . , . along a time contour from the initial time 0 tpthen back to
real-time axis. The Fourier transform of the real-time : . . L o
0, and along the imaginary time axis tdg3- This introduces
Mhe concept of the Keldysh time contduwhich is central to
the study of nonequilibrium system. A nonequilibrium sys-
tem at a timet can now be described by a Green'’s function
G(Xqtq,Xot), Where the time arguments must be located on
ethis contour starting at 0, passing throughand ending at

of the Green's function for imaginary timesG(iw,)
:fngG(T)e‘wnT, by analytic continuation. Such calculations
have been done for the silicon crys"f%ﬂwhere the Green’s

function was obtained on the imaginary time axis, and th

Fourier transformtG(w) was found fromG(iw) by the use of -iB. In calculations, this means that we will first calculate

Padé approximations. : . . . .
. . the Green'’s function for time arguments on the imaginary
For our calculations we have not found this approach_ . - . - I
. axis in order to describe the initial equilibrium systems. The

tentials from the extended Koopmans' TheordBKT).2> Yime evolu,tlon thep |rr.1plles.extend|ng the contour'on whlgh
the Green’s function is defined along the real axis, starting

Zgﬁatl%r:zatlon potentials are found from the elgenvaluefrom t=0. Our calculations therefore constitute the first step

in the propagation of the nonequilibrium Green’s functions.
> A qu: (EQ - uN- )\m)E PijU,m, (13) This method is also a direct way of obtaining the equilibrium
ij j Green’s function on the real time axis rather than on the
imaginary time axis. This is simply done by propagating the
Green'’s function along the real time axis, without any addi-
_ , T PN N, tional time-dependent potential. The resulting Green’s func-

Ajj —f dxf dx’ ;) OOL(x"), H = uN] o (X). tion will only depend on the differencg-t, between the
time coordinates, and will essentially be equivalent to ordi-

(14) nary real-time Green'’s function.

where the matrixA is defined according to

This definition differs from the one found in Ref. 25 by the
inclusion of the chemical potential. Using the definition of

the Green’s function in Eq3) and the Dyson equatidrq. Il RESULTS
(4)], we can writeA and the density matriyp as The calculations were carried out using a set of Slater
A= -3,Gy(Dl o andp;=G;(0). (15)  basis functions, using 25 basis functions for each hydrogen

atom and 30-40 basis functions for each of the other
We now interpret the eigenvalues, as the energies of the atoms® As the Green’s function is peaked around the end-
N-1 particle system}\m:Em‘l—,u(N—l). For the second- points 7=0 and r=%p, it is inconvenient to represent the

Downloaded 30 Jan 2006 to 129.125.25.39. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE |. Energies calculated from the self-consistent Green’s function and from the Luttinger—Ward func-
tional evaluated at the HF and LDA Green’s functions. The tekpdenotes the correlation part of the inter-
action energy. The enerds{ G?] is calculated from the second-ord@on-selfconsisteniGreen’s function. All
energies are in hartrees. The, idalculation was carried out for internuclear separationl.4, while the
separation waf=3.015 for LiH.

T Vne Uc Vee E EEW[GHF] E[GZ] EHF
He 2.8981 -6.7585 -0.0703  0.9635 -2.8969 -2.8969 -2.9013 -2.8617
Be 146362 -33.6781 -0.1367 4.4009 -14.6409 -14.6405 -14.6662 -14.5728

Ne 128.8790 -311.1072 -0.5748 53.3944 -128.8339 -128.8332 -128.7979 -128.54704
Mg 199.8400 -479.0677 -0.5937 79.3181 -199.9097 -199.9093 -199.9279 -199.6146
Mg?* 199.0333 -469.8175 -0.5489 71.6822 -199.1020 -199.1025 -199.0754 -198.8305
H, 1.1600 -3.6463 -0.0645 0.6062 -1.1659 -1.1658 -1.1722 -1.1336
LiH 8.0488 -20.4673 -0.1294  3.3746 —-8.0515 —-8.0513 —8.0608 —7.9868

