
Self-Deployment Algorithms for Mobile
Sensors on a Ring

Paola Flocchini ∗ Giuseppe Prencipe† Nicola Santoro‡

Abstract

We consider the self-deployment problem in a ring for a network of identical sensors:
starting from some initial random placement in the ring, the sensors in the network
must move, in a purely decentralized and distributed fashion, so to reach in finite time
a state of static equilibrium in which they evenly cover the ring. A self-deployment
algorithm, the same for all sensors, will specify which sequence of operations (communi-
cation/sensing, computing a destination, moving towards there) a sensor must perform
whenever it is active. The self-deployment algorithm is exact if within finite time the
sensors reach a static uniform configuration: the distance between any two consecutive
sensors along the ring is the same, d; the self-deployment algorithm is ǫ-approximate if
the distance between two consecutive sensors is between d − ǫ and d + ǫ.

We examine the algorithmic limitations and issues involved in this problem. We
first of all prove a strong negative result. In fact, we prove that exact self-deployment
is impossible if the sensors do not share a common orientation of the ring. This im-
possibility result holds even if the sensors have unlimited memory and unbounded
computational power, and even if all their actions, when active, are instantaneous and
their visibility/communication radius is unlimited.

We then consider the problem in an oriented ring. We prove that if the sensors
know the desired final distance d, then exact self-deployment is possible: we present
a simple protocol and prove that it allows the sensors to deploy themselves uniformly
along the ring in finite time. If the desired final distance d is unknown, we present
another protocol based on a very simple strategy and prove that it is ǫ-approximate for
any chosen ǫ > 0. These positive results hold even for the weakest sensors: oblivious
(i.e., each sensor has no memory of past actions and computations), asynchronous (i.e.,
each sensor becomes active at unpredictable times and the duration of its actions is
unpredictable), and without a common coordinate system; they work correctly even
when every sensor can “locate” only its two neighbors or when the sensors have only
a fixed sensing radius.

Our results show that a shared orientation of the ring is an important computational
and complexity factor for a network of mobile sensors operating in a ring.

∗School of Information Technology and Engineering, University of Ottawa, Canada.
(flocchin@site.uottawa.ca)

†Dipartimento di Informatica, Università di Pisa, Italy. (prencipe@di.unipi.it)
‡School of Computer Science, Carleton University, Ottawa, Canada. (santoro@scs.carleton.ca)



1 Introduction

1.1 The Framework

A mobile sensors network is composed of a distributed collection of sensors that in addition to
the traditional sensing, computation, and communication capabilities of static sensors, have
also locomotion capabilities. Mobility facilitates a number of useful network capabilities; for
example, they can patrol a wide area, they can be re-positioned for better surveillance, etc.;
moreover, they are especially useful in environments that may be both hostile and dynamic.
There have been some research efforts on the deploying of mobile sensors, most of them
based on centralized approaches; e.g., [21] assumes that a powerful cluster head is available
to collect the sensor location and determine the target location of the mobile sensors.

Locomotion however allows the sensors to self-deploy; that is, starting from some initial
random configuration, the sensors in the network can spread out in a purely decentralized
and distributed fashion, and cover the area satisfying some optimization criteria (e.g., evenly,
maximizing coverage, etc.) [10, 11, 12, 14, 20]. In contrast to [11], where the sensors are
deployed one at the time, we consider the case when the sensors are deployed at the same
time and they organize themselves in an adaptive manner. Unlike [14], we do not require
prespecified destinations for the sensors, and unlike [11] we do not assume the sensors know
where they are, since for small sensors localization is very hard. An essential requirement is
that the network will reach a state of static equilibrium within finite time.

The self-deployment problem is quite similar to the scattering or coverage problem con-
sidered in cooperative mobile sensorics (e.g., [1]), and related to the formation problem (e.g.
[9, 17, 18]); a key difference in these investigations is that usually there is no requirement
that the network reaches a state of static equilibrium.

��
������

����

��

��

��

��

��

��

����

b.a.

Figure 1: Starting from an initial arbitrary placement (a), the sensors must move to a
uniform cover of the ring (b).

1.2 The Problem

In this paper, we are interested in the self-deployment of a mobile sensor network in a ring
(e.g., a circular rim; see Figure 1): starting from an initial random placement on the ring, the
sensors must within finite time position themselves along the ring at (approximately) equal
distance. A self-deployment algorithm, the same for all sensors, will specify which sequence

2



of operations (communication/sensing, computing a destination, moving towards a point) a
sensor must perform whenever it is active. We say that a self-deployment algorithm is exact
if within finite time the sensors reach a uniform configuration: the distance between any two
consecutive sensors along the ring is the same, d. We say that a self-deployment algorithm
is ǫ-approximate if the distance between two consecutive sensors is between d − ǫ and d + ǫ.

