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The Van Hove self-correlation function, the intermediate incoherent scattering function and its 

Laplace transform are determined asymptotically for a one component fluid in equilibrium, using 

the mode coupling theory. The results reproduce in the hydrodynamic limit the predictions from 

Fick’s law. The corrections to Fick’s law are consistent with a long time tail in the velocity 

correlation function and with a diverging super Burnett coefficient in the linear diffusion equation. 

1. Fick’s law and its extensions 

The process of self-diffusion of a tagged particle in a three dimensional 

classical fluid of identical particles in equilibrium is as a first approximation 

well described by Fick’s law. It has been shown in the literature’3 that 

extensions of Fick’s law involving higher order gradients of the tagged 

particle density do not exist. In particular the super Burnett coefficient which 

is the proportionality coefficient of the V4-term in a generalized diffusion 

equation is infinite. This result has been proven on the basis of mode coupling 

theorieslS3) as well as from the kinetic theory of hard spheres3). 

It is not immediately clear in what sense Fick’s law is a first approximation 

and in which manner it can be extended. Zwanzig’) has introduced the concept 

of hydrodynamic limit and showed that in that limit the predictions from 

Fick’s law could possibly be exact. For three dimensional systems the mode 

coupling theory and the kinetic theory of hard spheres are consistent with this 

expectation. 

Zwanzig’s ideas are used here to extend the Fick’s law predictions. The 

correction terms are explicitly calculated using the mode coupling theory. The 

inconsistency which arises in introducing higher order diffusion coefficients, 

such as the super Burnett coefficient, in a generalized diffusion equation will 

be avoided. 

The quantity of interest in this paper is the Van Hove self-correlation 

function 

G(r, t) = (Wr,(t) - r)), (1.1) 
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which expresses for a system in total equilibrium the probability of finding a 

tagged particle (chosen to be number 1) at time t at the position r when it was 

initially (t = 0) at the position 0. The microscopic displacement is Ar,(t) = 

r,(t) - r,(O) and the brackets in (1.1) denote a canonical ensemble average at 

temperature T (p = (ke7’-‘) and number density it = N/V where each particle 

has mass m. It is assumed that the thermodynamic limit in (1.1) has been 

taken. 

We also consider the intermediate incoherent scattering function which is 

the spatial Fourier transform of G(r, t), 

G(k, t) = (dr e-““G(r, t) 
J 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(,- ik Ar,(t)) 

and the Laplace transform of 

a 

&k, z) = 
I 

dt em”G(k, t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

1 = 

z+k2&k,z)’ 

(1.2) 

d(k, t) with respect to time 

(1.3) 

Here we have introdu$ed the wave number and frequency dependent 

“diffusion coefficient” U(k, 2). With the help of the projection operator 

formalism6) it can be expressed as 

6(k, z) = (j& - t)-‘jd, (1.4) 

where jk = exp(-ik - r,)u, - k/k, which is the Fourier transform of the tagged- 

particle current density, the asterisk denotes complex conjugation and i = 

PILPI, where L is the Liouville operator and PI projects orthogonal to the 

function exp(-ik * r,). 

As a first approximation the quantities G(r, t), &k, t) and &k, z) are 

described by the hydrodynamic equation relevant for self-diffusion, i.e. Fick’s 

law. It can be stated in the following equivalent forms 

$ G(r, t) ^- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADV*G(r, t), (1.5) 

$ d(k, t) = - Dk2&k, t), (1.6) 

&k, z) = -&. (1.7) 
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Here D is the coefficient of self-diffusion in Fick’s law. The solution of (1.5) 

and (1.6) is 

G(r, t) = (47rIXe3’* e--T*‘(4*x), (1.8) 

G(k, t) = eeDk*‘. (1.9) 

The relations (lS)-(1.9) are assumed to be approximately valid if distances 

(c.q. times) are large compared to microscopic lengths (c.q. times) and wave 

vectors (c.q. frequencies) small compared to inverse microscopic lengths (c.q. 

inverse microscopic times). 

The concept of hydrodynamic limit is used to show in what sense the 

predictions (1.5)-(1.9) can possibly be exact relations. We illustrate this 

concept by means of Einstein’s displacement formula, stating that the mean 

square displacement of the tagged particle in the x direction is proportional to 

t for large times, i.e. ((Axl(t))2) = 2Dt. In fact this relation is a consequence of 

Fick’s law as it is the second moment of G(r, t) in (1.8). Einstein’s formula 

implies that, for large times, the displacement measured in units A//at is a 

dimensionless quantity of order 1, namely ((Ax,(t)/X6)*)= 2. This obser- 

vation suggests to measure typical distances in the diffusion problem in units 

d/et, and one expects these scaled lengths to be of order 1 for large times. 

We, therefore, study for large times G(r, t) as function of the scaled distance - 
p = r/dDt and of th e tme t, where p is considered to be of order 1 and t is t’ 

considered to be large. If for a function of length and time, the limit t + 03 is 

taken at fixed values of the scaled length p, this limit is referred to as the 

hydrodynamic limit. The expectation, as expressed by Zwanzig, is that Fick’s 

law may be true exactly in this hydrodynamic limit. 

Let us apply these ideas to the functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG(r, t), &R, t) and &n, z). We 

consider G(r, t) as a function of p and t. For finite values of p and large t one - 
sees from (1.8) that G(pdDt, t) = (4?rDt)-3’2 exp(-p*/4). The function G(r, t) 

is said to satisfy Fick’s law if 

- 
Iti_m (47rDt)3’2G(pdDt, t) = exp(-p*/4) 

,I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfixed 

(1.10) 

is an exact relation. Next we consider the function d(k, t) in the hydro- 

dynamic limit. Since d(k, t) is the Fourier transform of G(r, t) we study this 

function, for large t, as function of dimensionless scaled wave number 

K = /d/Dt, where l/t is considered as the small parameter. Inversely we may 

consider d(k, t) as a function of a dimensionless scaled time T (7 = Dk’t), 

while k is used as the small parameter. From (1.9) follows then that 

d(k, T/D/C*) = exp(-7) for finite values of T and small values of k. Now, 
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G(k, t) satisfies Fick’s law, if 

‘,‘y G(k, dDk2) = exp(- T). 