Green’s function on an even-spaced time grid. We havenethod. This is somewhat more complicated than the con-
therefore used the uniform power mesh method, as describentional procedure of solving the Dyson equation for the
in Ref. 23, which is dense only at the end points 0 and Fourier-transformed functio®(w), when the time convolu-
=+p. It is usually sufficient to have between 40 and 80tion integrals transform into products of the Fourier-
points on the time mesh. The first step in the calculationsransformed functions. While representing the functions in
consists of solving the HF or DFT equations, resulting in anfrequency space is convenient when not attempting to find a
initial Green’s functionG%(7). Using the orbitals with eigen- self-consistent solution, the discontinuities at the points
values g as basis functions, this Green function matrix is=0 and #3 makes this inconvenient for our calculations. The

diagonal and has the form frequency space representation has the additional problem
G = B(n(n(e) - 1)e™7+ f(- In(e)e s, (19) that the functions _decay slowly as a function @f which
causes frequency integrals to converge very slowly.
We have again used the notatieyr ¢ —u, subtracting the Having solved Eq(20), the self-energy, must now be

chemical potential from the HF or DFT eigenvalues. In our calculated with this nev@, for which a new solution of Eq.
calculations, the inverse temperature was setgtol00, (20) must be obtained. This procedure will eventually lead to
which is sufficiently low to approximate the zero- a self-consistent Green’s function. It is important to stress
temperature limit. Only if the HOMO-LUMO gap becomes that while the reference functior@® and 3° appear in the
very narrow, as for an jimolecule at large internuclear sepa- Dyson equatiofiEg. (20)], the observables obtained from the
rations, must the temperature be set lower in order to clearlyelf-consistent Green’s function should not depend on the
distinguish between occupied and unoccupied levels. The exhoice of reference state, as is also indicated by &jy.

act location of the chemical in the HOMO-LUMO gap is Using orbitals from the local density approximatitiiDA )
otherwise arbitrary. We can shift the chemical potentialor HF, orbitals should lead to the same reguk., the ob-
(equivalent to shifting the eigenvalueg without changing  servables calculated from the Green’s function should be the
the properties of the system, as long as the eigenvalues of tRgmg. Solving the Dyson equation for different choices of
occupied states are negative and the eigenvalues of the UR® can therefore serve as a useful numerical test of the cal-

occupied states are positive. _ culations(in particular, for checking whether the number of
~ The noninteracting Green's function corresponds to a sopoints of the time mesh is large enougie have found that
lution of the noninteracting Dyson equation, convergence is reached much more quickly when using HF
PR + 0G9(7). rather than DFT as starting point.
[= 9.~ Wy 1Gj(n) = 8;8(m) %E'JG‘(T) (19 The self-consistent energies are shown in Table I. We

0 . . have also included the HF energies and the total energy cal-
The self-energy matriZj; equals[dx¢; (X)vux(X)$j(x) i culated from the Luttinger—WartLW) functional®*-2The
the orblta*ls are obtained from a DFT calculation, or\w functional E.wlG] is a functional of the Green’s func-
Jax fax’ ¢ (x)vue(x,x") ¢j(x’) if the orbitals are obtained {jon such thatsE[G]/6G=0 whenG is the self-consistent
from a HF calculation. From this initial Green’s function, we so|ution of the Dyson equation. At the self-consisténthe

can solve the Dyson equation on the integral form, LW functional gives exactly the same result as the methods
o B B o discussed above. Evaluating the LW functional on an ap-

Gjj(n) = §;G{(7) +f dTlf dn>, G(7= 1) proximate noninteracting Green’s function such as, e.g., the

0 ok HF Green’s function then yields energies close to the self-

xS (r1 = 7)Gy(72), (20) consistent values due to the variational property of the en-