A self-deployment algorithm has recently been developed for the line [5] (e.g., a rectilinear
corridor), and for the ring, as part of a larger protocol for uniform circle formation [2, 6, 13,
16, 19]. Both protocols yield only approximate solutions. However, they operate even with
very weak sensors: anonymous (i.e., the sensors are indistinguishable), oblivious (i.e., each
sensor has no memory of past actions and computations), asynchronous (i.e., each sensor
becomes active at unpredictable times and the duration of its actions is unpredictable), and
without a common coordinate system (e.g., no access to GPS). To date, no exact solution
exists for these types of sensors.

1.3 Our Results

We first prove a strong negative result. In fact, we prove that exact self-deployment is actually
impossible if the sensors do not share a common orientation of the ring; notice that this is
much less a requirement than having global coordinates or sharing a common coordinate
system. This impossibility result holds even if the sensors have unlimited memory and
unbounded computational power, and even if all their actions, when active, are instantaneous
and their visibility/communication radius is unlimited.

Faced with this strong negative result, the interesting question becomes under what
restriction the self-deployment problem can be solved with an exact algorithm. Since the
impossibility result holds in absence of common orientation of the ring, we consider the
problem in oriented rings.

We prove that, in an oriented ring, if the sensors know the desired final distance d, then
exact self-deployment is possible. In fact we present a simple protocol and prove that it
allows the sensors to deploy themselves uniformly along the ring in finite time. This positive
result holds even for the weakest sensors: anonymous, oblivious, asynchronous, with no
common coordinate system; it works correctly even when every sensor can “locate” only its
two neighbors or when the sensors have only a fixed sensing radius v > d.

Finally we turn to the case of an oriented ring when the desired final distance d is
unknown. We present another protocol based on a very simple strategy and prove that it is
ǫ-approximate for any fixed ǫ > 0. As in [3, 4, 5], the difficulty is not in the protocol but in
the proof of its correctness. Also in this case, the protocol works even for the weakest sensors:
anonymous, oblivious, asynchronous, with no common coordinate system. The algorithm
works correctly even when every sensor can “locate” only its two neighbors or when the
sensors have only a fixed sensing radius v ≥ 2d.

In the last protocol, the strategy we use is go-to-half. Interestingly was shown by Dijk-
stra [7] that in the unoriented ring go-to-half does not converge, and hence can not be used

3



for self-deployment1. In other words, as already shown by our impossibility result, our result
stresses that a shared ring orientation is an important computational and complexity factor
for a network of mobile sensors operating in a ring.

1.4 Related work

The self-deployment problem has been investigated with the goal to cover the area so to
satisfy some optimization criteria (e.g., evenly, maximizing coverage, etc.) [10, 11, 12, 14,
20]. For example, in [20] the problem is to maximize the sensor coverage of the target
area minimizing the time needed to cover the area. Typically, distributed self-deployment
protocols first discover the existence of coverage holes (the area not covered by any sensor)
in the target area based on the sensing service required by the application. After discovering
a coverage hole, the protocols calculate the target positions of these sensors, that is the
positions where they should move. Loo et al. [14] considered a system consisting of a number
of cooperating mobile nodes that move toward a set of prioritized destinations under sensing
and communication constraints; unlike them, we do not require prespecified destinations for
the sensors. Howard et al. [11] address the problem of incremental deployment, where sensors
are deployed one-at-a-time into an unknown environment, and each sensor uses information
gathered by previously deployed sensors to determine its deployment location. They assume
every sensor is equipped with an ideal localization sensor. We do not assume the sensors
know where they are, since for small sensors localization is very hard. The goal is to maximize
network coverage under the constraint that nodes maintain line-of-sight with each other.

The self-deployment problem is related to a well studied problem in the field of au-
tonomous mobile sensors: that of the pattern formation [8, 9, 17, 18]; in particular to the
one of uniform circle formation [2, 6, 16]. In this problem, very simple sensors are required
to uniformly place themselves on the circumference of a circle not determined in advance
(i.e., the sensors do not know the location of the circle to form). The main difference between
these robotics investigations and our self-deployment problem in the ring is that in those
problems, the sensors can freely move on a two dimensional plane; in contrast, our sensors
can move only on the ring.

The strategy go-to-half, that we employ in one of our protocols was first analyzed by
Dijkstra [7]; he showed that in an unoriented ring go-to-half does not converge (and hence
can not be used for self-deployment). Recently, go-to-half has been shown by Peleg [5] (with
a very involved proof) to converge in a line. Convergence in the unoriented ring has been
announced for the go-to-half-half strategy by Défago and Konagaya [6, 16].

2 Terminology and Model

We consider a sensors network in a ring (i.e., a circular line). Let s1, . . . , sn be the n sensors
initially randomly placed on the ring (see Figure 1). Let di(t) be the distance between sensor

1It does however converge in a line as recently shown by Peleg [5] with a very involved proof.

4



si and sensor si+1 at time t. When no ambiguity arises, we will omit the time and simply
indicate the distance as di.

We will use a very general definition of a sensor as a computational unit capable of
sensing (e.g., by communication) the positions of other sensors in its surrounding (within a
fixed radius), performing local computations on the located/communicated data, and moving
towards the computed destination. The local computation is done according to a determinis-
tic algorithm that takes in input the located/communicated data, and returns a destination
point towards which the sensor moves. All the sensors execute the same algorithm.

