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Molecular transport through tight porous media is crucial to shale gas exploration, but deeper insights of the ele-
mental physics are still required, particularly under high pressures and nanoscale confinements, where Navier-Stokes
and Boltzmann solutions are no longer valid. In this work, we carry out a fundamental and systematic study of self-
diffusion using event-driven molecular dynamics simulations, varying fluid rarefaction, confinement and surface fric-
tion. We differentiate between fluid-fluid and fluid-wall collisions to identify the interplay of the underpinning diffusive
mechanisms, namely molecular and Knudsen diffusion. We find that the Bosanquet formula, which has been used for
describing rarefied gases, is also able to provide a good semi-analytical description of self-diffusivities in confined
dense fluids, as long as the pore height is not smaller than five molecular diameters. Importantly, this allows us to
predict the self-diffusion coefficient, regardless of the fluid rarefaction, confinement state, and surface roughness, in a
wide range of Knudsen numbers that was not possible before. Often a source of debate, we prove here that despite
strong fluid inhomogeneities arising in these conditions, the Einstein self-diffusivity can still be used within Fick’s law,
provided boundary effects are considered when using Fick’s set-up. Finally, we notice that a previously identified linear
scaling of self-diffusivities with confinement is only valid in the limit of low densities and frictionless walls, which is
not representative of shale reservoirs. This work will serve as a foundation for investigating the anomalous gas transport
behaviour observed in recent work of dense, confined fluids.

I. INTRODUCTION

Fluids confined to nanoscale geometries are ubiquitous
in biological and engineering applications1–3, such as in
nanocatalyst construction4, nanostructured water filtration
membranes5, and proton transport within fuel cells6. A no-
table application that motivates this research is the trans-
port of hydrocarbon fluids stored within sedimentary shale
rocks7–9, where the gas-gas and gas-surface physics through
the naturally-formed nanopores deviate from our current un-
derstanding and modelling capabilities.

The behaviour of confined fluids is still poorly understood,
for several reasons. The first challenge appears when the mean
free path (MFP) λ , which is the distance travelled by fluid
molecules between collisions, is comparable to the flow char-
acteristic length H (e.g. the pore height), and so the Knud-
sen number Kn = λ/H is moderately larger than zero. In
this case, the assumption of local thermodynamic equilibrium
breaks down10, and subsequently the continuum description
of fluids fails11. One of the most recognisable consequences
of non-equilibrium effects is the so-called ‘Knudsen paradox’,
which shows up when a constant pressure difference drives a
rarefied flow along a narrow straight channel. The mass flow
rate displays a characteristic minimum as the inlet pressure
is reduced12, being in sharp contrast with the monotonic de-
crease predicted by the Navier–Stokes equations.

A second challenge occurs when the pore characteristic
length is similar to the diameter of fluid molecules σ , as typi-
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cally occurs in shale reservoirs, where pore sizes are very tight
with mesopores (H ∼ 20–200 Å) and micropores (H < 20 Å)
dominating the storage of supercritical methane13. In these
conditions, molecular ordering happens inside the pores and
the effect of dense fluid packing is magnified. Surprisingly,
the recent measurement of Poiseuille mass flow rates through
ultra-tight pores, which are characterised by small confine-
ment ratios R = H/σ , was found to follow a monotonic in-
crease with Knudsen number14. Although the Boltzmann
equation predicts the existence of the Knudsen minimum15–17

and it may explain its disappearance in bent18 and short19

channels, it cannot be used to investigate the effects arising
due to confinement, which are responsible for the Knudsen
minimum disappearance observed in straight channels.

A third challenge arises when one considers the high pres-
sures in these unconventional reservoirs. Pressures can range
from 5 to 50 MPa20, and consequently fluid densities are be-
yond the dilute-gas Boltzmann limit21. Therefore, the space
correlations of molecules, which are disregarded in the deriva-
tion of the Boltzmann equation, need to be considered. The
Enskog equation approximately considers that the positions
of molecules are statistically correlated in dense fluids, and
recently it has been shown to predict the Knudsen minimum
disappearance within straight channels of molecular dimen-
sions22. However, a satisfactory explanation of the underly-
ing mechanisms that justify these mass flow rates is missing,
particularly in the transition regime (0.1 < Kn < 10).

A possible theoretical explanation of the Knudsen mini-
mum disappearance in straight channels relies on a change of
the underpinning physics, where mass transport is no longer
occurring because of collective advection. In pressure-driven
flows within very tight geometries, there is not enough room
for molecules to develop different velocities based on their
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spatial position, because of the limited number of molecular
layers in the confining direction and the large amount of colli-
sions with walls. Therefore, the fluid velocity profile switches
from the Poiseuille parabolic shape to plug-like as the char-
acteristic dimension of the channel reduces23,24, suggesting
that diffusion now dictates the fluid dynamics in this context.
Given that the Knudsen minimum only disappears when the
confinement is on the molecular scale, it is clear that a deeper
understanding of diffusive dynamics is of paramount impor-
tance to better explain the fluid behaviour, and so this will be
the scope of the present work.

