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Automatic ship detection, recognition, and counting are crucial for intelligent maritime surveillance, timely ocean rescue, and
computer-aided decision-making. YOLOV3 pretraining model is used for model training with sample images for ship detection.
The ship detection model is built by adjusting and optimizing parameters. Combining the target HSV color histogram features and
LBP local features’ target, object recognition and selection are realized by using the deep learning model due to its efficiency in
extracting object characteristics. Since tracking targets are subject to drift and jitter, a self-correction network that composites both
direction judgment based on regression and target counting method with variable time windows is designed, which better realizes
automatic detection, tracking, and self-correction of moving object numbers in water. The method in this paper shows stability

and robustness, applicable to the automatic analysis of waterway videos and statistics extraction.

1. Introduction

Target tracking has great demand in computer vision re-
search in recent years. Traditional target tracking algorithms
generally use the target’s color, texture, contour, gradient
histogram, Haar, SIFT, SURF, and other single features to
represent the target in the process of target appearance
modeling [1]. Traditional target tracking methods include
mean shift algorithm [2] and Lucas-Kanade algorithm [3].
The mean shift algorithm is to continuously iterate the
candidate target frame along the vector direction with the
greatest similarity to the template and converge to the real
position of the target, but this method does not respond well
to the scale changes and rapid movement of the target [4].
Lucas-Kanade algorithm analyzes the changes of the pixel
gray value over time in the video to get optical flow in-
formation. Correlation between adjacent sequences is cal-
culated to detect the movement of the target. Lucas-Kanade
algorithm assumes that the brightness of the target is
constant during movement, and the displacement of the
target in adjacent frames is small [5]. Therefore, this method
is only suitable for scenes where the background and

illumination do not change significantly, which has major
limitations in this regard.

In response to the above concerns, a method based on
correlation filtering was first proposed, namely, the Mini-
mum Output Sum of Squared Error (MOSSE) [6]. It can
distinguish the background and the target effectively by a
discriminative filter generated by calculating the minimum
mean square error of the output result. In the tracking
process, the response image of the search area after the filter
action is used to locate the target. The larger the value of the
response image, the more the connection between the image
and the target located. More improvements were made
afterwards, for example, selecting relevant search area based
on the size and location of the target [7], but these algo-
rithms are closely related to the search area setting. If the
area scale is too small or too large, it may cause target loss or
tracking drift [8].

Great breakthrough has been made in tracking algo-
rithms with the application of deep learning in tracking
algorithms. The first method to apply deep learning to
tracking tasks is to use a deep target tracking framework that
creatively combines offline training with online fine-tuning
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[9]. In 2013, Wu et al. [10] used auxiliary image data to
pretrain the deep learning model, then tracked and fine-
tuned online, and proposed the DLT target tracking algo-
rithm. In 2015, the GOTURN algorithm proposed by Held
et al. [11] realized the end-to-end deep learning target
tracking model for the first time. The authors used a large
amount of data offline to train and track unseen category
samples and compared the target information of the pre-
vious frame with the search area of the current frame. The
convolution features are output to the fully connected layer
to regress and predict the target position. The 2016 VOT
champion MDNet directly uses the pretrained CNN pa-
rameters to track the video and fine-tunes during tracking.
During the tracking process, the model is periodically
updated online to adapt to the changes in the target and
scene, and the effect is significantly improved [12]. In the
same year, Luca Bertinetto et al. [13] proposed SimFC, a
target tracking algorithm based on deep learning, to track
targets through a fully convolutional twin network. Leal-
Taixé et al. [14] developed a new method of data correlation
in pedestrian tracking that uses the tracking-by-detection
method under the deep learning framework by two-stage
learning and matching. In 2017, Kang et al. [15] proposed a
time-series convolutional neural network structure for target
detection in video streams and combined the POI target
tracking algorithm in the task to improve the overall de-
tection accuracy in the video. In addition, Zhu et al. [16]
proposed the deep feature flow (DFF) algorithm for target
recognition in the video, using only the convolutional neural
network on the key video frames in the video and then using
the flow field to convert the depth feature map transmitted to
other frames. Later, Yang and Chan [17] applied the residual
network to target tracking and proposed the CREST algo-
rithm to perform residual learning by detecting the differ-
ence between the extracted convolution features and the real
data of the target object. In 2018, the SA-Siam target tracking
algorithm proposed by He et al. [18] improved the network
structure on the basis of SiamFC and adopted the double
twin network structure to improve the model’s discrimi-
native performance in target tracking. In 2019, Voigtlaender
etal. [19] introduced a twin two-stage full-image redetection
architecture using tracklet dynamic programming algorithm
on the basis of Faster R-CNN. The proposed tracklet dy-
namic programming algorithm can play its role considering
the overlap of ship imaging and lost images.