Each sensor repeatedly cycles through four states: when active, a sensor determines the
positions of the other sensors in its radius – Locate; it computes the next destination point
by executing the algorithm – Compute; and it moves towards the computed point – Move;
after such a move the sensor may become inactive – Wait. The sequence: Wait - Locate -
Compute - Move form a computation cycle (or briefly cycle) of a sensor. In the following, the
“view of the world” of a sensor is defined as a snapshot of the positions of the other sensors
in its own coordinate system (obtained in the Locate state).

The sensors are completely autonomous: no central control is needed. Furthermore they
are anonymous, meaning that they are a priori indistinguishable by their appearance, and
they do not (need to) have any kind of identifiers that can be used during the computation.
They are oblivious: each sensor has no memory of past actions and computations; in other
words, the computation is based solely on what located in the current cycle.

In general, no assumptions on the cycle time of each sensor and on the time each sensor
takes to execute each state of a given cycle are made. It is only assumed that each cycle
is completed in finite time, and that the distance traveled in a cycle is finite. Moreover,
the sensors do not need to have a common notion of time, and each sensor can execute its
actions at unpredictable time instants: this scenario is called asynchronous (Async).

We also consider (in our impossibility result) a different scenario, where there is a global
clock tick reaching all sensors simultaneously, and a sensor’s cycle is an instantaneous event
that starts at a clock tick and ends by the next. This scenario is called semi-synchronous
(SSync). The only unpredictability is given by the fact that at each clock tick, every sensor
is either active or inactive, and only active sensors perform their cycle. The unpredictability
is restricted by the fact that at least one sensor is active at every time instant, and every
sensor becomes active at infinitely many unpredictable time instants.

Let us denote by AS and SS the class of problems that are solvable in the asynchronous
and in the semi-synchronous setting, respectively. Then,

Theorem 1 ([15]). AS ⊂ SS.

3 Impossibility of Exact Self-Deployment

In this section, we show that the exact self-deployment problem is unsolvable; in other words,
given a set of sensors placed on the rim of a circle, there exists no deterministic algorithm
that, in a finite number of cycles, places the sensors uniformly on the ring.

5



αα

a. b.

s1

s4

s3

s2

s1

s4

s3

s2

Figure 2: (a) An example of starting configuration for the proof of Theorem 2. The black
sensors are in S1, while the white ones in S2. (b) Theorem 2: the adversary moves only
sensors in S1.

Theorem 2. Let s1, . . . , sn be all on a ring C. Then, in SSync, there is no deterministic
exact self-deployment algorithm.

Proof. By contradiction, let us assume there exists a deterministic algorithm A that solves
the problem in a finite number of cycles. Furthermore, let us assume that there is an even
number of sensors placed on C, and that the n sensors can be split in two subsets according
to their views of the world. In particular, in the first subset, call it S1, there are s1, . . . , sn/2,
and in the second subset, call it S2 the other sensors. The sensors in S1 and S2 are placed on
the vertices of two regular n/2-gons, and the two polygons are rotated of an angle smaller
than 360◦/n. Furthermore, all sensors have their local coordinate axes rotated so that they
all have the same view of the world (refer to Figure 2.a for an example).

Lemma 1. If activating only the sensors in S1 no exact self-deployment on C is reached,
then also activating only the ones in S2 no exact self-deployment on C is reached.

Lemma 2. If activating only the sensors in S1 an exact self-deployment on C is reached, then
also activating only the sensors in S2 an exact self-deployment on C is reached. Moreover,
activating both sets no exact self-deployment on C is reached.

Proof. Let s1 be an arbitrary sensor in S1 (refer to Figure 3). By construction, s1 has two
neighbors on C, s′2 and s′′2, and both of them are in S2. Let β = min(s1ĉs

′

2, s1ĉs
′′

2) (clearly,
s1ĉs

′

2 cannot be equal to s1ĉs
′′

2, otherwise the sensors would be uniformly placed on C).
By hypothesis, by activating only the sensors in S1, the sensors would reach an exact self-
deployment on C. In other words, they would all rotate of an angle γ so that, at time t + 1,
β + γ = 360◦/n. Symmetrically, if only the sensors in S2 would be activated, they would

6



(a) (b)

(c)

β

γ

γ

γ

γ

δ

δ
δ

δ

γ

γ

γ

β

β δ

δ
δ

δ

γ

Figure 3: Theorem 2. (a) If only the sensors in S1 are activated at t, all sensors would be
uniformly placed at time t + 1, with β + γ = 45◦. (b) If only the sensors in S2 are activated
at t, all sensors would be uniformly placed at time t + 1, with β + γ = 45◦. (c) Therefore,
if all sensors would be activated at t, they would not be in an exact self-deployment on C,
having γ + β + δ 6= 2π/n = 45◦. In all figures, the squares represent the destination of the
active sensors.