I fixed 

(1.11) 

Since G(k, z) is the Laplace transform of G(k,=r), we measure the frequency 

in units Dk2 (z = {D/C’) and study the function G(k, z) as a function of 5, while zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k is used as the small parameter. For finite 5 and k small, Fick’s law predicts 

Dk’&k, LDk’) = (5 + 1))‘. Hence, G(R, z) satisfies Fick’s law, if 

1 
Iii Dk2G(k, lDk2) = m. 

Re(>O 

(1.12) 

In this relation we excluded Re 5 5 0, since G(k, z) is only defined for values 

of z with Re z > 0. (It may of course be continued analytically into Re z 5 0.) 

The expressions (1.10)~( 1.12) contain the diffusion coefficient D. If G(r, t), 

&k, t) and &k, z) satisfy Fick’s law, D must be equal to 

lim fi<k, z) = D (1.13) 
P Re z/k fixed>0 

for any chosen value of z/k2. This statement is a consequence of the exact 

relation (1.3). 

We assume in this paper that the relations (1.10)~( 1.13) are valid for 

systems in three dimensions. 

The ansatz that G(r, t), &k, t) and &k, z) are essentially functions of a 

scaled quantity of order 1 and a small ordering parameter will be used here to 

extend the Fick’s law predictions (1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo)-( 1.13) beyond the lowest order terms. 

The small parameters are used systematically as expansion parameters. This 

means that e.g. G(k, t) is expressed as a power series in k with coefficients 

which are functions of T = Dk2t, the first term= being Fick’s law (1.11). Similar 

expansions will be derived for G(r, t) and G=(k, z) and for U(k, z), o(k, t), 

which is the inverse Laplace transform of U(k, z) and its inverse Fourier 

transform U(r, t). 
In section 2 we review the mode coupling theory and show that it allows 

expansions of the proposed form. The explicit calculations will be performed 

in section 3. The predictions for the moments of displacement are given in 

section 4. 

2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAReview of the mode coupling theory 

The mode coupling theory states that for large times t and small wave 
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numbers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk the correlation function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo(k, t) is given by7S8) 

tf(k, t) = [’ dq(2r)-3 2 S*(q, O&q, t)d(l, t), (2.1) 
J A 

where o(k, t) is the inverse Laplace transform of the generalized diffusion 

coefficient t?(k, z) (1.4). Here I= k - q and the prime on the integra- 

tion sign indicates, here and in the following, that 9 ==c ko. In a dilute gas k,’ 

is of the order of the mean free path, in a liquid it is of the order of the 

range of the intermolecular forces. The parameter A in (2.1) runs over the five 

hydrodynamic modes of the fluid: the heat mode (T), two opposite sound 

modes (U = k) and two shear modes (or, Q), the functions d’(q, t) represent 

the corresponding hydrodynamic propagators, to which we will return later 

on. The diffusive propagator &I, t) is itself defined in terms of the Laplace 

transform of o(I, t) via (1.3). The quantities SA are to lowest order in q and 1 

given by’,*) 

syq, I) = ,z* SYq, 1) = (pmn)-‘(1 - i * i)*, (2.2) 

SP(q, I) = (2@mn)_‘(k” * ij*, (2.3) 

where k^ and 4 denote unit vectors in the k and q-direction. The function ST is 

vanishing to lowest order in q and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. 

The mode coupling equation (2.1) is supposed to be approximately valid for 

small wave numbers, k G k. and large times t 9 to, where to is the average time 

a particle needs to traverse the distance ki’. 

Even if the @ (k, t) are given, the set of equations (1.3) and (2.1) is not a 

closed set for C?(k, t) and &k, t), since the Laplace transform fi(k, z) involves 

also the short time behaviour of o(k, t). The mode coupling theory assumes that 

this short time behaviour is given by a bare correlation function, which decays 

fast for all values of k. For the long times of interest (t % to) it can essentially be 

described as a delta function in time S(t) with a coefficient D* independent of k. 

We therefore have for the Laplace transform of i?(k, t) 

m 

l?(k, z) = D* + dt e-z’(2r)-3 
I 

‘dq 2 S^(i& i)d!^(q, t)@, t), (2.4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

0 

which is only valid for values of z with jzle zo = to’, and k -+ ko. The constant 

D* is determined by the requirement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi(0, 0) = 0, the Fick’s law diffusion 

constant. As discussed in section 1, we are interested in the solutions of the 

mode coupling equations in the region, where k approaches zero and t 

approaches infinity, such that k*t remains finite; or equivalently in Laplace 

language in the region, where z and k approach zero such that z/k* is finite. 
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Our basic assumption is that the mode coupling equations describe the 

dominant singularities in thz correlation functions U(k, z), ZI?(k, t) and the 

hydrodynamic propagators G(k, z), d(k, t) for k + 0 and z * 0 with z/(Dk2) = 5 

is finite, or k + 0 and t + ~13 with Dk2t = T is finite. 

Before developing a systematic solution to these equations we make a 

prelim&ary investigation. Assume according to (1.13) that when k approaches 

zero U(k, ak2) approaches a constant independent of a which then, by 

definition, is equal to the diffusion coefficient D. As a first approximation we 

write according to (1.9) d(k, t) = exp(- Dk2t). The hydrodynamic propagators 

of the fluid are in the same approximation given by’) Gn(k, t) -L exp(- vk2t) 

and G”(k, t) = exp(-iuckt - $,k2t), where c is the speed of sound, r, the 

sound damping constant and v the kinematic viscosity, v = qlmn where q is 

the shear viscosity. 

After substitution of these propagators into (2.4) and using (2.2) and (2.3) 

one finds the following results. fi(k, z) is continuous around k = 0, z = 0 and 

therefore satisfies eq. (1.13). This means that the mode coupling theory is 

consistent with Fick’s law stated in the rigorous sense of eq. (1.13). Further- 

more one finds that deviations of that limiting value are of the form - kh,(t) 

for the shear mode contributions in (2.4) and of the form k2h2(l) for the sound 

mode contributions. Here and in the sequal hl({), h2(5), h(l) denote functions 

of 5 = z}Dk2. 

A systematic expansion for the functions U and G can be obtained as 

follows. We define Al?(k, z) as 

6(k, z) = D + A l?(k, z), (2.5) 

where D is defined according to (1.13). 