5 ergy functional. That this is indeed the case can be seen in
whereS(7,— 1) =S (1 — ) - 8(m,— 1) 2%, For a givens,  Table I, where the deviation between the LW energies and
solving the Dyson equatidieq. (20)] for G means having to  the self-consistent results are less than one millihartree. This
solve a set of linear equations, which can be done by usindlustrates the fact that the functional is indeed insensitive to
iterative methods such as, e.g., the biconjugate gradierthe input of Green’s function, and that a very good estimate
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TABLE II. lonization potentials calculated from the extended Koopmans’ [\, CONCLUSIONS
theorem. The results in the first column are calculated from the self-

consistent Green’s function, while those in the column labeled[ERTTare The use of conserving approximations is essential not
calculated from the Green's function obtained from the first iteration of Eq.only when considering time-dependent systems, but also for
(20). The HF values correspond fo the HF eigenvalues. systems in the ground state. The concept of conserving ap-

proximations implies finding a self-consistent solution to the

2
EKTIG] EKTLET HF Expt Dyson equation. While this increases the computational ef-
He 0.9017 0.9059 0.9181 0.9036 fort, the results are unambiguous in the sense that the result-
Be 0.3130 0.3275 0.3084 0.3426 ing observables are internally consistent and independent
Ne 0.7412 0.7363 0.8504 0.7925 both of reference state and of the particular method used for
Mg 0.2548 0.2605 0.2530 02810 calculating them from the Green’s function. We have found it
ET_' 8'25;’:; 8;’322 g'ggf; 8'25353 useful to confirm that the self-consistent total energies are in
: : : : : very good agreement with those obtained from the
ZFrom Ref. 34. Luttinger—Ward functional. This means that it is possible to
From Ref. 35. estimate the merits of a certain diagrammatic approximations

From Ref. 36. without actually performing the self-consistent calculation of

the Green’s function. For calculating anything else than the

for the self-consistent energies can be obtained without havtotal energy, one still needs to carry out the full calculations.
ing to solve the Dyson equation. As can be seen from the Using the finite-temperature formalism to represent the
table, the virial theorem is satisfied reasonably well. The deGreen’s function on an imaginary time axis simplifies the
viation of the kinetic from the negative of the total energy iscalculation of observables from the Green’s function, since
due to the limited size of the basis sets and becomes small@re avoid performing the slowly converging frequency inte-
when increasing the number of basis functions. grals that appear when using the Fourier-transformed quan-

The advantage of self-consistent calculations is that théties. But the most important reason for calculating the
results depend only on the chosen diagrammatic approximagreen’s function on the imaginary time axis is that this is the
tion and not on the reference state. In Ref. 30, we showedbvious starting point for treating the system out of equilib-
how the LW energies are also very close to the conventionaium. We should here point out that a very good approxima-
second-order Mgller—Pless@¥lP2) energies, and according tion to the self-consistent Green’s function can be obtained
to the results in Table |, the MP2 energies are thus also vergy updating only the static part of the self-energy+3.,,
close to the self-consistent energies. This is interesting, sinoghile letting the correlation part be calculated from the HF
the Mgller—Plesset series can be shown to divétgehile  Green's function, i.e.3.=3Gyg]. This calculation is sig-
the self-consistent Green’s function calculations take into acnificantly faster than the fully self-consistent procedure, but
count contributions to infinite order in the electron interac-is not relevant when considering nonequilibrium systems.
tion. We can expect to see a large difference between thghe reason for this is that while the self-consistent Green’s
MP2 energy and the self-consistent results in systems whefegnction in the ground state remains largely diagonal in the
MP2 fails badly, e.g., for the dissociation curve of the H HF basis functions, the off-diagonal terms become signifi-
molecule. While the MP2 energy diverges when the internucant when the system is disturbed. The truly nonequilibrium
clear separatioR— o, the first iteration of the Dyson equa- case will be part of a future publication.
tion [Eq. (20)] yields a finite result®