7



Algorithm 1 The Adversary

(a) If activating only the sensors in S1 no exact self-deployment on C is reached. Activates
all sensors in S1, while all sensors in S2 are inactive, and goto (c). Otherwise,

(b) If activating only the sensors in S2, no exact self-deployment on C is reached. In
this case, it activates all sensors in S2, while all sensors in S1 are inactive, and
goto (c). Otherwise, all sensors are activated, and goto (c).

(c) If activating only the sensors in S2 no exact self-deployment on C is reached. In this
case, it activates all sensors in S2, while all sensors in S1 are inactive, and goto (a).
Otherwise,

(d) If activating only the sensors in S1 no exact self-deployment on C is reached. In
this case, it activates all sensors in S1, while all sensors in S2 are inactive, and
goto (a). Otherwise, all sensors are activated, and goto (a).

rotate of an angle δ so that, at time t+1, β+δ = 360◦/n. Therefore, since β+γ+δ 6= 360◦/n,
by activating all sensors, an uniform placement on C cannot be reached at time t + 1.

In the following, we define an adversary so that A never succeed in solving the problem.
Algorithm 1 reports the protocol followed by the adversary.

First we note that, by the way the adversary is defined and since the sensors in S1 (resp.
S2) have the same view, these sensors will always move together (when all activated). In the
following, we will prove by induction the following property Prop:

for all t ≥ 0, the sensors all have the same view of the world and are not in an
exact self-deployment on C.

By construction, Prop is clearly true at t = 0. Let us assume it is true at a given time
t > 0. We distinguish the possible cases.

1. If the check performed in (a) is true, then clearly at time t + 1 there is no exact self-
deployment on C. Furthermore, all sensors will still have the same view of the world
(see the example depicted in Figure 2.b).

2. If the check performed in (a) is true, then rule (b) is executed. Two subcases can
occur.

3.1. If the check of rule (b) is false, then at time t+1 there is no exact self-deployment
on C, and all sensors have the same view of the world.

3.2. Otherwise, all sensors are activated at time t, and by Lemma 2 no exact self-
deployment on C is reached at time t + 1.

3. Rules (c) and (d) are handled symmetrically to previous rules (a) and (b).

8



Therefore, there is no time t′ ≥ t so that the sensors are in a exact self-deployment on C,
having a contradiction.

By Theorem 1, we have

Corollary 1. Let s1, . . . , sn be all on C. Then, in Async there is no deterministic algorithm
that brings them uniformly distributed on C in a finite number of cycles.

4 Self-Deployment in an Oriented Ring: Interdistance

Known

In this section we assume that the final distance d between two sensors is known to them.
Moreover, the sensors have a fixed visibility radius of 2d and they can only locate up to such
distance.

4.1 The Algorithm

The algorithm is very simple: sensors asynchronously and independently observe clockwise
at distance 2d, then they position themselves at distance d from the closest observed sensor
(if any).

Protocol Uniform Known (for sensor si)

• Locate clockwise at distance 2d. Let di be
the distance to next sensor. If none, di = 2d.

• If di ≤ d do not move.

• If di > d move clockwise and place yourself
at distance d from si+1.

4.2 Correctness

We say that a sensor is white if its distance to the clockwise neighbor is greater than or
equal to d. We say that a sensor is gray if such a distance is smaller than d. Moreover we say
that a white sensor is good if its distance to the clockwise neighbor is exactly d, it is large if
its distance is strictly greater than d.

We call a white bubble a sequence of consecutive white sensors delimited by grey sensors.
Let W = si, si+1, . . . , si+m be a white bubble. Sensor si−1 is said to be the predecessor of the
bubble, sensor si+m+1 is the successor. Clearly predecessors and successors of a white bubble
are gray, unless the ring contains white sensors only; notice that in this case all sensors are
good. The size of W , indicated as |W | is the number of white sensors composing the bubble
(in this example m), its length, indicated by l(W ), is the length of the ring between the

9



predecessor of the white bubble and its successor (assuming not all sensors are white); i.e.,
l(W ) =

∑m
j=−1 di+j. Similarly, we define a gray bubble G = si, si+1, . . . , si+m as a sequence

of consecutive gray sensors delimited by white sensors. Its size |G| is the number of gray
sensors in G; the length l(G) is defined as the length of the ring between the first and the
last gray sensor in G (note that this definition is different from l(W )).

The next two lemmas contain some simple facts.

Lemma 3. At each point in time, if there are gray sensors, then the number of white bubbles
equals the number of gray bubbles.

Lemma 4. At each point in time, if there are grey sensors there must be at least a bubble
(i.e., a large sensor).

Lemma 5. A white sensor cannot become gray.

Proof. In order for a white sensor sj to become gray, its distance to the next sensor sj+1

should become smaller than d. By definition, sensors move clockwise and move according to
the algorithm; so sensor sj+1 will never get closer to sj . On the other hand, by definition of
our algorithm, sensor sj will never move at a distance smaller than d to sj+1.

Lemma 6. Let W = si, si+1, . . . si+m be a white bubble in the ring at time t. If l(W ) ≥
d · (|W | + 1), in finite time, say at time t′, the size of the bubble increases.