The preliminary calculation showed that Al?(k, z) is a small quantity of 

order kh(LJ. By means of (1.3) we expand &k, z) in powers of the small 

quantity AU, yielding for finite 5 = z/(Dk’) 

1 
Dk2&k, cDk*) = t + 1 - - A~~~~~~~2’ + O(k*h(J)), (2.6) 

where the first term represents Fick’s law (1.12). The function A fi follows 

from (2.4) and (2.5) 

AB(k,z)=jdre-“l.~S”(q,r)dl(s,t)e-n21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

m 

I I ’ dq 
- dt m S’Yq, -d@(q, 0 e- LS + O(k*h(f)). 

0 

(2.7) 
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The second term represents at fixed l the k = 0 limit of the first term, and 

must be introduced due to the=definition (2.5). In this paper we will not 

consider the contributions to AU proportional to k*h(l), so that in (2.4) the 

sound modes may be neglected. In (2.7) we have used that G(k, t) = 

exp(-Dk*t) which corresponds to the first term in the expression (2.6). One 

can verify that the second term in (2.6) yields corrections to A6 of order 

k*K’). 

After carrying out the time integrals in (2.7) the function Al?(k, z) is 

expressed in the Laplace transform &(k, z) of &(k, t) 

’ dq AC&z)=/ m {P(q, Q&q, z + IN*) - S”(q, -q&q, Dk*)} 

+ O(k’h(l)). 

In order to evaluate (2.8) we use the result for C$“(k, z) obtained 

mode coupling theory applied to the case of the general fluid’) 

&(k, z) = (z + vk’)-’ + 2 Aa(n)k2+pQ + vk*)-* + O(k-‘h(l)) 
n=l 

(2.8) 

from the 

(2.9) 

valid for small k and z/k* - 5 finite. The quantities p,, are rational numbers 

between zero and one 

pn = 1 - 2-” (n = 1,2,. . .). (2.10) 

Expressions for the coefficients A,(n) are given in ref. 8. We quote only the 

formula for n = 1 

A,(l) = 

cI/2 

77r2”*pmnr~‘* 
(2.11) 

where r, is the sound damping constant given by 

rS = (Y - l)N(nc,) + ((4/3)n + Mmn), (2.12) 

with y = cp/cV, A is the heat conductivity, and C is the bulk viscosity. 

2ubstitution of eq. (2.9) into (2.8) yields the mode coupling prediction for 

AU(k, z). One verifies that the term of order k-‘h(j) in (2.9) will give rise to 

terms of order k*h(l) in (2.8), so that A6(k, z) follows, up to terms of the 

form k’h(l). Explicit calculations will be performed in the next section. 

3.1. The functions fi(k, z) and &k, z) 

In order to evaluate the integrals (2.8) and (2.9) for A fi we introduce the 

following quantities 

6 = D/(D + V), (3.1) 
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thus S is a real number between zero and one; 

k* = 4rpmnD(D + v), 

which has the dimension of an inverse microscopic length such as k,,; 

a, = A,(n)D-‘6’+pn (n = 1,2,. . .), 

which have the dimension of a length to the power p. ; 

p,(k) = k&Sk), 

(3.2) 

(3.3) 

(3.4) 

which is a large dimensionless quantity for the small k-values to be con- 

sidered below. Instead of 5 = z/Ok* it will be more convenient to define the 

dimensionless frequency s to be 

s(k, z) = S-‘(z/(Dk*) + 1). (3.5) 

The q-integral in (2.8) is written as an integral over x = k - 4 and y = )q[/(tik). 

In this way we arrive at 

m 

A fi(k, z) = SD j$ u(Y,, s) + SD j$ nz, ankPn~p,(yo, s) + W*h(sh (3.6) 

with 

YO +I 

u(yo, s) = 6’ dx( 1 - x2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 -1 

+1 

U,(Yo, s) = c’ fdy 1 dx(l-x2~~p[(s_2~;+y2~2-l > 
0 -I 

(3.7) 

(3.8) 

The functions up(yo, s) will be considered for variable values of p with 

0 < p < 1. The functions u(yo, s) and up(yo, s) can be studied for fixed values 

of s and k + 0 (i.e. yo+ co). One finds straightforwardly from the asymptotic 

behaviour of the integrand for large y 

dY0, s) = u(s) + Mayo), (3.9) 

UP(YO, s) = UP(S) + m(s)lYo), (3.10) 

where U(S) and up(s) are given by the integrals (3.7) and (3.8) respectively 

with y. replaced by infinity. It follows from (3.4) that the correction terms in 

(3.9) and (3.10) contribute at least to order k*h(s) in (3.6). 
The integrals in (3.7) and (3.8) with yo= ~0 are carried out in Appendix A 

with the result 

(3.1 la) 
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=~(S-2)~S-1-~SZtan-+=, 
s 

s (4+~)/2 

= 
2 COS(Pd2) 

[1sin((4+p)tan~‘-$=} 
4 + p 

1 
-- sin 

2+lJ 
(2 + p) tan-’ VSl_ - . 1 

II 
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(3.11b) 

(3.12a) 

(3.12b) 

Here 2F,(a,b;c;z) is Gauss’ hypergeometric function. The presentation of our 

results in hypergeometric functions is convenient in view of the inverse 

Laplace transforms to be carried out below. Properties of the hypergeometric 

function *F,, the confluent hypergeometric function ,F,(a;b;z) and the 

generalized hypergeometric functions $,(a,, . . . , a,;b,, . . . , b,;r), which we 

will need, are given in ref. 9. Integral representations and asymptotic expan- 

sions for large values of argument .z are given in ref. 10. The result (3.1 lb) for 

u(s) has also been obtained in ref. 11. 

The singularities of u(s) and up(s) with largest Re s are square root branch 

points, located in s = 1, where the functions behave as 

u(s) = - ; - ; (S - 1) + (2/3)(s - 1)3’2 + 0((s - 1)2), (3.13) 

up(s) = (2 +;g+ p) QdPd2) - d/s - 1 + o‘(s - 1). 

The branch point s = 1 corresponds to z = -(I - S)D&* in the complex z- 

plane. The functions are made unique by a cut in the complex s-plane on the 

real s axis from --03 to 1. The behaviour of u(s) and u,,(s) for large values of s 

is obtained from (3.1 la) and (3.12a) 

u(s) = -(2/3)s”‘[l+ O(s-‘)I, (3.15) 

up(s) = - 3+P 
3 cos(p7rl2) 

s(‘+p)‘2[ 1 + a(s-I)]. 

