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Abstract

Knowledge distillation introduced in the deep learning context is a method to
transfer knowledge from one architecture to another. In particular, when the
architectures are identical, this is called self-distillation. The idea is to feed in
predictions of the trained model as new target values for retraining (and iterate
this loop possibly a few times). It has been empirically observed that the self-
distilled model often achieves higher accuracy on held out data. Why this happens,
however, has been a mystery: the self-distillation dynamics does not receive any
new information about the task and solely evolves by looping over training. To
the best of our knowledge, there is no rigorous understanding of why this happens.
This work provides the first theoretical analysis of self-distillation. We focus on
fitting a nonlinear function to training data, where the model space is Hilbert space
and fitting is subject to {5 regularization in this function space. We show that self-
distillation iterations modify regularization by progressively limiting the number
of basis functions that can be used to represent the solution. This implies (as we
also verify empirically) that while a few rounds of self-distillation may reduce
over-fitting, further rounds may lead to under-fitting and thus worse performance.

1 Introduction

Knowledge Distillation. Knowledge distillation was introduced in the deep learning setting [13]
as a method for transferring knowledge from one architecture (teacher) to another (student), with
the student model often being smaller (see also [5] for earlier ideas). This is achieved by training
the student model using the output probability distribution of the teacher model in addition to
original labels. The student model benefits from this “dark knowledge” (extra information in soft
predictions) and often performs better than if it was trained on the actual labels. Various extensions
of this approach have been recently proposed, where instead of output predictions, the student
tries to match other statistics from the teacher model such as intermediate feature representations
[27], Jacobian matrices [31], distributions [15], Gram matrices [37]. Additional developments on
knowledge distillation include its extensions to Bayesian settings [17, 34], uncertainty preservation
33], reinforcement learning [14, 32, 9], online distillation [19], zero-shot learning [24], multi-step
knowledge distillation [23], tackling catastrophic forgetting [20], transfer of relational knowledge [25],
adversarial distillation [35]. Recently [26] analyzed why the student model is able to mimic teacher
model in knowledge distillation and [21] presented a statistical perspective on distillation.

Self-Distillation. The special case when the teacher and student architectures are identical is called
self-distillation. The idea is to feed in predictions of the trained model as new target values for
retraining (and iterate this loop possibly a few times). It has been consistently observed that the
self-distilled often achieves higher accuracy on held out data [8, 36, 2]. Why this happens, however,
has been a mystery: the self-distillation dynamics does not receive any new information about the
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task and solely evolves by looping over training. There have been some recent attempts to understand
the mysteries around distillation. [1 1] have empirically observed that the dark knowledge transferred
by the teacher is localized mainly in higher layers and does not affect early (feature extraction) layers
much. [8] interprets dark knowledge as importance weighting. [6] shows that early-stopping is
crucial for reaching dark-knowledge of self-distillation. [1] empirically studies how inductive biases
are transferred through distillation. Ideas similar to self-distillation have been used in areas besides
modern machine learning but with different names such diffusion and boosting in both the statistics
and image processing communities [22].

Contributions. Despite interesting developments, why distillation can improve generalization
remains elusive. To the best of our knowledge, there is no rigorous understanding of this phenomenon.
This work provides a theoretical analysis of self-distillation. While originally observed in deep
learning, we show that this is a more profound phenomenon that can occur even in classical
regression settings, where we fit a nonlinear function to training data with models belonging to a
Hilbert space and using ¢, regularization in this function space. In this setting we show that the
self-distillation iterations progressively limit the number of basis functions used to represent
the solution. This implies (as we also verify empirically) that while a few rounds of self-distillation
may reduce over-fitting, further rounds may lead to under-fitting and thus worse performance.
More precisely, we show that self-distillation results in a non-conventional power iteration where
the linear operation changes dynamically; each step depends intricately on the results of earlier
linear operations via a nonlinear recurrence. We also prove that using lower training error across
distillation steps generally improves the sparsity effect, and specifically we provide a closed
form bound on the sparsity level as the training error goes to zero. Finally, we discuss how our
regularization results can be translated into generalization bounds.

Organization. In Section 2 we setup a variational formulation of nonlinear regression and discuss the
existence of non-trivial solutions. Section 3 formalizes self-distillation in our setting. It then shows
self-distillation iterations at some point collapse the solution. It provides a lower bound on the number
of distillation rounds before the collapse is reached. In addition, it shows that coefficient of the basis
functions initially used to represent the solution gradually progressively become sparser. Finally,
we discuss that by having the models operate in the near-interpolation regime one can ultimately
achieve higher sparsity level. Section 5 draws connection between our setting and the NTK regime of
neural networks. This motivates subsequent experiments on deep neural networks in that section. Full
proofs for these as well as the code for reproducing examples in Sections 4 and results in Section 5
are available in the supplementary appendix.