The classical modelling approach to diffusive processes
is based on Fick’s law, where diffusion follows a linear re-
sponse with the gradient of the species’ concentration along
the streamwise direction. The simplest diffusive phenomenon,
i.e. Brownian motion of identical particles without a net flow
induced by a thermodynamic gradient, is referred to as self-
diffusion and can be studied by a process of tagging and track-
ing particles. The constant of proportionality, which is known
as the self-diffusivity D, is commonly identified with the mean
square displacement (MSD) of molecules in bulk fluids25. The
value of D depends on the physical mechanisms that gov-
ern diffusion, e.g. molecular and Knudsen diffusion amongst
many others26. Molecular diffusion dominates in the hydro-
dynamic limit for Kn < 0.01, when interactions are mainly
between fluid particles, whereas for Kn > 10 the diffusive dy-
namics can be simplified to Knudsen diffusion, consisting of
free flights of particles between collisions with walls.

Although Fick’s law is the cornerstone of modelling diffu-
sion transport in porous media27, its validity at the nanoscale
is not obvious and so it has been subjected to many stud-
ies28,29. The Fickian approach clearly cannot be applied un-
der extremely tight confinements where single-file diffusion
takes place30. This anomalous transport process occurs when
molecules move without being able to overtake each other,
abiding to their original order in the row, which differs from
the normal diffusion processes described by Fick’s law. For
larger but still moderately confined channels (R ∼ 10), this
linear theory is assumed to be valid but some doubts arise
with respect to the proportionality factor that has to be used
within its formulation. Specifically, the non-bulk structure of
the fluid may involve the breakdown of the MSD approach for
evaluating the self-diffusion coefficient31,32 and, indeed, the
lower R threshold that dictates the validity of the MSD-based
self-diffusivity in the Fickian framework is still not well de-
fined33. Local diffusion coefficients have also been introduced
to cope with the fluid inhomogeneity34–36, but the procedures
for averaging the local values to compute global quantities are
somehow phenomenological in nature.

Molecular Dynamics (MD) computer experiments have
served as a useful reference for evaluating the self-diffusion
coefficient in both bulk37–40 and confined fluids41–44. How-
ever, a satisfactory overall picture of the diffusion dynamics of
fluids under confinement is still lacking and there are no ana-
lytical derivations to predict self-diffusivities accurately in the
entire range of Knudsen numbers. Importantly, the crossover
between molecular and Knudsen diffusive mechanisms has
not been generalised beyond the rarefied description of non-

confined gases45–47, and as we explain above, this transition
flow regime under tight confinement and high fluid packing is
an area with critical implications to shale gas media.

The aim of this paper is to systematically investigate the
effect of rarefaction, confinement, and fluid-wall friction on
the self-diffusivity. The novelty of this study is presented
next. First, we measure the self-diffusion coefficient in a
wide range of fluid densities (from dense to rarefied), channel
heights (from tight to quasi-bulk), and microscopic wall prop-
erties (from rough to frictionless) that has not been subjected
to investigation before. Here, we use event-driven molecu-
lar dynamics (EDMD), which, compared to the Enskog the-
ory, provides the exact description of the monatomic hard-
sphere dynamics in the whole range of reduced fluid densi-
ties. Second, we assess the validity of using the well-known
MSD procedure for studying diffusion in strongly inhomoge-
neous fluids. Third, we use a splitting procedure of the col-
liding molecules to understand the interplay between molec-
ular and Knudsen mechanisms in the transition regime, and
how these are influenced by confinement and rarefaction. This
calls into question previously observed diffusive scaling laws.
Fourth, we develop a semi-analytical theory that predicts the
self-diffusion coefficient in the wide parametric space of con-
sideration, which has so far been missing in the literature.

The rest of the paper is organised as follows. In Sec-
tion II we outline the EDMD methodology and the proce-
dures for calculating self-diffusivities, from either following
particles’ trajectories through their random walk or according
to Fickian theory. Results for self-diffusivity are presented
in Section III, including the validation of MSD and Fick-
ian approaches, splitting results of diffusive mechanisms and
demonstration of the proposed theory. Section IV concludes
with the main findings and future work.

II. COMPUTATIONAL METHODOLOGY

A. Problem formulation

A system composed of N hard-sphere particles with diam-
eter σ is studied in a slit geometry, defined by two infinite
parallel plates at a distance H = h+σ apart, where h is the ef-
fective transversal space accessible to the centre of spherical
molecules (see Fig. 1). The walls are assumed to be structure-
less flat surfaces, and the fluid-wall interactions are described
by the Maxwell scattering kernel with tangential momentum
accommodation coefficient (TMAC). Namely, a fraction of
the molecules impinging on the wall (given by TMAC) is dif-
fusely re-emitted after being thermalised with the wall, while
the remaining partition (1 − TMAC) is specularly reflected.
This is the simplest possible simulation set-up that permits
one to capture the key features of the diffusion process48.

The self-diffusion coefficient is evaluated by two different
methods, as illustrated in Fig. 1:

(a) Under equilibrium conditions, the self-diffusivity is com-
puted using the Einstein relation49, measuring the squared de-
viation of each particle position ri, with respect to a reference
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(b)

(a)

(specular)

(diffuse)

TMAC = 0

TMAC = 1

FIG. 1: Two independent methods for computing the
self-diffusivity of confined fluids, based on either (a) the

Einstein relation, by measuring the average molecular mean
squared displacement, and (b) Fick’s law by changing the

colour tag of particles as these cross the boundaries, followed
by computing the steady-state tagged transport flux.

position over time t, as follows

DE = lim
t→∞

〈∆r2(t)〉
2dt

= lim
t→∞

1
Nτ

N

∑
i=1

τ

∑
j=0

∣

∣

ri(t + t j)−ri(t j)
∣

∣

2

2dt
.