The generalized diffusion coefficient fi(k, z) is now obtained up to order k2 

(for z/k2 finite). The desired series expansion for &, z) follows from (2.6) 

and (3.6). Using the variable s instead of 5 = z/Dk2 yields 

&k,“‘=& k*--- C 1 _ k U(YO. s) k 
S 

5 a,kPn 
k* n=, 

upn’;7 ‘) + O(k’h(s))] (3.17) 

and the first term represents Fick’s law (1.12). 
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3.2. The functions 6(k, t) and e(k, t) 

We calculate the functions Ai?(k, t) and C?(k, t) from the results of the 

previous section. As explained in section 1 we measure time in units km2 and 

define therefore 

r = Dk’t, (3.18) 

thus the functions Ao(k, t) and &k, t) are expressed in the variables k and r, 

instead of k and t. We start from 

SDk2 ~~ 
Ao(k,t)=xe ds e’“‘Afi(k, Dk*(& - 1)) 

r 

(3.19) 

@(k, t) = se-’ 1 ds &+(k, Dk2(6s - 1)). (3.20) 

These expressions reduce to the relations for the inverse Laplace transforms 

if one substitutes (3.5) for s and (3.18) for T. The contour r runs through the 

complex s plane from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 + E - im to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 + E + ia, with E > 0. From (3.6) and (3.17) 

one finds expansions for AI?(k, t) and &k, t) of the following form 

A ti(k, t) = S2D2k2 [b em7 (v(Yo,~~) + $, ankPnUp,(yO, ST)} + O(k’h(T))], 

(3.21) 

&k, t) = e-’ [ I- b W(YO, 8~) -b $ ankPnwp,(yO, 87) + Q(k’h(T))], (3.22) 
n I 

where the functions v, up, w and w, are given by 

4~0,~) = I& I ds e”‘Wo, s), (3.23) 

V,(YO, 7) = T&$ I ds esTup(yo, s>, (3.24) 

r 

W(YO, 7) = & 
I 

ds e”‘u(yo, s)/s2, (3.25) 

r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

W,(YO, 7) = I$ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I  

ds eS7up(yo, s)/s* . 
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The integrals (3.23) and (3.24) are evaluated in Appendix A, with the result 

(yo= ko/6k-+~ and 720) 

v(yO, T) = ~(7) + 0(eeYa7), (3.27) 

v,(y,, 7) = ~~(7) + O(e-Ya’). (3.28) 

The correction terms of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexp(- y;T) will not contribute to any term in the 

series expansion (3.21) in k since they are non-analytic for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk +O. The 

functions ~(7) and Z+,(T) are given by (7# 0) 

v(r) = 
1 35 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

_ T-3/2,4 _._.T  

3VG? ( > 2’2’ 

1 = _ T-5/2 ey 1 _ T-‘/29(p)], 

2.\/?? 

7 43+~)/2,~, (y;;;T). 

The expression (3.29b) is derived from (3.29a) using properties 

confluent hypergeometric function ,F, and the relation”) 

IF, (1+-T) = T-1'2%(T1'2), 

where g(x) is Dawson’s integral, related to the error function as 

iV/?r i exp(-x2) erf(-ix). 

The behaviour of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV(T) and I+,(T) for small (and for large) values 

obtained from (asymptotic) series expansions of ,F, ‘4 

v(7) = 
1 

_ T-3’2[ 1  + o)(T)], 

3&r 

T -(3+p)‘2[ 1 + o(T)], 

v(r) = 
1 

- eTT-5’2[ 1 + a(T-I)], 
2Vlr 

1 
up(~) = _ e’7-3’2[1 + 0(7-Q]. 

2dlT 

(3.29a) 

(3.29b) 

(3.30) 

of the 

(3.31) 

9(x) = 

Of 7 iS 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

It follows from the asymptotic behaviour of U(S) for s +CQ (3.15) and V(T) for 

r+O (3.32) that U(S) is not the Laplace transform of v(r); this means that the 

limit yo-*w in (3.23) may not be interchanged with the s-integral. The same 

observation can be made for the functions up(s) and up(s). 
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The asymptotic behaviour of u(s) and up(s) for large s allows the inter- 

change of the limit yo+m and the s integral in (3.25) and (3.26). One finds 

from (3.9) and (3.10) for yo-+m 

h(T) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w(yo,7) = W(T) + 0 - ( > Yo ’ 

h(T) 
Wp(Yo, 7) = Wp(T) + 0 - ( > y;-P * (3.37) 

The correction terms contribute to order k2h(r) in (3.22). The functions W(T) 

and ~~(7) are the inverse Laplace transforms of u(s)/? and u,(s)/s*, respec- 

tively. Using the representations (3.11a) and (3.12a) for u(s) and up(s) and eq. 

5.21 (1) of ref. 13 yields 

W(T) = - - 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT”* ,F, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-;;;;T) 

3G 

1 = _ T-“2 e’[,-“*$+-(,“*){4r* - 47. - 1) - 
4v$T 

27 + 11, 

“‘p(T) = 
- 8r((5 + P )I21 T(1-p)/22F2 5+P 1+p 3-p 5 . 

-p*) 37r(l 2 3 2 3 2 72;’ 

(3.38b) 

(3.39) 

Eq. (3.38b) is derived from (3.38a) using properties of ,F, and the relation 

(3.31). The behaviour of W(T) and We for small and large T is given by 

W(T) = - -$= T”* { 1  + o)(T)}, 

77 

w  
P 

(T) = _ 8Q(5 + pm T(l-P)/2{1 + 

37r(l- p*) 
(qT)} 

7  

W(T) = 
1 

-= e7T-5 ’2{ 1  i- I?( T-l)}, 

2drr 

(3.40) 

(3.41) 

(3.42) 

Wp(T) = 
1 

- eTT-3’2{ 1 + 0(7-l)}. 
2V7r 

(3.43) 

The results (3.21) and (3.22) express Aa(k, t) and &k, t) as series expansions 

in the smallness parameter k while T = Dk2t is kept fixed. These expansions 

may equivalently be considered as expansions in the smallness parameters l/t 

with coefficients, which are functions of the dimensionless wave number K, 

defined as 

K = kdDt. (3.44) 
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Thus 

6202 
AU(k t) = k*(~~)3/2 

K3 & 
v(aK’) + “$, &q2 Kp”Q$jK2) 

I 

+ a(h(K)/t’), (3.45) 

G(k, t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAemK2 1 - k*&)‘” W(8KZ) 

KP”Wpn(8Kz)] + 0 (y), (3.46) 

where we have used (3.27, 28) and (3.36, 37). 