Proof. We want to prove by induction on the sensors in W that, by time t′, all sensors in
the white bubble are good, and the predecessor si−1 is white (which means that the bubble
has become bigger).

By definition of our algorithm, in finite time, say at time t1, si+m becomes good placing
itself at distance d to the successor of W . Let us assume that at time tj < t′ all sensors
si+m, si+m−1 . . . , si+m−j are good. Let us consider now sensor si+m−j−1. If this sensor is not
already good, by definition of the algorithm and since by hypothesis the successor of W does
not become white, si+m−j−1 will move to place itself at distance d to si+m−j , thus becoming
good at time tj+1.

Thus, in finite time, say at t′, all sensors in the bubble are good, which means that
the distance between sensor si and sensor si+m+1 is equal to d · m = d · s(W ). Since, by
hypothesis, l(W ) ≥ d · (s(W ) + 1),it follows that the distance between si−1 and si becomes
greater than or equal to d, which means that si−1 has become white.

Lemma 7. Let W1, . . .Wz be the white bubbles present in the ring at time t. At least one of
these bubble Wk is such that l(Wk) ≥ d · |Wk| + 1.

Proof. By contradiction, let l(Wi) < d · (|Wi| + 1), for all Wi. The length L of the ring is
the sum of the lengths of all white bubbles and all gray bubbles. That is, from Lemma 3,
L =

∑z
i=1(l(Wi) + l(Gi)). By hypothesis,

∑z
i=1 l(Wi) < d

∑z
i=1 |Wi| + d · z. Moreover, by

definition of gray bubble,
∑z

i=1 l(Gi) < d
∑z

i=1(|Gi| − 1) = d
∑z

i=1 |Gi| − d · z. Summing up,
we have L < d

∑z
i=1(|Gi| + |Wi|) = d · n, a contradiction.

10



By Lemmas 6 and 7, we have that:

Lemma 8. The number of grey sensors decreases.

Finally, by Lemmas 5 and 8 we derive the main theorem.

Theorem 3. In finite time all sensors are good.

5 Self-Deployment in an Oriented Ring: Interdistance

Unknown

In this section we assume that each sensor has a fixed visibility radius of v, and does not
know the final interdistance d between the sensors. Although d is not known, we must have
that v > 2d for our algorithm to work.

5.1 The Algorithm

Also this algorithm is very simple: sensors asynchronously and independently locate in both
directions at distance v, then they position themselves in the middle between the closest
observed sensor (if any).

Protocol Uniform Unknown (for sensor si)

• Locate around at distance v. Let di be the distance
to next sensor, di−1 the distance to the previous (if no
sensor is visible clockwise, di = v, analogously for coun-
terclockwise).

• If di ≤ di−1 do not move.

• If di > di−1 move to di+di−1

2
− di−1 clockwise.

5.2 Correctness

Let dmin(t) = Min{di(t)} and dmax(t) = Max{di(t)}. Let C be the length of the circumfer-
ence of the ring. First observe the following simple fact:

Lemma 9. We have that: ∀t, dmin(t) ≤ d and dmax(t) ≥ d.

Proof. By contradiction. Let the minimum distance be greater than d. We would have that
C > k · d, which is impossible since by definition C = k · d. Same argument holds for
dmax.

The next lemma shows that if, at some point there is a unique minimum (resp. maximum)
interval, it will become bigger (resp. smaller).

11



Lemma 10. If at time t there is a unique minimum interval, we have that: ∀t, ∃t′ > t :
dmin(t′) > dmin(t). If at time t there is a unique maximum interval, we have that: ∀t, ∃t′ >
t : dmax(t

′) < dmax(t).

Proof. Let sj−1 and sj be the sensors that delimit the minimum interval [sj−1, sj ], whose
length is dj−1(t) = dmin(t) at time t. First observe that, since dj−2(t) > dj−1(t), by the
algorithm we know that sensor sj−1 does not move at time t; actually, it will not be able to
move as long as dj−2 remains greater than dj−1 (i.e., as long as sj does not move). Consider
now the first time t′ when sj is activated. Since sj−1 has not moved from time t to time
t′, we have that, at time t′, dj−2(t

′) is still greater than dj−1(t
′). At time t′, si then moves

following the rule of the algorithm and dj−1(t
′) =

dj−1(t)+dj (t′)

2
≥

dj−1(t)+dj (t)

2
> dj−1(t).

Similar argument holds for dmax.

We now show that if at some point there are several minimum (resp. maximum) intervals
of a certain length, their number will decrease.

Lemma 11. If at time t there are r > 1 minimum intervals of length dmin(t), either all
intervals have length d and the sensors are deployed, or there exists a time t′ > t when the
number of minimum intervals of length dmin(t) is r′ < r.

Proof. First notice that, if at time t a sensor sj delimiting a minimum interval [sj−1, sj] is
activated, it will not move if dmin(t) = dj−1(t) = dj(t) (i.e., if [sj , sj+1] is another minimum
interval), it will instead move if dj−1(t) < dj(t).