However, interferences such as weather conditions, il-
lumination, ship type, and overlapping of ships greatly
impact the accuracy of general target tracking algorithms,
which cause frequent repeated counting. In order to solve
these problems mentioned above, this paper proposes a self-
correcting ship target tracking and counting method with
variable time window based on YOLOV3. First, the network
structure is trained through Darknet-53 to obtain a ship
detection model in waterway or underwater transportation
scenarios. Target feature extraction, screening, and matching
were performed by the overall HSV histogram and the local
LBP histogram. A preliminary target tracking was completed
before integrating the variable time window model com-
posed of multiframe regression to determine the direction
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and statistical counting. It is applicable to jitter generated
during smooth count. This algorithm can not only suit real-
time monitoring and intelligent early warning of navigation
facilities but also help in decision-making for navigation
facilities’ maintenance.

2. YOLOVv3 Target Detection Algorithm

The YOLOV3 target detection algorithm is an end-to-end
target detection algorithm, which is of fast speed and high
accuracy, which meets the requirements of real-time de-
tection [20]. It uses a fully convolutional neural network
based on the Darknet-53 network to extract image features.
The network consists of 53 convolutional layers of 3 x 3 and
1 x 1 [21]. In response to the disappearance of gradients that
may be caused by too deep layers of feature extraction,
residuals are used to greatly reduce the channels of each
convolution, and 3 feature images of the input with different
scales are multiscale predicted to output [22]. YOLOv3
target detection algorithm is shown in Figure 1. All can-
didate targets come from the targets detected by this
YOLOv3 target detection algorithm in the follow-up
tracking.

3. Target Tracking Algorithms

Target tracking refers to a complete process of target
movement direction and path. The target’s position in each
frame in subsequent frames is predicted with the target
position of an initial frame of a video sequence given [23]. In
general, a typical target tracking algorithm process is
composed of a motion model, an appearance model, an
observation model, and an online update mechanism [24].
Although achievement has been made in the field of target
tracking, there are still many key technical problems that
need to overcome. For example, if the object is blocked
during tracking, the algorithm may recover recognition and
counting, or the algorithm may detect it as a new object so as
to re-recognize and repeat counting. For this reason, this
paper combines discrimination with correction in the
tracking algorithm. Count suppression and recovery are
performed in a variable time window.

The process of this tracking algorithm is as shown in
Table 1:

The variable time window self-correction model is di-
vided into two parts, which are the target count based on the
variable time window and the motion direction discrimi-
nation based on multiframe regression. The former one can
realize counting self-correction if the ship is blocked and
then counting is repeated, while the latter one can realize
self-correction of the movement direction according to
motion tendency.

3.1. Feature Extraction and Target Selection. During target
tracking, there may be multiple targets available to be
tracked. In order to be able to match only one target on the
screen that is closest to the initial template determined, it is
necessary to screen [25]. Therefore, HSV color histogram
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FIGURE 1: YOLOV3 detection algorithm flowchart.

TaBLE 1: The process of this tracking algorithm.

Tracking algorithm

(1) Determine the tracking target in the first frame of the image, set the target as a template, and obtain its HSV and LBP feature vectors
(2) Continue target detection and obtain a number of targets to be selected
(3) Obtain the HSV and LBP features of each target to be selected, calculate their similarity rates with the tracking target in turn, and

determine a candidate target with the highest similarity rate

(4) Use a variable time window self-correction model to avoid count repetition, misjudgment of the direction, and jitter

and LBP histogram are used to screen and select the object to
be tracked.