(1)
Here, d is the dimensionality of the system, and 〈∆r2(t)〉 is
double averaged over the number of particles N and multiple
time origins τ , where τ > t j for all j. Unlike the bulk case,
diffusion is not an isotropic process in confined geometries50,
and the self-diffusivity in the x−direction takes a lower value
than in the yz plane, with d = 2 to compute the mean DE in
these two symmetric dimensions.

(b) In the presence of a concentration difference in the stream-
wise direction, the self-diffusivity is computed by using the
phenomenological Fick’s first law51, i.e. as the proportional-
ity factor between the concentration gradient dC/dy and the
flux of particles J that arises as a result of this driving force

DF =− J

dC/dy
. (2)

Two remarks are in order: First, the Fick’s law refers to the
linear relation between mass flux and concentration gradient,
regardless of the fluid rarefaction state and not only in the con-
tinuum regime52. Second, the Fickian self-diffusivity is differ-
ent from the transport diffusivity that is defined in presence of
a convective flow53.

Three dimensionless groups can be identified to systemati-
cally describe the different diffusive processes that may take
place in the current problem formulation: the Knudsen num-
ber Kn= λ/h, the confinement ratio R= h/σ , and the reduced
density η = nπσ3/6, where n is the number density. Besides
differentiating between flow regimes, the Knudsen number,
combined with the confinement ratio, determines the diffu-
sive mechanism that prevails at a given rarefaction and con-
finement degrees. The reduced density represents the packing
fraction of the fluid, e.g. larger η implies less free space for the
particles to move. By using the Enskog theory, these groups

are interrelated through

Kn =
1

6
√

2ηχ(η)

1
R
, (3)

where χ is the contact value of the pair correlation function
in a hard-sphere fluid in uniform equilibrium21. An approxi-
mate but accurate expression for χ can be obtained from the
hard-sphere fluid equation of state proposed by Carnahan and
Starling54

χ(η) =
1
2

2−η

(1−η)3 . (4)

B. Simulation set-up

The time evolution of the hard-sphere dynamics is sim-
ulated using event-driven molecular dynamics (EDMD)55,
which is an adaptation of MD simulations to discrete poten-
tial systems. This simulation technique is event-driven in the
sense that the state of the system jumps from one time to an-
other corresponding to the earliest collision event. The time
step is not constant throughout the simulation run, like in MD
simulations, as it depends on the spatial coordinates and ve-
locities of all molecules in the system. The algorithm con-
sists of three basic steps: (a) evaluating the time of the earliest
collision event, (b) moving ballistically all particles for that
time interval, and (c) updating the velocity of the particles
that have collided with another particle or the wall, according
to hard-sphere dynamics or the Maxwell scattering kernel, re-
spectively.

The main advantage of EDMD relies on the computational
savings with respect to simulations that consider soft poten-
tials, like Lennard-Jones, because it avoids the expensive cal-
culation of multibody intermolecular forces. To simplify the
notation and data analysis in the rest of the paper, all the
physical quantities are made dimensionless by considering
the molecular diameter σ as the reference length, the parti-
cle mass m as the reference mass, and σ/

√

kT/m as the ref-
erence time, where the denominator is the reference thermal
velocity, with k being the Boltzmann constant and T the tem-
perature. Accordingly, self-diffusivities will be expressed in
dimensionless σ

√

kT/m units.
The computational domain is an orthogonal box of dimen-

sions [H, ly, lz], applying periodic boundary conditions in the
y− and z−directions. The cross section of the simulation
box H × lz is chosen to match the target reduced density η .
Note that a careful choice of the streamwise length ly is re-
quired when evaluating the self-diffusivity through Eq. (2),
as will be discussed in Section III A. The number of par-
ticles was set over 5 × 103 in order to reduce the system-
size dependence of the computed self-diffusivities56. Ini-
tially, molecules are randomly placed across the simulation
box ensuring that they do not overlap, and velocities are sam-
pled from the Maxwell-Boltzmann distribution by using the
Box-Muller algorithm. The reduced density is varied in the
range η = [0.00005,0.35], with confinement ratios within
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TABLE I: Self-diffusivities for fluids at different confinements and packing fractions, where the Maxwellian MFP is given by
λ = σ(6

√
2ηχ)−1. The Fickian, DF , and Einstein, DE , methodologies are in very good agreement when ly & 2λ , expressed by

bold rows.

η = 0.0005 R = 50 R = 2 η = 0.005 R = 20 R = 5
ly(ly/λ ) DF DE DF DE ly(ly/λ ) DF DE DF DE

10 (0.042) 20.157 49.014 1.262 2.319 10 (0.430) 7.627 10.376 3.073 3.944
40 (0.170) 28.688 48.828 1.745 2.261 20 (0.859) 8.557 10.357 3.396 3.883
80 (0.340) 34.243 48.483 1.896 2.301 30 (1.289) 9.073 10.383 3.558 3.951

200 (0.850) 39.725 47.656 2.044 2.354 40 (1.718) 9.408 10.331 3.647 3.871
500 (2.124) 46.862 47.221 2.359 2.340 50 (2.148) 10.297 10.241 3.789 3.889

1000 (4.248) 47.501 48.590 2.376 2.396 75 (3.222) 10.349 10.368 3.817 3.893

R = [2,100]. Consequently, the Knudsen number spans all
flow regimes57, i.e. Kn ∼ [0.001,1000] as given by Eq. (3).