Consider the first time t′ when a sensor sj delimiting a minimum interval [sj−1, sj], which
is not followed by another minimum interval, is activated. Notice that such a sensor must
exist otherwise we would be in a situation when all sensors are deployed at distance d from
each other. In this case we know that at time t′ there are still at most s minimum intervals
and that dj−1(t

′) < dj(t
′). Sensor sj then moves and dj−1(t

′) =
dj−1(t)+dj (t′)

2
≥

dj−1(t)+dj (t)

2
>

dj−1(t), thus it is not minimum anymore and the number of minimum intervals is now strictly
smaller than r.

Analogously,

Lemma 12. If at time t there are r > 1 maximum intervals, either all intervals have length d
and the sensors are deployed, or there exists a time t′ when the number of maximum intervals
is r′ < r.

We now show that the minimum intervals converge to a value A = d−γmin, with γmin ≥ 0,
and the maximum intervals converge to a value B = d + γmin, with γmax ≥ 0.

Lemma 13. Let dmin(t) (resp dmax(t)) be the distance of a minimum (resp. maximum)
interval at time t. We have that, for any arbitrary small ǫ > 0 there exists a time t′ > t such
that, ∀t′′ > t′: |dmin(t

′′) − A| ≤ ǫ, and, ∀t′′ > t′: |dmax(t
′′) − B| ≤ ǫ.

Proof. From Lemmas 10 and 11 the intervals must converge; from Lemma 9 the minimum
must converge to a value smaller than (or equal to) d, and the maximum must converge to
a value greater than (or equal to) d.

12



Let us call A-regular at time t an interval that, at time t is ǫ-close to A; that is an interval
whose length dj(t) is such that |dj(t) − A| ≤ ǫ. Analogously, we call B-regular an interval
that is ǫ-close to B. We call A-irregular at time t an interval that, at time t, is smaller than
d, but not ǫ-close to A; B-irregular one that is greater than d, but not ǫ-close to B.

The following lemma shows that there exists a time t, after the time when the previous
Lemma 13 holds, when any interval greater than the minimum (and smaller than d) is A-
regular, and any interval smaller than the maximum (and greater than d) is B-regular. In
other words, each interval is either ǫ-close to A or to B. Notice that this property is not
obvious; in fact, the only thing we know up to now is the convergence to A and B of the
minimum/maximum intervals over time, while nothing is known about the other intervals.

Lemma 14. Let ǫ > 0 be arbitrarily small, and let t′ǫ be a time when Lemma 13 holds. There
exists a time t′′ǫ > t′ǫ when: for all intervals [sj, sj+1] with dj(t

′′) ≤ d, |dj(t
′′

ǫ ) − A| ≤ ǫ; for
all intervals [si, si+1] with di(t

′′

ǫ ) ≥ d, |di(t
′′) − B| ≤ ǫ.

Proof. By contradiction, assume such a situation never happens. Then, there must exist a
time t when there are both A-irregular and B-irregular intervals.

Consider the following execution: 1) if there are A-regular intervals followed by B-regular
intervals, let the sensors between them move. Notice that whenever a sensor between a A-
regular and a B-regular intervals move, both intervals become irregular. Further notice that,
after this activation rule, we are guaranteed that a sequence of regular intervals delimited by
irregular intervals contains only intervals of the same type (A-regular or B-regular only). 2)
Consider any A-irregular interval [sj , sj+1]. Let it be preceded by k ≥ 0 A-regular intervals
(delimited by sensors sj−1 . . . sj−k) and followed by h ≥ 0 B-regular interval (delimited by
sensors sj+2 . . . sj+h−1). Activate sensors sj+1, sj+2 . . . sj+h−1, sj−1 . . . sj−k, in this order. It is
easy to see that their movement transforms all those interval in irregular intervals. 3) Apply
the same schedule to all B-irregular intervals (preceded by A-regular intervals and followed
by B-regular intervals).

Notice that, by the above activation rules, a sequence of A-regular intervals becomes
irregular if it is followed by B-irregular intervals or if it is preceded by A-regular intervals.
Thus, after the activation rules of 2) and 3) we are in a situation where all intervals (included
the minimum) are irregular and thus Lemma 13 is violated.

Lemma 15. Let t be a time when Lemma 14 holds. If at some time t′ > t at least an interval
becomes irregular, then there exists a time t′′ > t′ when all intervals are irregular.

Proof. The argument is very similar to the one of Lemma 14.

We now show that, after a time when Lemma 14 holds, all intervals actually converge to
d (i.e., A = B = d).

Lemma 16. Let ǫ > 0 be arbitrarily small, and let t′ǫ be a time when Lemma 14 holds. If
B − A > 2ǫ, at least an interval becomes irregular.

13



Proof. Let t1 = t′ǫ. We will show that, under the conditions of the statement there exists a
movement of a sensor at time t1 that create an irregular interval.