3.3. The functions U(r, t) and G(r, t) 

We calculate the functions AU(r, t) and G(r, c), where G(r, t) is defined in 

(1.1) and A U(r, t) is defined as the inverse Fourier transform of A o(k, t). As 

explained in section 1 we use the variables p and t instead of r and t to 

describe these functions, where p is defined as 

p = r/X0%. (3.47) 

For fixed values of p the inverse time l/t is used as small parameter, to obtain 

expansions beyond the lowest order Fick’s law prediction (1.10). We start 

from the relations 

AU(r, t) = (27rm3 1 dk e”“Ao(k, t), (3.48) 

G(r, t) = (2r)-3 1 dk ei”‘&k, t). (3.49) 

The parameter p is substituted in these expressions and the integration 

variable k is changed into (x, k) where x = kd\/Dt (compare (3.44), so that 

X = K). 

The series expansions (3.45) for Aiff(k, t) and (3.46) for &k, t) are inserted 

and we arrive at expressions for G(r, t) and AU(r, t) of the final form 

e 7914 

W, f) = (4&t)3/2 

x E ( >J 

h(p) 

t 

(3.50) 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

62 e -$I4  

ducr , t ) = jjT3/ 2~ k ef 3 

c 

(3.51) 

The first term in (3.50) represents Fick’s law prediction (1.10). 

The functions g(p), g,(p), f(p) and f,(p) are given by 

4 eP2/ 4  m 

&T(P) = - 

x&p I 

dx sin(xp)x’ eAX2w(Sx2), 

0 

gp(p) = $$, dx sin(xp)x2+P e~“‘wp(Ax2), 

0 

f(p) = g [ dx sin(xp)x4 e-‘*o(8x2), 

0 

(3.52) 

(3.53) 

(3.54) 

f,(p) = g jdr sin(xp)x4’p e-“‘vP(Sx2). 

0 

(3.55) 

These functions also depend on the variable 6. The functions g(p) and g,(p) 

are calculated in appendix B, with the result 

g(P)=-2($+}1’2[IF, (-;+-&) 

_(l_ @,E, /_2.?._ G2 
\ 2’2’ 4(1-C?) ’ 

(3.56) 

g(p) = $ {%}I’* [ (I-56+!6p2)exp(-~)+~~p 

x 4li~) {-(1-6)(1+3s)+(1-36)6p*+$2p4}]. (3.57) 

Eq. (3.56) is expressed in more elementary functions (3.57) by means 

elementary properties of 

;: ,Fl(1/2;3/2;-x2)/&. 

IFI and the relation’*) erf(x) = 

For gP(p) we obtained in appendix B a hypergeometric series of two 

variables, S and Sp2/4 respectively, which can also be written as a series 
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expansion in powers of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

g,(p) = - 

m (F) (-Y), 
4U(5~~~)${“-“” 2 _ m 

m=” (yy, (i),, m! 

x,F, in ++n -y;rn +?;a){1 -&>#jm, 
( 

(3.58) 

where we used Pochhammer’s symbol (a), = T(a + n)/T(a). The functions 

f(p) and f,(p) are hypergeometric series in two variables, S and Spz/4, which 

converge absolutely in the whole complex p-plane. This result, and asymp- 

totic expansions, can be obtained by the same method as used in appendix B for 

gP(p). We only quote the results 

f(P) = j& x3’*1 (Sip), 

f cp) = 2r((5 + P)i2) 8-(3+p)/21 

P 3ll 
(yGP>, 

where I(a ;p) can be written as a series in p*, 

I(a ;P) = go 2F1( 
“+“ .;+“ ;;+n;qy[-y~ . 

2, *  

The small p behaviour of g(p), g,(p), f(p) and fp(p) is given by 

ZAPI = -2 

fp(~) = & r((5 + PY~)S-‘~+~“*,F, (F,;;;;s) + 0(p2). 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

(3.63) 

(3.64) 

(3.65) 

The behaviour of g(p), g,(p), f(p) and f,(p) for large values of p is given by 
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asymptotic series expansions and we quote only the first terms 

g(p) = (l/16)&3[l + UP-*)I, 

6 

gp(P) = 2(4 + p) cos(p7~/2) 
P3+p11 + mP-2)1, 

f(p) = 2K3p_3[1 + c&-*)1, 

fp(p) = -(4/7r)(3 + p)r(2 + p) sin(p~/2)6-4-Pp-5-p[l + I?&.-~)]. 

(3.66) 

(3.67) 

(3.68) 

(3.69) 

4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMoments of displacement and related quantities 

In this section we calculate the predictions from mode coupling theory for 

the moments of displacements M’“‘(t), the cumulants i@‘(t) and the time 

dependent diffusion coefficients D’“‘(t). These quantities are defined as 

M(“)(t) = ((Ax,(t))“), (4.1) 

where Ax,(t) = x,(t) - x,(O) is the x-component of the displacement vector 

Ark(t). The odd moments vanish due to symmetry properties of the ensemble 

average. The even moments occur in the expansion of f$k, t) in powers of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk. 

From (1.2) follows 

&k, t) = zO s MCPn)(t) 

and therefore 

j@“)(t) = (-)” ’ @k, t). 

The cumulants i@)(f) are defined for even at by the series expansion 

“$, $$ MP”‘(t)}, 

therefore one has for n = 1,2, . . . 

jp”‘( t) = (-)” - c 
” log&k t) 

3 . 

The time dependent diffusion coefficients are defined by the equation 

-$ &(k, t) = -k* {“z. (- kz)“D”“‘(t)) &(k, t). 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 
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From this and (4.4) follows that 

1 
D’*“‘(t) = (2n + 2)! at 

_& @n+*‘(r). 

The prediction for M’“‘(t) is obtained from (4.3) and the series expansion 

(3.22) for d(k, t). We choose a fixed time t and define x = ST = SDk’t. 