As detailed in Section II A, the self-diffusion coefficient
has been computed using two different approaches. The com-
putation of self-diffusivities by Eq. (1) is performed based on
equilibrium simulations. Time averaging starts when the ini-
tial ballistic regime dies out and the simulation time is set long
enough to ensure that the ergodic hypothesis is satisfied. Note
that there are two main sources of uncertainties in evaluat-
ing self-diffusion coefficients. First, accurate self-diffusivity
results require an unbiased MSD, and therefore uncorrelated
sampling58 needs to be considered when maximising the num-
ber of samples per run, e.g. multiple time origins t j besides
the initial simulation time t0. Secondly, using the Einstein re-
lation is associated with relevant uncertainties, because of the
unattainable search of perfectly linear regions between MSD
and time59.

The calculation of the self-diffusivity by Eq. (2) uses the
same setup, but particles are tagged as either type A (tracer) or
type B (solvent), with all fluid molecules being mechanically
indistinguishable. The overall density, accounting all tagged
and non-tagged particles, remains constant throughout the en-
tire domain. Initially, all molecules are assigned to type B.
During the simulation, those which cross the right-hand and
left-hand side boundaries of the simulation box are assigned
to type A and type B, respectively, independently of their ini-
tial tag (see Fig. 1). This mimics the presence of two reser-
voirs, virtually full of tracers and of solvent in both ends of
the channel. Molecular motion and collisions are performed
in the same manner for both types, but macroscopic quanti-
ties such as number density and mean velocities are collected
separately for each of them. The concentration profile of type
A particles is then allowed to relax, and the time averaging
starts at the steady state when the profile becomes linear in
the middle of the simulation box, a few molecular diameters
away from the boundaries to avoid non-diffusive end effects.
The concentration gradient is then computed by minimising
the mean square error of the linear fit to the concentration field
of type A particles in this region.

III. RESULTS AND DISCUSSION

A. Fickian and Einstein self-diffusivities

The Einstein and Fickian self-diffusivities match up in the
continuum regime60, but their agreement has been questioned
in tightly confined geometries, as introduced in Section I.
Preferential fluid packing next to the walls extends to a larger
relative portion of the channel when R values are low. In this
condition, most of the MSD trajectories are made up of contri-
butions from particles crossing inhomogeneous areas with dif-
ferent local densities. Accordingly, it is not obvious whether
the microscopic Einstein self-diffusivity still agrees with the
coefficient coming from the macroscopic Fickian theory. In
order to shed light on this question, we compute the self-
diffusion coefficients based on Eqs. (1) and (2) for a wide
range of η and R, with emphasis on large reduced densities
that lead to non-homogeneous density profiles.

A preliminary observation in our results must be made be-
fore moving into a detailed comparison. As shown in Table I,
the Einstein self-diffusivity DE does not significantly depend
on the length of the domain in the streamwise direction, which
is expected since the MSD measurements of particles continue
seamlessly across the periodic boundaries, as if to represent an
infinitely long slit. On the other hand, this is not the case for
the Fickian self-diffusivity, in which DF is seen to increase
steadily with ly and eventually levels off for ly & 2λ , regard-
less of the confinement ratio and the fluid density. This occurs
because DF is now influenced by the inlet- and outlet-type
boundary conditions, and a critical length is required to offset
the non-equilibrium perturbation of particles changing tag at
the boundaries. We find this requirement on the streamwise
length to be particularly severe in the rarefied regime, due to
the inverse proportionality between η and λ .

Fig. 2 shows the Einstein and Fickian self-diffusivities as a
function of the confinement ratio R for different large packing
fractions, when walls are fully diffuse (TMAC = 1). For the
aforementioned reasons, the Fickian self-diffusivities are ob-
tained by running simulations where the streamwise length of
the computational box is larger than two molecular mean free
paths. Our results reveal that the predictions given by Eqs. (1)
and (2) are almost indistinguishable in the whole paramet-
ric space. Particularly, Einstein and Fickian self-diffusivities
agree under tight confinement (R. 20) despite the strong fluid
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FIG. 2: Self-diffusivities computed using the Einstein
relation (filled circles) and as a proportionality factor

according to Fick’s law (empty squares). Comparisons for
accuracy in the large R limit are made with Ref. [61] (solid
lines). Inset: fluid layering in confined channels, deviating
from the homogeneity of bulk gases defined by n/n0 = 1.

inhomogeneities that exist (see the inset of Fig. 2). It is worth
stressing that this conclusion may be a consequence of the slit
geometry considered in this study, which allows particles to
swap places in the spanwise z−direction even in molecular-
like confinements (R ≤ 3). Hence, diffusion is not anomalous,
although there is not enough room for particles to overtake
their counterparts through the confining x−dimension. This
2D planar channel feature ensures that the linearity between
MSD and time assumed by Eq. (1) always holds, and anoma-
lous diffusion never takes place.