Consider two consecutive intervals [si, si+1] and [si+1, si+2] such that di(t1) < d and
di+1(t1) > d. Such intervals must exist because otherwise all the sensors would be deployed
at precisely distance d from each other. By Lemma 14, we have that:

|di(t1) − A| ≤ ǫ (1)

|di+1(t1) − B| ≤ ǫ (2)

Let sensor si+1 move at time t1. As a result of the movement, at any time t2 > t1 before
any other movement of the sensors, we have that:

di(t2) =
di(t1) + di+1(t1)

2
= di+1(t2) (3)

We now consider several different cases.

Case 1. A + ǫ ≥ di(t1) > A and B + ǫ ≥ di+1(t1) > B. From Equation 3 and for the
assumption, we have that:

A + B

2
< di(t2) = di+1(t2) ≤

A + B + 2ǫ

2
(4)

We now consider the two case di(t2) > d and di(t2) < d and in both we will derive a
contradiction.

1.1) Let di(t2) > d. In this case we would have that A+B+2ǫ
2

≥ di(t2) > d. We now
consider the two cases: di(t2) > B, and di(t2) < B. If di(t2) > B it must be
that A+B+2ǫ

2
≥ B, which would imply A + 2ǫ > B, which is a contradiction with

the assumption that B − A > 2ǫ. It follows that d < di(t2) < B. However, from
Equation 2, we must have that B−di(t2) ≤ ǫ, which would imply B− A+B+2ǫ

2
≤ ǫ,

that is B − A ≤ ǫ, which is a contradiction.

1.2) Let di(t2) < d. In this case we would have to show that, by Equation 1, di(t2)−A ≤
ǫ. However, di(t2) − A > B

2
− A

2
, which is clearly greater than ǫ. Contradiction.

Case 2. di(t1) < A and di+1(t1) < B. From Equation 3 and for the assumption, we have
that: di(t2) = di+1(t2) < A+B

2
.

By Equations 1 and 2 we must have that A− di(t1) ≤ ǫ and B − di+1(t1) ≤ ǫ. In other
words, di(t1) ≥ A− ǫ, and di+1(t1) ≥ B − ǫ. By Equation 3 and by the above, we have
that di(t2) ≥

A+B−2ǫ
2

(notice that, since B > A, this implies that di(t2) > A). Thus we
have:

A + B − 2ǫ

2
≤ di(t2) <

A + B

2
(5)

Consider now the two possibilities A < di(t2) < d and di(t2) > d: in both cases, we
will show a contradiction.

14



2.1) If A < di(t2) < d, Equation 1 must hold, that is di(t2) − A ≤ ǫ. However,
di(t2) − A ≥ B

2
− A

2
− ǫ, which is clearly greater than ǫ, since B − A > 2ǫ.

2.2) Consider now the case di(t2) > d, in this case, by Equation 2, we must have
|di(t2) − B| ≤ ǫ. Since A < B, and thus A+B

2
< B, we have that di(t2) < B, so,

by Equation 2 it must be: B − di(t2) ≤ ǫ, or, in other words, di(t2) ≥ B − ǫ.
However from Equation 5, we know that di(t2) < A

2
+ B

2
which is clearly smaller

than B − ǫ (because B − A > 2ǫ). Contradiction.

Case 3. A + ǫ ≥ di(t1) > A and di+1(t1) < B. We have di(t1) > A, and by definition we
have B − di+1(t1) ≤ ǫ; thus, from Equation 3 we obtain: di(t2) = di+1(t2) ≥ A+B−ǫ

2
.

Moreover, by the assumptions we get di(t2) = d ≤ A+B+ǫ
2

. Thus

A + B − ǫ

2
≤ di(t2) <

A + B + ǫ

2
(6)

3.1) If di(t2) < d we should have (by Equation 1) that di(t2) − A ≤ ǫ. However, by
Equation 6, we have di(t2) − A ≥ B−A−ǫ

2
≥ ǫ. Contradiction.

3.2) Let di(t2) > d. First observe that di(t2) cannot be greater than B because we
have di(t2) ≤

A+B+ǫ
2

< B); thus di(t2) < B. We should have (by Equation 2) that
B − di(t2) ≤ ǫ. However, from Equation 6 we know that di(t2)−B ≤ A+B+ǫ

2
< ǫ.

Contradiction.

Case 4. di(t1) < A and B + ǫ ≥ di+1(t1) > B. We have di(t1) < A and di+1(t1) ≤ B + ǫ;
thus, from Equation 3 we obtain: di(t2) = di+1(t2) < A+B+ǫ

2
. Moreover, by assumption

di+1(t1) ≤ B + ǫ ≥, and by definition A − di+1(t1) ≤ ǫ, so we get: di(t2) ≥ A+B−ǫ
2

.
Thus

A + B − ǫ

2
≤ di(t2) <

A + B + ǫ

2
(7)

The rest of the proof proceeds like for Case 3.

Theorem 4. For any arbitrary small ǫ > 0 there exists a time t, such that ∀t′ > t, ∀i:
|di(t

′) − d| ≤ ǫ.