One obtains a series expansion for M(*j)(f) of the form 

valid for t much larger than to and j = 0, 1,. . 

m”‘) and rnz) are given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a  j 
mti) = si- l/ 2 lim __ 

( > 

e - X/ S I12 

x- 4 8X 
X w(x), 

i 

O ’J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
MP 

= pl+p)/ 2 lim _ _!_ e - x/ Sx(l+p)/ 2wp(X)~ 

x-0 ( > dX 

. . The dimensionless quantities 

(4.8) 

(4.9) 

(4.10) 

By substitution of the explicit expressions (3.38) and (3.39) for w(x) and w,(x) 

one finds 

m(i) _ W”* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA---=*F, -j+ I,-:;:;a), 
3V?T ( 

(4.11) 

o‘) 
mp = 

VW5 + ~)/2P(‘-p)‘* 3F2 
37r(l -p2) ( 

_ j + *,5 + p 1+p 5 3-p 
- -2;2,2;s 

2 ’ > 
. (4.12) 

In these expressions 2F,(. . . . ;6) and 3F2(. . . .;6) are polynomials in 6 in 

degree j - 1. 

For j = 0 we have m (‘) = 0 and rnf’ = 0, which is consistent with the 

property M”‘(t) = 1 for all t, as follows from (4.1). For j = 1, the polynomials 

,F,(. . . . ;S) and jF2(. . . ; 6) in (4.11, 12) are equal to 1, so that the second 

moment of displacement is given by 

M(*)(f) = 2Dt 1 1 2 - 

3r312pmnD(D + v)3’2t”2 - 3r*pmnD 

r((5 + PXW (n) 1 
n=, (1 -p&D + 4 (5+P35(l+Pn)l2 + ’ 7 ( >I ’ 

(4.13) 

where we have used the relations (3.1) (3.2) and (3.3) for S, k* and a,. 

The time dependent diffusion coefficient D”‘(t).defined by (4.6) is related to 

MC2)(f) by D”‘(t) = ~(~/~t)Mc2’(t), as follows from (4.7) and the property that 
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Mi2’(t) = Mc2)(f). For t s to we find therefore 

DO’(t) = D 1 - 
c 

1 1 

6~3’2~mnD(D + ~)~‘~t”* - 37r2@nnD 

. (4.14) 

The velocity correlation function C(t)-(u,,u,,(t)), where vlX is the x-com- 

ponent of the tagged particle velocity. Using C(r) = a/JtD”‘(t) yields for t s to 

C(r) = 12 
1 1 

Ppmn(D + V,)3’2 P 

m 2r((5 +P,)/ W (n) 1 

7P(D + v) 
~2+~~/2 (4.15) 

Next we consider the mode coupling prediction for the cumulants M?‘(t) 

defined in (4.4). Choosing a fixed time t 9 to, the result (3.22) for &It, t) may 

be substituted in the expression (4.5) for MP”(t). For j = 1 we have the 

relation Mi2’(t) = M’2’(t), where the prediction for Mc2)(t) is given by (4.13). 

Series expansions for the higher cumulants are obtained from (4.5) and 

(3.22) by writing log{e-‘(1 - E)} = -7 - E + O(E’), where E represents the terms 

in (3.22), which are at least of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, at fixed values of T. The result for t %- to 

and j 2 2 is 

(4.16) 

The dimensionless functions q”’ and qjj” are determined from the relations 

@) = (-.)iai-1/2 cz $ 

(> 

'x~/2w(x), 

qJ1') = (-)jsj-(l+p)/2 c3 & zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( > 

' X~~+~v2Wp~X~. 

(4.17) 

By substitution of the expressions (3.38) and (3.39) for w(x) and w,(x) one 

obtains 

4jsj-112 

q"' = (-)' G(2j + 1)(2j -  1)(2j - 3)’ 
(4.19) 

2jT(j + (3 + p)/2)6’-“+p”2 

“’ = (-)’ d/rr(2j - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 - p)(2j -  3 - p)T(j + 3/2)’ 
(4.20) 

Expressions for the time dependent diffusion coefficients Dc2”(t) defined in 
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(4.6) are obtained from (4.7) and (4.16). The result for t s== to and j = 1,2, . . . is 

D’2”( t) = C-1’ 02’ 

2r3'2(2j - 1)(2j + 3)j! @nn(D + v)]+~‘~ 
ti-l/2 

x 1 + 2 (2j - W(j + (5 + PA/~) 

c 

A,(n) 
n=l (2j - 1 - p,)T(j + 3/2) (D + ZI,)‘+~~‘~ 

f-Pn12 + o(t-l12) 

I. 

For j = 1 we have 

D”‘(t) = - 1O 
D2 

~~‘~@nn(D + v)“~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tll2 

x 1+x c m 4r((7 + M/2) A,(n) f-P”/2 + Q(t-“z) . 

n=1 3X&( 1 - pn) (D + v) ‘+p~‘2 I 

The function D”‘(t) is known as the time dependent super 

coefficient3. 

5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADiscussion 

(4.2 1) 

(4.22) 

Burnett 

We derived an expression for the Van Hove self-correlation function 

G(r, t), as defined in (l.l), using the mode coupling theory. The result (3.50) 

expresses G(r, t) as a series in the smallness parameter I/t, where the 

coefficients are functions of the scaled distance p = rll!Dt. The functions 

g(p) and g,(p) are given by (3.57) and (3.58). The leading term in (3.50) 

represents the prediction for G(r, t) according to Fick’s law (1.8) and (1.10). 

The corrections to Fick’s law are at fixed p of relative order t-“2, t-3’4, t-7’8, . . . 

in time. The infinite series in (3.50) converges for fixed values of p, and t 

sufficiently large*). Our result implies that G(r, t) satisfies Fick’s law in the 

hydrodynamic limit (i.e. p fixed, t +cQ). However, for fixed values of t, 

however large, and r tending to infinity the subsequent terms in (3.50) become 

increasingly larger, as follows from the asymptotic behaviour of g(p) and 

g,,(p) given in (3.66) and (3.67). This indicates that Fick’s law is not valid for 

fixed but large t and r-m. 

The intermediate scattering function G(k, t) is defined in (1.2). The predic- 

tion from the mode coupling theory is given in (3.22). This result expresses 

d(k, t) as a series in the small parameter k where the coefficients are 

functions of the scaled time T = Dk2t. The functions w(y,,, 8~) and w,(y,, 6~) 

are given by (3.36-39), and the ratio 6 is defined in (3.1). Fick’s law holds for 

G(R, t) in the hydrodynamic limit (7 fixed, k + 0). It is not valid for finite k, 

however small, and t + 00. This follows from the asymptotic behaviour of w(7) 
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and ~~(7) given in (3.42, 43). It means that G(k, t) does not behave as 

exp(-Dk*r) for finite but small zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr +m. 