At a given reduced density η , the molecular mobility de-
creases with narrower channels because, on average, particles
collide more frequently with the confining walls. Through-
out these collisions, particles experience a change in momen-
tum that hinders their displacement in the two non-constrained
y,z−directions, parallel to the walls. For this reason, the self-
diffusivity shows a decreasing tendency with increasing con-
finement in Fig. 2, which is logarithmic-like as predicted the-
oretically by some studies62,63 (dashed lines are included as a
guide to the eye). If the confinement ratio is large (R ≥ 50),
an excellent agreement is found between our simulations of a
dense fluid and the bulk self-diffusion coefficients at the same
reduced density, with all deviations below 2.5%. Table I and
Fig. 2 represent the validation of the EDMD code, which was
developed in house, to accurately compute the self-diffusion
coefficient for both confined and bulk-like fluids.

The self-diffusivity results that are presented in the remain-
ing part of the paper are obtained using the Einstein relation.
This choice stems from its overall lower computational cost
over the Fickian approach, and also because of the conve-
nience of producing self-diffusivities independent on ly, as
shown in Table I. To provide a more comprehensive picture,
besides the self-diffusivities reported in Fig. 2, we also show
results for the rarefied end of reduced densities (lower η) in

Fig. 3. Note that η = 0.01 can be approximately considered
as the threshold between dense and dilute gas, since for lower
values of the reduced density the compressibility factor of the
fluid deviates from unity (ideal gas behaviour) less than 5%.
Self-diffusion coefficients are presented as a function of Kn in
Fig. 3(a), while the analysis is performed with respect to η in
Fig. 3(b).

As expected, self-diffusivities increase (decrease) with
Knudsen number (packing fraction) because particles have
more room to move freely before colliding with another en-
tity in the system. The Knudsen diffusion mechanism, where
Kn goes to infinity because of the zero density limit, is as-
sociated with the larger mobility for a given R. The lower
self-diffusivity threshold is related to larger reduced densities
through the molecular diffusion mechanism, where the fluid
enters the metastable regime after freezing at η = 0.49440.

B. Splitting fluid-fluid and fluid-wall collisions

Collisions are the main driving mechanism for diffusion,
and as such, making a distinction between fluid-fluid (molecu-
lar) and fluid-wall (Knudsen) collisions would give us a better
understanding of how these are influenced by rarefaction and
confinement. Particles are scattered isotropically when they
collide with other particles, which is in clear contrast to when
they collide with the wall, where particle re-emission occurs
towards the half-space occupied by the fluid.

Fig. 4 shows the different collision frequencies, defined
per unit molecule, between fluid-fluid (υFF ), fluid-wall (υFW )
and the total collisions (υFF +υFW ) measured directly from
our EDMD simulations in two slits of R = 2 and R = 100.
For smaller Knudsen numbers (Kn < 2), fluid-fluid collisions
dominate as expected. At Kn ∼ 2, we observe a crossover
point for both slits at which fluid-wall and fluid-fluid colli-
sions are similar. For larger Knudsen numbers (Kn> 2), fluid-
wall prevail with respect to intermolecular collisions. A high
confinement has a role in both increasing the number of col-
lisions (υFW and υFF ), which is attributed to dense effects
becoming more prominent, and in narrowing the difference
between υFW and υFF in the earlier Knudsen numbers, which
in this case is at least one order of magnitude, i.e. υFW be-
comes more important for small R.

The fluid-fluid collision frequency υFF can be estimated
from elementary arguments of kinetic theory of a dense gas as
the mean thermal speed v̄ over the mean free path λ

υFF =
v̄

λ
= 4σ2nχ

√

kT π

m
, (5)

while a different theoretical derivation is involved when eval-
uating the fluid-wall collision frequency υFW , where the char-
acteristic length is now the particle-centre accesible region h

υFW =
1
2

v̄

h
=

1
2

√

8kT

πm

1
h
. (6)

Eq. (5) for fluid-fluid collisions agrees very well with our
EDMD results, except for slight deviations at low Knudsen
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0.001 0.01 0.1 1 10 100 1000
Knudsen number, Kn

0.001

0.01

0.1

1

10

C
o
lli

s
io

n
 f
re

q
u
e
n
c
y
,
υ

[(
k
T

/m
)½

/σ
]

Fluid-fluid (EDMD)

Fluid-wall (EDMD)

Total (EDMD)

R = 100
R = 2

Fluid-fluid (Eq. 5)

Fluid-wall (Eq. 6)

FIG. 4: Fluid-fluid and fluid-wall collision frequencies with
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(blue).

numbers in the tighter channel (R = 2), which occur because
small density inhomogeneities are apparent in the middle of
the channel for ultra-tight confinements.

Fluid-wall interactions deviate significantly from Eq. (6) at
high fluid packing. This occurs because the ordering of fluid
density near the wall can be several times higher than the nom-
inal density, on which the theoretical equation has been de-
rived, which leads to an increase in the collision frequency
with the wall. For R = 100, this effect of fluid-wall collisions
due to layering is negligible on the total number of collisions,
as can be seen in Fig. 4, where υFF ≫ υFW .