Proof. By contradiction. Let A 6= B. From Lemma 14, there is a time t when all intervals
are ǫ-close to A and B. From Lemma 16, at least one interval will become irregular at some
time t′ > t. However, by Lemma 15 there is a time t′′ > t′ when all intervals become irregular
(including the minimum and the maximum). This contradicts Lemma 13.

Acknowledgments. The authors would like to thank Vincenzo Gervasi, Toni Mesa, and
Linda Pagli for the many discussions and suggestions.

15



References

[1] Y. U. Cao, A. S. Fukunaga, A. B. Kahng, and F. Meng. Cooperative Mobile Robotics:
Antecedents and Directions. In IEEE/TSJ International Conference on Intelligent
Robots and Systems, pages 226–234, 1995. Yokohama, Japan.

[2] I. Chatzigiannakis, M. Markou, and S. Nikoletseas. Distributed Circle Formation for
Anonymous Oblivious Robots. In Experimental and Efficient Algorithms: Third Inter-
national Workshop (WEA 2004), volume LNCS 3059, pages 159 –174, 2004.

[3] R. Cohen and D. Peleg. Convergence Properties of the Gravitational Algorithm in
Asynchronous Robot Systems. In Proc. of the 12th European Symposium on Algorithms,
volume LNCS 3221, pages 228–239, 2004.

[4] R. Cohen and D. Peleg. Robot Convergence via Center-of-Gravity Algorithms. In Proc.
of the 11th Int. Colloquium on Structural Information and Communication Complexity,
volume LNCS 3104, pages 79–88, 2004.

[5] R. Cohen and D. Peleg. Local Algorithms for Autonomous Robot Systems. In Proc. of
the 13th Colloquium on Structural Information and Communication Complexity, volume
LNCS 4056, pages 29–43, 2006.

[6] X. Défago and A. Konagaya. Circle Formation for Oblivious Anonymous Mobile Robots
with No Common Sense of Orientation. In Workshop on Principles of Mobile Comput-
ing, pages 97–104, 2002.

[7] E. W. Dijkstra. Selected Writings on Computing: A Personal Perspective, pages 34–35.
Springer, New York, 1982.

[8] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Hard Tasks for Weak Robots:
The Role of Common Knowledge in Pattern Formation by Autonomous Mobile Robots.
In Proc. 10th International Symposium on Algorithm and Computation, pages 93–102,
1999.

[9] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Pattern Formation by Au-
tonomous Robots Without Chirality. In Proc. 8th Int. Colloquium on Structural Infor-
mation and Communication Complexity, pages 147–162, June 2001.

[10] N. Heo and P. K. Varshney. A Distributed Self Spreading Algorithm For Mobile Wireless
Sensor Networks. In In Proceedings IEEE Wireless Communication and Networking
Conference, volume 3, pages 1597–1602, 2003.

[11] A. Howard, M. J. Mataric, and G. S. Sukhatme. An Incremental Self-deployment
Algorithm for Mobile Sensor Networks. Autonomous Robots, 13(2):113–126, 2002.

16



[12] A. Howard, M. J. Mataric, and G. S. Sukhatme. Mobile Sensor Network Deployment
Using Potential Fields: A Distributed, Scalable Solution to The Area Coverage Prob-
lem. In In Proceedings of the 6th International Symposium on Distributed Autonomous
Robotics Systems (DARS’02), pages 299–308, 2002.

[13] B. Katreniak. Biangular Circle Formation by Asynchronous Mobile Robots. In Proc.
of the 12th Int. Colloquium on Structural Information and Communication Complexity,
2005.

[14] L. Loo, E. Lin, M. Kam, and P. Varshney. Cooperative Multi-Agent Constellation
Fonnation Under Sensing and Communication Constraints. Cooperative Control and
Optimization, pages 143–170, 2002.

[15] G. Prencipe. The Effect of Synchronicity on the Behavior of Autonomous Mobile Robots.
Theory of Computing Systems, 38:539–558, 2005.

[16] S. Samia, X. Défago, and T. Katayama. Convergence Of a Uniform Circle Formation
Algorithm for Distributed Autonomous Mobile Robots. In In Journés Scientifiques
Francophones (JSF), Tokio, Japan, 2004.

[17] K. Sugihara and I. Suzuki. Distributed Algorithms for Formation of Geometric Patterns
with Many Mobile Robots. Journal of Robotics Systems, 13:127–139, 1996.

[18] I. Suzuki and M. Yamashita. Distributed Anonymous Mobile Robots: Formation of
Geometric Patterns. Siam J. Computing, 28(4):1347–1363, 1999.

[19] O. Tanaka. Forming a Circle by Distributed Anonymous Mobile Robots. Technical
report, Department of Electrical Engineering, Hiroshima University, Hiroshima, Japan,
1992.

[20] G. Wang, G. Cao, and T. La Porta. Movement-assisted Sensor Deployment. In In
Proceedings of IEEE INFOCOM, volume 4, pages 2469–2479, 2004.

[21] Y. Zou and K. Chakrabarty. Sensor Deployment and Target Localization in Distributed
Sensor Networks. ACM Transactions on Embedded Computing Systems, 3(1):61–91,
2004.

17


