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A High-Rate Energy Model

IS needed to provide an energy reading
at each OS scheduling interval
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for energy measurement
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for a specific platform
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Dependencies of
system energy models on

Hardware & Usage

suggest “personalized” models

be constructed for a mobile system =
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State-of-the-art battery Interfaces are

Low-rate/Inaccurate
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Linear models are

independent on Time
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1. Model Molding
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Model Molding improves rate
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2. Predictor Transformation
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PCA improves accuracy
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J. Total-Least-Square
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TLS improves accuracy at high rate
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Implementation
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Sesame is able to generate energy

models with a rate up to 100“1
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Field Study

Day 1-5:
Model Construction

Model Evaluation




Models were generated within 19 hours
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Sesame is able to construct models
of high accuracy because of

1. Sophisticated Statistical Methods
2. Capability to Adapt Models



Sesame is a high-rate/accurate




and creates new opportunities in

Energy Optimization
& Management
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Energy Accounting
y(t) = BotB x4 (0)+...+ [ x(T)

n Processes



Energy Accounting
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Energy Contribution
hy Process j
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Sesame can be also used for




Conclusions

* Self-Modeling is necessary to adapt to the
changes in hardware and usage

e Statistical methods help to construct high-rate
/accurate models from low-rate/inaccurate
battery interfaces

* Sesame creates new opportunities in system
energy optimization and management