These findings emphasise the importance of the transition
regime (0.1 < Kn < 10), in which there is an interplay of
both fluid-fluid and fluid-wall collisions impacting the self-
diffusivity, which are also influenced by ordering at low Kn

and high confinement, as can be seen in Fig. 4.
A more convenient parameter that we will use to distinguish
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FIG. 5: Ratio between fluid-fluid and total (fluid-fluid and
fluid-wall) collision frequencies with respect to Kn.

the interplay between the different collision frequencies is the
collision frequency ratio β , defined as:

β =
υFF

υFF +υFW

=
2

2+Kn
. (7)

A very good agreement was found between this theoretical
approximation and our EDMD results for channels with large
R, whereas, as shown in Fig. 5, Eq. (7) overpredicts the actual
β with increasing magnitude as R gets smaller. The largest
discrepancies are associated with the dense η limit, which
produces the lower Knudsen numbers according to Eq. (3).
As before, the underpinning reason of this discrepancy is that
Eq. (7) assumes that the fluid is homogeneous, which is not
the case for high confinements.
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C. A semi-analytical model for self-diffusivity

In this section, we derive a semi-analytical model that al-
lows us to predict the self-diffusivity results presented in
Fig. 3. The diffusion assessment will be based on the β val-
ues at different flow regimes which, by definition, must take
values in the range [0,1]. Small Knudsen numbers, i.e. the
continuum regime, are related to β close to unity because of
the predominant role of fluid-fluid interactions. On the other
hand, large Knudsen numbers in the free molecular regime
are associated with small β , which eventually tends to zero
when there are just collisions with walls in the ballistic limit.
Finally, the analysis for transitional Knudsen numbers con-
siders intermediate β values, accounting for both fluid-fluid
and fluid-wall collisions in varying degrees. In each case, we
identify the predominant physical mechanism and discuss the
appropriate analytical expressions for the self-diffusivity.

1. Continuum regime (large β)

For β close to unity, fluid-fluid collisions are the most pre-
dominant form of interaction, and the fluid approaches the
continuum regime. The classical description of molecular dif-
fusion in the bulk applies64, and the following semi-empirical
formula can be used to predict the molecular self-diffusivity
of a hard-sphere fluid39

Dm = DE

(

1+ c1η + c2η2 + c3η3) , (8)

where the fitting parameters are c1 = 0.0730, c2 = 11.6095,
and c3 = −26.9511, and DE is the first order approximation
of the self-diffusivity according to the Enskog kinetic theory
for dense fluids

DE =
σ

16ηχ

√

kT π

m
=

3RσKn

8

√

2kT π

m
. (9)

Note that this semi-empirical approximation accurately repro-
duces simulation results for β ≥ 0.9, i.e. Kn ≤ 0.1, showing
a maximum 5.7% relative error with respect to our EDMD
results when R ≥ 20, as emphasized by the dashed lines in
Fig. 6. In Eq. (8), the term within brackets is a correction fac-
tor that accounts for dense effects not captured by the Enskog
theory.

2. Free molecular regime (small β )

For β close to zero, fluid-wall collisions are the most pre-
dominant form of interaction, and the fluid accordingly ap-
proaches the free molecular regime. The first order kinetic
theory prediction of the Knudsen self-diffusivity in infinite
planar channels is given by65

Dk =

√

8kT

πm

Rσ

4

(

3
4
+ ln

Kn

γ

)

, (10)

where γ = eC = 1.781, with C being the Euler-Mascheroni
constant. In Fig. 6, the predictions given by Eq. (10) are the
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FIG. 6: Comparison between self-diffusivities from EDMD
simulations (solid circles) and Bosanquet predictions,

Eq. (11) (solid lines). Dashed lines represent the molecular
self-diffusivity approximation, Eq. (8), whereas dash-dotted
lines show the Knudsen self-diffusivity, Eq. (10). Inset: ratio
of predicted self-diffusion values over EDMD results. Same

colour scheme for symbols is used as that in Fig. 3.

dash-dotted lines. Note that Eq. (10) underpredicts the self-
diffusivity for Kn < 50, with deviations larger than 5%, be-
cause intermolecular collisions are not properly considered in
this range of Kn while still being relevant, i.e. this can be seen
by closer inspection of Fig. 5, where β ∼ 0.1.

It is worth noticing that the Knudsen self-diffusivity, as pre-
dicted by Eq. (10), scales linearly with the confinement ra-
tio R and shows a logarithmic divergence with respect to the
Knudsen number. This self-diffusivity singular behaviour can
be attributed to the slit geometry66. Indeed, when Kn goes
to infinity, there are a growing number of outlier molecules
with zero (or close to zero) x−velocity components (normal
to the walls) that do not suffer any collisions. Therefore, their
contribution to the MSD grows linearly in time and eventu-
ally causes the self-diffusion coefficient to grow without any
bound. The presence of this type of particle behaviour is also
responsible for the mass flux divergence of a flow driven by a
pressure gradient15.

3. Transition regime (intermediate β )

For intermediate β values, both fluid-fluid and fluid-wall
collisions are relevant and must be considered. This situa-
tion corresponds to the more challenging transition regime,
where self-diffusivities take a value in between the molecular
and Knudsen results. From Fig. 5, we can roughly estimate
that fluid-wall collisions can no longer be neglected at about
Kn ∼ 0.1, as they represent above 10% of the total number of
collisions.