The HSV features can show the changes of each component
independently. It describes the proportion of different colors in
the whole image and does not pay attention to the spatial
position of each color. Therefore, the HSV provides an overall
spatial feature that can better describe the shape of the object,
especially suitable to describe objects with large deformation
[26]. LBP feature is just the opposite that is more suitable to
describe some local features, such as local texture and infor-
mation of the spatial edge [27], because the LBP features use the
gray value of the center pixel as the threshold value. Compared
with its neighborhood, the obtained binary code is used to
express the local texture features, and the gray scale of the LBP
operator does not change with any single transformation, so the
gray scale has strong robustness, not to mention that calculation
of LBP features is accessible that is time-saving for detection [28].
The following formula is the extraction process of LBP features:

P-1
P(x,y) =Y 2"s(i,~i,.), (1)
P=0

where (x_, y.) indicates the center pixel; 7, is the gray value;

i, is 'Fhe gray value of adjacent pixels; and s is a symbolic
function, i.e.,
1,x20,
s(x) = (2)
0,x<0.

The calculation formula of HSV histogram feature
similarity is as follows:

s(H,H,) =11

1
 N\H,OHO.
e ;\/ 1 (DH, (3)

LBP histogram feature similarity calculation formula is
as follows:

s(LoLy) = 1~ YL DL D,

L L,M? T

where H, represents the HSV feature histogram vector of the
candidate target, H, is the HSV feature histogram vector
representing the template target, and N indicates the number
of bins in the histogram. H; = 1/NY ;H, (J), H; (J) means
the HSV color vector statistic value of the bin whose serial
number is J in H;; L, and L, represent the LBP feature
histogram vector of the candidate target and the template
target, respectively; M indicates the number of bins in the
histogram; Ly, = 1/M YL, (J), L, (J) means L; the HSV color
vector statistic value of the bin whose serial number is J in L.

Through the above calculations, histogram features of
the HSV and LBP of the target to be tracked can be obtained,
as well as the feature similarity between the candidate ship
and the template. Similarity scores of all ships to be tracked
are calculated with weight of the HSV feature set as 1 and
weight of the LBP feature set as 2. Finally, the target ship is
selected based on the similarity rate.

3.2. Self-Correction Ship Tracking and Counting with Variable
Time Window

3.2.1. Variable Time Window Counting. After calculating
HSV histogram feature similarity and LBP histogram feature
similarity, each tracked ship should be recognized as one
ship from beginning to end. Therefore, when each ship is
detected, each different feature will be assigned a unique flag
value by calculating the HSV histogram feature and the LBP
histogram feature, and the count will be increased by one.



This flag value will be marked with the detection wireframe.
During follow-up tracking, since ship tracked has a very
similar feature to the one at the initial time, they are given
the same flag value, indicating that they are the same ship,
and the count will not be increased, as shown in Figure 2.

However, in the real tracking process, there may be two
scenarios that may mislead the counting result. One is that
when the two ships are blocked by each other, there may be a
situation of “appear as one,” and the two ships as a whole
may show a large difference in similarity with the previous
one; the second is when the ship is blocked and reappears. It
may be caused by angle and light. The ship blocked also
showed a large difference in similarity before and after the
blocking. In both cases, it may be considered that a new ship
appears, causing one count to be added.

Therefore, a variable time window counting method is
designed in response to the first case. It can be concluded that if
some of the ships being tracked suddenly “disappear,” then the
ships must be blocked. The length of this time window will be of
a direct proportion to the size difference between the blocked
ship and the one blocking the ship, and the speed difference will
be of an inverse proportion. In the video image, smaller and
slower ships often take longer time to pass the same block.

In the navigation process, the speed of each ship changes
little so that the average speed of the tracked ship from
appearing to disappearing can be used as the speed of the
ship. The size difference between the two ships can be ob-
tained by subtracting the length of the wireframe of the
tracking ship.