In addition to results obtained from the self-consistenty cxNOWLEDGMENTS
Green’s function, we have also included non-self-consistent
results. These are calculated using a Green’s function ob- We thank Ulf von Barth and Thijs Holleboom for stimu-
tained from solving the Dyson equatipig. (20)] only once,  lating discussions.
with 20 and G° equal to the HF self-energy and Green’s
function. This means thaB? solves the equatiofskipping ~ APPENDIX: THE VIRIAL THEOREM
the indices and the time coordinates for notational simplic-

ity) We will in the following show that a self-consistent

) ) Green’s function obtained from a conserving approximation
G” =Gy + Gur2  GHel G, (21)  produces energigs in agreement with the virial theorem. As
where3, is given by Eq.(9), evaluated with the HF Green's SNOWn by Bayrﬁ, a conserving self-energy corresponds to a

functional derivative of a functionab[G,v], as indicated in

function. We have also included the HF eigenvalues, corre h ional b db .
sponding to the conventional Koopmans’ theorem. The reEd- (10). Such a functional can be constructed by summing

sults clearly show that iterating the Dyson equation to selfUP @ Selected class of self-energy diagrams according to the
consistency significantly changes the ionization potentials. formula

In Table Il we list ionization potentials calculated from B 1 "
the EKT. Also the ionization potentials depend significantly P[G]=2> %tr{zk G},
on whether the calculations are carried out to self- nk
consistency or not. The ionization potentials are in agreewheren labels the order of the diagram, i.e., the number of
ment with the preliminary results we have obtained frominteraction lines, ank labels the distinct self-energy dia-
real-time propagation. grams of that order. The trace is here defined as

(A1)
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B
tr{AB}:f dff drfdr’A(r,r’;—T)B(r’,r;r). (A2) fd3rfd3r'2<k“)[eh](r,r';T)Gk(r',r;f)
0

The systems we consider in this paper consist of electrons :)\”f d3r f d?’r’E(k”)[G](r,r’;T)G(r’,r;r). (AB)
interacting with nuclei of charg€z;} that we treat as fixed-

poi_nt charges in the positiod®R;}, collectively !abelledR. Summing up all the terms in E4AL), we obtain

This means that the total energy can be writtenEaE,

+V,, Where the nuclear repulsion term isv,, di’x
=1/2%;4ZZ]/|Ri-R;|. The electronic termEg=T+V,e d\
+Vee Can be obtalned from variational functionals of the ] ] ]
Green’s function(as discussed in, e.g., Ref.)3Wsing the ~WhereU,c is defined as in Eq12). _

finite temperature formalism, it is in fact more convenientto 1€ term tr_I!{—G)‘} is independent oh. This can be
use the thermodynamic grand potenfislwhich is related to ~ S€€n by first writing the logarithm as a power series,

= 32 ulsIGIG) = Uy (A7)

the energy through lim, o Q=Eg— uN. N 1 .
For nuclei in fixed positions, the grand potential corre-  trIn{=G"}=-2 Htr{(l +GY)" (A8)
sponding to a conserving approximation is a functibhef 4
G, From the definition ofG", it follows that terms on the form
- S . ..r\GMry,rp;—7)...GMNry, 1 7n-1) are independent
Q[G]=P[G]+ U([G] - t{(GG** -~ 1} + tr In{- G}, of \, and we therefore have
(A3) dintr{-G} _ no)
whereUy=1/2/n(r)v(r-r’)n(r) is the Hartree energy, and dx
- o\ — 2 .
the operator  G°(ry,rp;7)=(=d,+V5/2-w(ry;R) Finally, we consider the term —-J@\G;%}, which trans-