The Bosanquet interpolating formula has been used in the
past to deal with bulk and rarefied gases45 inside cylindrical
capillaries or porous media. In this work, we find that the
Bosanquet formula is an acceptable model also for dense, con-
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fined fluids, and allows us to predict the self-diffusivity for
these intermediate β values

1
DB

=
1

Dm

+
1

Dk

. (11)

The rationale underlying the applicability of Eq. (11) is that
in the diffusion process, particles perform a random walk
composed of steps whose length follow the Poisson distribu-
tion, with mean equal to the particle collision frequency. In
the transition regime, both fluid-fluid and fluid-wall collisions
must be considered, and the corresponding collision frequen-
cies sum up because this constitutes the mean of the sum of
two independent Poisson distributions. As the self-diffusivity
is proportional to the reciprocal of the collision frequency,
Eq. (11) follows this tendency as well.

It is worth noticing that, by construction, the Bosanquet
formula agrees exactly with the molecular self-diffusivity in
the continuum regime, and with the Knudsen self-diffusivity
in the free molecular one. However, using Eq. (10) within
Eq. (11) leads to self-diffusivity predictions in poor agreement
with numerical results in the transition regime. This can be
explained by the fact that Knudsen self-diffusivities given by
Eq. (10) encompass two very different effects, namely the log-
arithmic divergence due to the slit geometry and the increas-
ing importance of fluid-wall collisions. In order to decouple
these two effects and quantify the contribution of fluid-wall
collisions (which is the only one that the Bosanquet formula
may capture), the Knudsen self-diffusivity has to be defined in
a different way, e.g. by phenomenologically extending the ex-
pression derived for a cylindrical capillary67 to a planar chan-
nel configuration

Dk =
Rσ

3

√

8kT

πm
a∗1. (12)

The factor a∗1 = 4/5π is a fitting parameter, which was tuned
to match the EDMD data within the early transition regime
to capture the initial deviations with respect to the contin-
uum values, and then leads to good predictions of the self-
diffusivities across 0 . Kn . 10 for most of the channel
heights considered in our study, when Eq. (12) is included
within Eq. (11), as it can be observed in Fig. 6 using solid
lines.

More specifically, Eq. (11) provides fairly good predictions
of the self-diffusivity except for tight confinement (i.e. R ≤
5), with a relative error below 10%. The deviations for small
confinement ratios R can be explained by the poor accuracy of
the Dm prediction, as given by Eq. (8). Indeed, the continuum
regime is never reached in tight channels because the Kn is
still remarkably larger than zero when the freezing reduced
density is reached.

D. Scaling of self-diffusivities with confinement

From visual inspection of Fig. 3(a), it seems that self-
diffusivities scale linearly with R, which would imply that
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FIG. 7: Scaling of all self-diffusivities by their R value, as a
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the free molecular approximation. Inset: non-linearity of
molecular self-diffusivities in the continuum regime39.

D/R ratios are equivalent at a given Knudsen number, inde-
pendently on the fluid rarefaction state and channel charac-
teristic length. The collapse of self-diffusivities, which had
already been suggested in previous studies42,43, may also be
inferred from Fig. 7, where we present the EDMD simulation
results divided by the confinement ratio at which the simula-
tions were performed. Despite the master curve (represent-
ing the scaled results for R ≥ 5) looks particularly good on a
log-log plot, it is needed to point out that the linear scaling of
self-diffusivities with confinement does not actually hold true.

The functional form of Eq. (10) reveals that the linear rela-
tionship between Dk and R exists in the free molecular regime,
but this is no longer the case in the continuum regime, where
fluid-fluid collisions drive the diffusion process. Indeed, the
Enskog self-diffusivity DE , Eq. (9), depends linearly on the
confinement ratio R, but the true molecular self-diffusivity
Dm, Eq. (8), includes a correction factor that varies with the
packing fraction η and, in turn, with the confinement ratio
for equal Kn (as emphasised in the inset of Fig. 7). More
specifically, at intermediate packing fractions (up to η ∼ 0.3),
the self-diffusivity is larger than the prediction from Eq. (9)
due to hydrodynamic enhancement consequences68, whereas
at higher reduced densities, the cage entrapment of particles
comes into play causing the actual self-diffusivity to drop38.
Since this property breaks down in the continuum regime, by
extension the linear scaling with R cannot be considered as
universal throughout the entire range of Kn.

It is worth noticing that the linear scaling assumption may
provide a rough estimate of the self-diffusivity, with devia-
tions within 3% as long as the packing fraction is low enough,
e.g. η . 0.05. Therefore, it is clear that this simplifying as-
sumption is especially inaccurate for small R, i.e. in shale gas
reservoir applications, where the continuum regime can only
be reached at a very large fluid density.
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E. Effect of TMAC on self-diffusivities

The wall roughness is anticipated to affect the self-
diffusivity, especially for small β values44. In the Maxwell
scattering kernel, the wall roughness is represented by
the accommodation coefficient, i.e. from ideal perfectly
smooth walls (TMAC = 0) to more realistic engineering
walls (TMAC = 1). Simulations are performed at different
TMACs = [0,0.05,0.125,0.25,0.5,0.75,1], and the resulting
self-diffusivities are reported in Fig. 8 as a function of Kn.
Results are presented for two different cases, which are repre-
sentative of loose (R = 100) and tight (R = 5) geometries.