Therefore, the length of the time window varies
according to the size and speed of the ship, namely,

X — X%

L=a- , (5)

Vi—W

where L represents the size of the time window, a is a
parameter to be determined, x;, v, are the length and speed
of the ship blocked, and x,, v, are the length and speed of the
ship blocking.

However, the second scenario is a force of nature that is
out of control, so the length of the time window calculated by
formula (5) can be appropriately extended to improve the
fault tolerance rate.

Finally, determine whether the “new” ship disappears
and the initial ship reappears within the time window cal-
culated above. If so, then the count should be corrected, and
the number of ships should be subtracted by one.

3.2.2. Multiframe Regression Direction Determination.
Theoretically, when tracking a target, the direction of the
movement of the target can be calculated according to the area
coordinates of the same target in two adjacent frames. For
example, if the coordinates of the target in the first frame are (12,
22) and the coordinates in the second frame are (14, 22), the
target moves to the right side of the screen. However, in real
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situation, the coordinates of the target object may be jittered as
the screen and the target move synchronously. If the above
method is used, the object moving in the same direction is very
likely to appear at (12, 22), (11, 22), and (13, 22), and a moving
order of first to the left and then to the right may be concluded.
The multiframe regression algorithm can handle this concern:
regression analysis of the coordinates of the target object in
several frames before and after the current frame should be
conducted, the movement tendency of the object is obtained,
and then a comprehensive judgment is made by combining the
coordinate comparison of two adjacent frames. Thus, movement
direction of the target object is determined.

When determining the direction of the ship’s movement,
the following linear relation can be established:

Y=A+BX+e. (6)

Among them, A with B is an undetermined parameter, ¢
is the random error, X represents the time, and Y represents
the abscissa of the ship.

When the direction of the ship’s movement at a certain
moment is to be determined, ship coordinates of the frame at
this moment and several adjacent frames before it were
extracted. Positive or negative values of B, through the re-
gression equation, can be calculated. When B is positive, it
can be preliminarily determined that the ship movement
direction tendency is to move to the right side of the screen,
and vice versa. When the ship moves to the left, mark L on
the tracking wireframe; otherwise, mark R.

Randomly select three moments from a video of the ship
moving all the way to the right, and record the coordinate
data of several previous frames adjacent to them (the time is
0 at this moment), as shown in Table 2.

If coordinates of the two frames before and after were
calculated in the traditional way, abscissa becomes smaller
and may cause wrong determination that the ship is moving
to the left of the screen.

Calculating the regression equation, it shows that
Y=2.4978+0.0383X, Y=13.0244 + 0.045X,and Y=18.78 +
0.0533X.

Because B =0.0383, 0.045, and 0.0533 are positive values,
it can be determined that the ship is moving to the right of
the screen at this time.

Daily practice and experimental validation found that
the ship’s direction should be determined based on the ship’s
movement tendency, not the change of two frames before
and after, so this method can effectively reduce jitter and
improve the accuracy of the judgment.

3.3. Improved YOLOv3 Neural Network with the Self-Cor-
rection Model. The variable time window self-tuning
tracking counting model can be combined with the YOLOv3
neural network, and a correction network can be designed to
realize self-correction.
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FIGURE 2: Ship counting principle.

TaBLE 2: Data coordinates measured in the experiment.

Time Abscissa
(a)

-8 2.1
-7 2.2
-6 2.4
-5 2.3
-4 2.3
-3 2.5
-2 24
-1 2.5
0 2.4
(b)

-8 12.6
-7 12.7
-6 12.9
-5 12.8
-4 12.7
-3 12.9
-2 13.0
-1 13.1
0 12.9
(c)

-8 18.3
-7 18.4
-6 18.5
-5 18.4
-4 18.6
-3 18.7
-2 18.9
-1 18.7
0 18.6

The correction network is a chain structure that contains
2 modules. The first module contains 3 convolution units,
and the second module contains 3 fully connected layers.
Then, the network structure of the YOLOv3 model is
modified to integrate the self-correction network into the
tracking network structure based on YOLOv3. The tracking
network can be updated by processing and correcting the
output result of the tracking network, as shown in Figure 3.