+u)8(ry,r2). We have here made explicit the dependence ofgieg 1o
w on the positions of the nucleR. In [Eq. (A3)], all quanties

exceptG®?! are functionals ofG, and whenG is a self- J " {—V—2+w(r'R)} M)
consistent solution of the Dyson equation, the total energ 2 ' P
calculated from this expression will agree with the energy

r'=r

obtained from the method discus_sed ab_oye. An important :fdr {—)\ZV—ZH\W(r;)\R)}p(r,r’) (A10)
property of the functionglEq. (A3)] is that it is stationary, 2 rrer
50[G] plus terms that are independentlaf The density matrix is
—— =0, (A4)  pMr,r)=N3p(\r,Ar’). The first term on the right hand side

is A2 times the self-consistent kinetic energy, while the sec-

when G equals the self-consistent Green’s function corre- ond term equals. times the electron-nuclear attraction en-
sponding to a self-energE=d®/dG. We now define a ©ray, with the position of the nuclei scaled hy The deriva-

Green’s functionG* which depends on the parameterc- (Ve IS

cording to GMNr,r"; 7=N3G(\r,\r’; 7). The Green's func- d

tion G=G* is the self-consistent Green’s function, and by - an{GGO_l} =2T+ Vet f d®rn(r)
definition the particle numbed=2 Tr{G"} is independent of A=l

\. dw(r;\R)

The proof is now based on the two following points: 1 X dx o1 (A11)
The variational property [Eq. (A4)] implies that o .
dO[G]/d\=0 atA=1. 2 The total energyEq+V,, is sta- Combining Eqs(A3), (A5), (A7), and(A1l) yields
tionary with respect to changes to the positions of the nuclei dW(r:\R)
when they are in their equilibrium positions, i.€lE/dR; 0=2T+Vpet U0+ch+fd3rn(r) “an |
=0. If we consider the\-dependence of the Hartree energy, A=l
we find (A12)

N The electronic energ¥,, is calculated for nuclei in fixed
fd3 JdS ' r)n (') positions. The energy functiondEq. (A3)] depends para-
|r -r'| metrically on the position&, and the first order variation in
the electronic energy can therefore be written as
:—fd3 fd3 ADOONATY) _ 3 (A5) Y
r=rl SE :(@) ae+2<@> SR, (A13)
el 5G R} : dR| . i

We now consider amth order term in theb functional de-
fined in Eq.(Al). A term Ef(”)[G“]G" will consist of ninter-  where we have used the fact in the zero-temperature limit
action lines, & Green’s function lines and integration over dQ/d\=dE,/d\ and dQ/dR;=dE,/dR,. Because of the
2n spatial coordinates. This yields variational propertyfEq. (A4)], the first term on the right-
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hand side of Eq(A13) disappearsy and we on|y need to 2R, van Leeuwen and N. E. Dahlen, FFhe Electron Liquid Model in

consider the second term. In the energy functioftad.

Condensed Matter Physicedited by G. F. Giuliani and G. Vignal¢OS
Press, Amsterdam, 2004

(A3)], the CE)_cisitiorjs; of the nuclei only enter as parameters iN33 b Doll and W. P. Reinhardt, J. Chem. Ph, 1169(1972.
the termG”~+, while the Green’s function is an independent 3. Linderberg and Y. OhriPropagators in Qantum Chemisttcademic,

variable. This means, using EGA13), that

dEj(\R) _ dtr{GG*Y} _ f 5 dW(r;AR)
N a = dn(r)—d)\ . (A14)

In equilibrium we havedE(AR)/d\=0 at A=1. SinceE

=Ee|+ 1/22|EJ¢|Z|ZJ/R”, WhereRij :Ri_Rj1 we obtain

($>x—1: ~Von+ f dmn(r) w >\=1: 0.
(A15)
Equation(A12) then becomes
0=2T+Vpet Veet Vo (A16)

which is exactly what we wanted to show: The energies cal
culated from the Green’s function within a conserving ap-

proximation satisfy the virial theorem.
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