When the fluid is loosely confined, diffusivity results for
various TMACs collapse in the continuum regime (Kn ≤ 0.1)
as expected, whereas this is not the case in the tightly confined
scenario. A close inspection of the results for continuum-
like Kn reveals an increase in self-diffusivity with decreas-
ing TMAC, which indicates that fluid-wall collisions remain
important for low R values in this regime, and cannot be ne-
glected. Note that when molecules are subjected to a specu-
lar reflection with the wall, there is no tangential momentum
transfer, and so this represents the zero friction limit where
the presence of walls is no longer felt by the fluid. Accord-
ingly, the upper limit of self-diffusivities is associated with
TMAC = 0.

As in Section III B, here we also derive a semi-analytical
formula for retrieving the self-diffusivities as a function of
TMAC. Although the Maxwell scattering kernel is used in this
study, one cannot expect to use the Smoluchowski prefactor69

to rescale the Knudsen self-diffusivity Dk defined through
Eq. (12). Indeed, the latter is just an ad hoc definition intro-
duced to permit one to capture the crossover between molecu-
lar and Knudsen self-diffusivity using the Bosanquet formula.

A phenomenological approach is used here for extending
the self-diffusivity predictions to the case of partial accommo-
dation coefficients. More specifically, numerical experiments

suggest that the following functional form for this prefactor is
more appropriate to scale the Knudsen self-diffusivity70

Dk =

(

1+ f
1−TMAC

TMAC

)

DTMAC=1
k , (13)

where f = 1.2261 is a fitting parameter and DTMAC=1
k is the

Knudsen diffusivity obtained for fully diffuse walls, as intro-
duced in Eq. (12).

In Fig. 8, we show that Eq. (13) provides an accurate es-
timate of the self-diffusivity of a fluid confined within walls
of different roughness, as a function of TMAC. For the loose
confinement cases, where Eq. (8) accurately reproduces the
diffusive dynamics in the continuum regime, the average rel-
ative error of the Bosanquet prediction is below 3.2% for the
different accommodation coefficients in our assessment. For
tighter geometries, where the influence of fluid-wall colli-
sions is more notorious, the transition between molecular and
Knudsen self-diffusivities is also successfully predicted at dif-
ferent TMAC values, when defining Dk as in Eq. (13).

It should be mentioned that Eq. (13) predicts an infinite
Knudsen self-diffusivity for fully specular walls, i.e. TMAC=
0. For this case, 1/DK = 0 and this term can be neglected
from Eq. (11), giving D = Dm for all Knudsen numbers and
confinement ratios. This prediction is represented by the black
solid lines in Fig. 8, showing the maximum self-diffusivity at
a given rarefaction state, i.e. bulk behaviour of the fluid with
no confinement influence.

IV. CONCLUSIONS

We have carried out a comprehensive and fundamental
study of the self-diffusion process for a hard-sphere fluid con-
fined between two parallel infinite walls, with data measured
from EDMD simulations. Three dimensionless groups were
adopted to characterise the self-diffusion process, namely the
Knudsen number, the confinement ratio and the reduced den-
sity. The tangential momentum accommodation coefficient
was used to define the roughness of the wall.

We found that the Bosanquet formula was able to provide
a very satisfactory prediction of the self-diffusivity from the
continuum to the early free molecular regime (Kn ≤ 10), be-
yond moderately low confinements (R > 5) and from smooth
to rough surfaces (all TMACs). Importantly, this work pro-
vides insights and predictions of self-diffusivity into the chal-
lenging transition regime, that was missing in the literature.
A splitting procedure of the colliding particles has identified
the interplay between the underpinning diffusive mechanisms,
namely molecular and Knudsen diffusion for dense, confined
fluids. Some deviations between the theory and the results for
extremely tight geometries (R ≤ 5) were observed, which can
be explained by the inability of the fluid to show a continuum
behaviour, i.e. fluid-wall collisions cannot be neglected even
at densities close to the fluid freezing point, that corresponds
to the smallest attainable Kn.

In summary, we can now predict self-diffusivity for dense
hard sphere fluids confined in two-dimensional slit geometries
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for any roughnesses, using equations (8), (9), (11), (12) and
(13) for 0 < Kn ≤ 10 and equation (10) for Kn > 10.

In the validation part of our study, we have analysed the
suitability of using the widely established Einstein relation
for describing the diffusion of strongly inhomogeneous flu-
ids. Despite molecules traverse regions with different local
densities, the MSD-based approach yields the same values as
the Fickian benchmark model, and therefore the Einstein self-
diffusivity is valid for predicting the diffusive flux even at the
molecular scale.

Finally, we have also assessed previous work on the scaling
of self-diffusivities with confinement. It was concluded that
this relationship can only be considered approximately linear
when the fluid is sufficiently rarefied (η ≤ 0.05) or whether it
is confined inside fully specular (frictionless) walls, none of
them being appropriate for shale gas flows.

This work lays the foundation to a more precise modelling
of dense, confined flows for engineering applications, where
there is an interplay between diffusive and advective pro-
cesses, and to build on this for more realistic surfaces.
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