Results of the correction network are used to update and
correct the tracking network at the same time and can be
used as the network for learning in the next frame. The
system generates the current average loss during training for

the real-time observation. Because it is an important indi-
cator for evaluating the effect of target detection [29], we can
see the effect of training intuitively. After 400 training
sessions, the average loss at this time changed very little,
which shows that the training has been basically completed,
and a relatively good effect can be expected. The current
average loss convergence diagram is shown in Figure 4:

In this study, the scale of the best sample determined by
the correction network is used as the scale of the tracking
target [30], which greatly accelerates calculation.

4. Test Results

The development environment of NVIDIA 2060 GPU and
PyCharm editor are used in this test. 1565 ship images were
obtained by Yangtze River field shooting and internet search.
VOC dataset was prepared. Images were divided into the
training set, validation set, and test set at a ratio of 6:2:2
with a training set of 939 pictures, test set of 313 pictures, and
verification set of 313 pictures. Darknet-53 is used to train
the network structure and modify the sample classification
and algorithm according to the actual situation, and the self-
calibration model is added to the network structure. Before
starting the training session, according to the GPU per-
formance, batch = 64, subdivisions = 8, learning rate = 0.001,
momentum coeflicient is set as 0.9, and the adjusting policy
of learning rate is set as steps. Then, the dataset is trained so
that the system can automatically save all records and train
models. There is an optimal training model that is auto-
matically covered available to use.

After training, a ship picture is randomly selected for
detection. It can be seen that the detection time is 35.723 ms,
and the matching degree of “ship” tag in ship detection is
90%, as shown in Figure 5.

Video tests in water transportation and waterway sce-
narios are mainly used to deal with issues such as the diverse
ship types, different light, and different shooting angles of
view. This article adopts multiple types of surveillance and
video materials with diverse test scenarios under various
weather conditions to ensure that the target tracking and
counting method can operate stably in multiple scenarios
such as video or surveillance. The above ship detection
model is used by uploading videos of ships in different
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FIGURE 3: Integrated network structure diagram.

scenarios. Target detection and tracking counting show high
accuracy. The tracking effect is as shown in Figure 6.

In order to verify whether the self-calibration counting
model proposed in this paper can self-calibrate the number
of navigable ships by using a variable time window, a control
experiment was carried out. The experimental group is an
improved network that incorporates the self-calibration
model, and the control group is an unfused network, or-
dinary YOLOV3 network. By comparing the variable time
window self-correcting tracking counting model, the
counting results are calculated. Nine different videos were
used in the experiment, and the tracking counting effects

were counted, respectively, of whether the algorithm is
applied. The experimental results are shown in Table 3

It can be seen from Table 2 that when the self-correcting
counting model proposed in this article is not used, the
counting is very inaccurate due to screen jitter and occlu-
sion. In particular, the number of ships in video sequence no.
2 is 70, and the ships are repeatedly counted 18 times. After
using the self-correcting counting model, the number of
ships in video sequence no. 2 is counted as 54. Reference to
the experimental data of other video sequences shows that
the performance requirements for real-time tracking and
counting of targets have been basically met.
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FIGURE 5: Ship target detection effect.

FIGURE 6: Ship target tracking effect.
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TaBLE 3: Comparison of counting effects before and after applying the self-correction algorithm.

Video serial number Actual number of ships

Original count Count after improvement

12
52
24
5
17
8
30
22
20

O 00 N1 O\ Ul v W N —

21 12
70 54
30 26
6 5
20 18
10 8
36 32
30 23
25 20

5. Conclusion

In this paper, an algorithm of ship target tracking and self-
correction counting in the waterway scene based on
YOLOV3 is proposed. It consists of system architecture,
dataset, model training, feature extraction, target tracking,
direction discrimination and counting, detection results,
and result analysis. Analysis of the test results of a large
number of video materials shows that the ship target
tracking and counting system described in this article can
achieve stable counting despite complex scenarios and
weather conditions. However, under the condition that two
similar ships appear and overlap each other, the counting
error still cannot be prevented, which needs follow-up re-
search for optimization.
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