The mode coupling prediction for 6(k, z) defined in (1.3) is given in (3.17). 

The result is a series expansion in k with coefficients which are functions of 

the scaled frequency s, defined in (3.5). The leading term in (3.17) has a pole 

in the complex z-plane located at z = -Dk2 (Fick’s law). The functions U(S) 

and up(s) in (3.9, 10) have square root branch point singularities, located at 

s = 1 corresponding to z = (6 - 1)Dk2 (see (3.13, 14)). These singularities are 

to the right of the hydrodynamic pole at z = -Ilk’. It means that for small but 

fixed values of k, the hydrodynamic pole is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnor the singularity of &k, z) 

closest to the origin in the complex z-plane. Consequently Fick’s law predic- 

tion &k, r) - exp(-Dk2r) is nor the dominant behaviour of d(k, r) for large r, 

as already mentioned above. However Fick’s law is still valid in the hydro- 

dynamic limit (s fixed, k + 0). 

The mode_coupling theory yields an equation for the gegeralized diffusion 

coefficient U(k, z) defined in (1.4). The theory predicts U(k, z) to be con- 

tinuous around k z 0, z = O_so that Fick’s law (1.13) is satisfied. The explicit 

predictions for A U(k, z) = U(R, z) - D, its inverse Laplace transform Ao(k, r) 

and the inverse Fourier transform AU(r, r) are given in (3.6), (3.21) and (3.51), 

rzspectively. The structure of the series expansions is similar to that of 

G(k, z), &k, t) and G(r, t). 

The long time behaviour of the moments of displacement M(“ )(r), defined in 

(4.1), follows from the result for G(k, t) via (4.3). iW(“ )(r) diverges dominantly 

as P2, as given in (4.8). The result for Mc2)(r) implies the series (4.15) for the 

velocity correlation function C(t). For large times the contributions to C(r) 

are proportional to rc3j2, r-7/4, r-‘5’8,. . . . This agrees with results reported in 

the literature8.14). 

The cumulants of the moments of displacement, M:‘(t) are obtained from 

(4.5). According to (4.16) M?)(r) diverges for r +m proportional to t”‘2-“2. 

We also considered the time dependent diffusion coefficients D’“‘(t) in the 

formally exact linear diffusion equation (4.6). The function D(‘)(t) converges 

for large times to Fick’s law diffusion coefficient 0, as follows from (4.14). All 

the remaining functions P)(r) diverge however proportional to t”‘2-“2. For 

large times a linear diffusion equation involving higher order transport 

coefficients, such as the super Burnett coefficient, does not exist. 

We are not aware of experiments accurate enough to verify the validity of 

the series expansions for &k, z), d(k, r), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG(r, r) beyond the lowest order 

term. However, the implicit theoretical predictions for the long time 

behaviour of the velocity correlation function (4.16) and the time dependent 

super Burnett coefficient (4.23) do agree with results from molecular dynamics 

experiments4). 
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The main results given in this paper have been published before as part of a 

doctoral dissertation15). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Appendix A 

Here we will calculate the functions U(S) and U,,(S) defined in eqs. (3.7-10) 

and the functions O(T) and I+,(T) defined in eqs. (3.23-28). The integral (3.7) 

with y. = CO for u(s) can be transformed into 

u(s)=W’ jdx(I-x*) j^dy[S_2~;+y2+s+2~tty’-2}. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 -m 

The y integral can be performed by contour integration, yielding 

U(S) = 
I 

dx(1 -x2)(2x2- s)(s - x2)-“* (A.la) 

0 

= $(s - 2)Vs - 1 -as’ tan-’ ___ 
&* 

(A.lb) 

An expression for U(S) in terms of hypergeometric functions can be obtained 

by substitution of y = x2 in (A.la), 

u(s) = s”* dyy-I’*( 1 - y){-( I- y/s)“* + &(I - y/s)-“‘}. 

0 

From properties of Gauss’ hypergeometric functions? follows 

64.2) 

U(S) = -(2/3)X& (2 2F’ (;,-;;I;!) - *Fl (i,;;;;;)] 

= -(2/3)v/s,F, (;,- #). (A.3) 

Next we calculate the function up(s) for real values of p between zero and 

one. After carrying out the x integration in (3.8) one obtains for y, = m 

m 

up(s) = $ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-;-Y2+fy(y*+S)Io g  

0 

(A.4) 

First we substitute in (A.4) z = y eVi and secondly z = y e-“‘, next we add up 
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both expressions with the result 

sin@-)u,(s) = & 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

dZZP 

where the contour rl is situated just above the branch cut of zp, from --03 to 0, 

and r2 just below, from 0 to --a. Apart from the branch cut along the negative 

real z-axis, the integrand in (A.5) has two branch cuts along line segments 

from zl to z3 and z2 to z4 respectively, where zlr, z4 are logarithmic branch 

points, with 21,2 = I-+ ids - 1 and 23,4 = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 + ids - 1. If we define r3 and r4 as 

closed contours around the upper and lower logarithmic branch cut respec- 

tively, both in the positive sense, we obtain, due to the behaviour of the 

integrand for )zl + ~0, the following result 

sin(p = 2 
I 

dzzP i z(z2 + s) log 2 

r, 

+& dzzp;z(z2+.s)log~. 
I 4 
r4 

Next we substitute z = iv/s - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 + x f. ie for r, and z = -ids - 1 + x f ie for 

r4, where E + O+, and x runs from - 1 to + 1. The upper signs have to be taken 

along the upper sides of the branch cuts, the lower signs along the lower 

sides. This yields 

+I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

PT 
sin@r)u,(s) = i sin - 

2 I 
dx{(ds - 1 + ix)p+3 - s(ds - 1 + ix)p+‘}, 

-1 

which gives the final result 

up(s) = 2c@z& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[- &sin{@ +4)tan-‘&] 

1 -- sin - . 
P+2 { 

(p + 2) tan-’ Vsl_ 1 
>I 

(A.@ 

It is again convenient to have an expression for up(s) in terms of hyper- 

geometric functions, which can be obtained from the relation 

2& p+l 
( 

P-l 3 - -2;T;(sinz) 
2 
> 

_ sin(pz) 
-- 

2 ’ p sin z’ 
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with the choice tan z = l/vs - 1. 

By using properties of contiguous functions? one finds 

(A.7) 

The function v(yO, 7) follows from (3.23) and (3.7). The s-integral is per- 

formed by contour integration, so that 

YO fl 

v(yO, T) = i 
I 

dyy* emyZ’ 
I 

dx( I- x2) e2Xy7 - & y&7). (A.8) 
0 -1 

The second term is omitted for 72 0. The limit for yo+m of the first term is 

denoted by V(T). The correction is estimated as 

v(yo, 7) = o(7) + O(emYa’). (A.9) 

The x-integral in (A.8) can be represented in terms of the generalized 

hypergeometric function oFI ‘*) 

+I 

I 
dx(1 -x2) ezU = (A.lO) 

-1 

Thus 

m 

O(T) = $ dyy* emyzT oF, 

0 

(A. 11) 

The integral takes the form of a Laplace transform after substitution of 

y = .\/t/r The result is 

1 
U(T) = 3qr 

35 -7-3’2 *F1 ---;7 . 

( > 2’2 
(A. 12) 

The function v,(y,, 7) with 0 <p < 1 follows from (3.24) and (3.8). Performing 

the s-integral yields 

XI 

v,(y,, T) = 5 
I 

dyyp+4 emyZ’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

+I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X I dx( 1 - x3 etiyr 

-1 

For 72 0 and yo+w we have 

u,(yo, 7) = up(T)+ O(e-Y:7), 

(A-13) 

(A. 14) 
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where up(~) is the limit of v,(y,, 7) for yo+~. Using (A.lO) yields 

m 

up(~) = g dyypt4 emyz7 oF, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

Substitution of y = d/t/, yields a Laplace transform, thus 

(A.15) 

7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-O+P)/* ,JT, (F;;;T)e (A.16) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Appendix B 

Here we calculate the functions g(p) and gp(p) defined in (3.52) and (3.53). 

The function g(p) can be obtained from the following Fourier sine transform 

m 

I(cY, p, y) = 1 dx sin(xy)x emaX2 ,F, (p;i;x’), 

0 

(B.1) 

which we will calculate first, for complex values of p with Re p < 3/2 and real 

values of CK larger than one. In order to calculate (B.l) we need the following 

integral representation valid for Re /3 < 3/2 4 

(I+) 

= rWW(l - P> 
r(3/2 - /3)2~ i I 

duu r/*-P(u _ l)P-’ e(l-~)~2. 
(B.2) 

0 

The contour of integration is a loop starting (and ending) at u = 0 and 

encircling 1 once in the positive sense. After substitution of (B.2) into (B.l) 

the x integration can be carried out with the result 

duu l/2-&3/2 e -Y*/(~v) 
9 (B.3) 

0 

where l/v = (Y - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 + u. The substitution u = ((Y - l)t/((~ - t), leaves the contour 

invariant, so that 

(I+) 

x dtt”*-@(t - l)@-’ exp (B.4) 
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Using the integral representation (B.2) again gives finally zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

_ &.8-3/Z 

I(a, P. Y) = bdr ((Y y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe-yz’(4a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,F, (@;~;4e~ay~ *)). (B.3 

The result (B.5) is in fact valid for all complex p, as can be shown by using a 

different integral representation for ,F,. For our purposes, Re p < 3/2 is 

sufficient. 

The function g(P) can be calculated from the result (B.5) and from (3.52). 

By inserting for w(Sx’) the expression (3.38a) and applying the property 

:Y 3, (-i;i;y) = ,F, (-i;i;y)- ,F, (-t;$y), 

we arrive at the result 

g(p,=-2{~)“*{,F,(-~;~;-~) 

-(l- 6) ,F, (-;;;;-.& 
>> 

. 

03.6) 

(B.7) 

The previous method fails in the calculation of g,,(P), and we have not been able 

to calculate g,(p) in closed form. 

Here we will derive a series expansion in powers of p, which converges 

absolutely for all values of p, and an asymptotic expansion for large values of 

p. From (3.53) and (3.39) we have 

g,(p) = - 
32r((5 + P)/~)c?“-P)‘* eP2’4 

3?T3’2(1 -$)p 
m 

x 
I 

dx sin(xP)x3 emX2 *F2 
( 
5+P 1+p 3-p 5 
T,- T,T,~;~x* 

> 
. (B.8) 

0 

We insert the absolutely convergent expansion for *F2 in (B.8), and integrate 

term by term using13) 

m 

I 
dx sin(xp) e-xZx2mf3 = 1 r(5/2)(5/2),p e--p2’4 ,F, 

( 
-m - l;~;p*/4 

> 
, (B.9) 

0 

where ,F, is a polynomial of degree (m + 1) in p2. The result is a hyper- 

geometric series in two variables, p* and S, where 6 is a given quantity smaller 

than 1. 

The most convenient representation for our purpose is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

b%(P) 
=- 4r((5 + p)/2)6”_p”* 

r(l - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP2) 

m (qy,, (-y>, 
z” (?IjP), (i), m! 
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(B.lO) 

The asymptotic expansion of gp(p) can also be obtained from (B.S), if we 

extend in (B.8) the x integral from --01 to +m, write sin(xP) = Im eixp and 

substitute x = z + f ip. Because zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2Fz is an analytic function everywhere in the 

complex z-plane, the integration path may be shifted such that --oo < z < +m. 

For fixed p we may expand (z + 1 ip)3 *F2(. . . ;S(z + i ip)*), occurring in the 

resulting expression, in powers of z and perform the z integrals. This yields 

an expansion of the form 

&l(P) = 
2r((5 + P)/2)S”_p”* 

3r(l- P2)P 

x p3 *F2 5+P 1+p 3-p 5 -6p2 

2,- 2;- -.- * 
(B.ll) 

From the asymptotic expansion of *F2 as given in ref. 10 one can deduce the 

asymptotic expansion of g,(p) and we give only the first four terms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

g,(p) = 34 + p) c:s(Rp,2)p 2 $.$ ($J2mp4+p + Qp-*-“) m0 . 
6 

= 2(4 + p) cos(7rp/2) 
p3+p{ 1 + a(p-2)). (B.12) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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