2 Problem Setup

We first introduce some notation. We denote a set by A, a matrix by A, a vector by a, and a scalar
by a or A. The (i, j)’th component of a matrix is denoted by A[i, j] and the i’th component of a

vector by ali]. Also || . || refers to £ norm of a vector. We use £ to indicate equal by definition. A

linear operator L applied to a function f is shown by [L f], and when evaluated at point x by [L f](z).

For a positive definite matrix A, we use k to refer to its condition number k = %, where d’s

are eigenvalues of A. Consider a finite training set D = UX_, {(xy, yx)}, where ¢, € X C R4
and y; € )V C R. Consider a space of all admissible functions (as we define later in this section)
F : X — Y. The goal is to use this training data to find a function f* : X — ) that approximates
the underlying mapping from & to ). We assume the function space F is rich enough to contain
multiple functions that can fit finite training data. Thus, the presence of an adequate inductive bias
is essential to guide the training process towards solutions that generalize. We infuse such bias in
training via regularization. Specifically, we study regression problems of the form' below, where
R : F — Ris aregularization functional, and € > 0 is a desired loss tolerance.

1

fremgpn R st g () - ) <e. (M

'Our choice of setting up learning as a constrained optimization rather than unconstrained form
2 . - .
=30 (f(ze) —yx)” + cR(f) is motivated by the fact that we often have control over € as a user-specified
stopping criterion. In fact, in the era of overparameterized models, we can often fit training data to a desired
e-optimal loss value [38]. However, if we adopt the unconstrained setting, it is unclear what value of ¢ would
correspond to a particular stopping criterion.



We consider regularizers with the following type,

/ / u(z, ") f(x) f(x") de da 2)

with u being such that Vf € F; R(f) > 0 with equality only when f(x) = 0. Without loss of
generality, we assume w is symmetric u(:c x") = u(x', x). For a given u, the space F of admissible
functions are f’s for which the double integral in (2) is bounded The conditions we imposed on
R(f) implies that the operator L defined as [Lf] £ [, u(z, .)f(x) dz has an empty null space”.
The symmetry and non-negativity conditions together are called Mercer’s condition and u is called a
kernel Constructing R via kernel u can cover a wide range of regularization forms including the form

= [ > w; ([P f] (m))2 dx, where P; is some linear operator (e.g. a differential operator
to penahze non smooth functions as we will see in Section 4), and w; > 0 is some weight, for
j=1,...,J operators. Plugging R(f) into the objective functional leads to the variational problem,
1
= argmln/ / u(z, ") f(x)f(xdedz’ st 4 Z (f(wk) _ yk)2 <e. 3)
k
The Karush-Kuhn-Tucker (KKT) condition for this problem yields,
A
A in & t t
fA—arg'rfrél%K;(f( / / u(zx, ") f(x)f(z") de dx 4)
s.t. > ,‘K§: <e Ab?%:U()Ay” —€)=0. (5

2.1 Existence of Non-Trivial Solutions

Stack training labels into a vector,

A
Yiosr = o lvz] o yx]. (6)
It is obvious that when = ||y[|? < e, then f* has trivial solution f*(z) = 0, which we refer to this

case as collapse regime. In the sequel, we focus on the more interesting case of % lyl|? > e Itis
also easy to verify that collapsed solution is tied to A = 0,

lyl>>Ke < A>0. (7)

Thus by taking any A > 0 that satisfies % >, (5 (@x) — y;f)2 — € = 0, the following form f} is an
optimal solution to the problem (3),i.e. f* = f3.

f§=argrfrgg;\<zk:(f(wk)—yk)2 + [ [ u@eh@rehizat. ®)

2.2 Closed Form of f*

In this section we present a closed form expression for (8). Since we are considering A > 0, without
loss of generality, we can divide the objective function in (8) by A and let ¢ = 1/); obviously ¢ > 0.

= arggvneig Il(; (f (k) fyk)Q +c /X/Xu(:c,:cT)f(m)f(:cT)dmme. )

The variational problem (9) has appeared in machine learning context extensively [10]. It has a
known solution form, due to representer theorem [29], which we will present here in a proposi-
tion. However, we first need to introduce some definitions. Let g(x,t) be a function such that
[y w(@, xt) g(x',t) de’ = §(z — t), where §(x) is Dirac delta. Such g is called the Green’s

function® of the linear operator L, with L being [L f](x f o u(z, x!) f(x") dxt. Let the matrix
G ¢« k and the vector g, ;.. , be defined as,

A 1
g(wJ"wk) ) gw[k’} = *g(wvwk) . (10

GljH 2 = -

K

2This assumption simplifies the exposition. If the null space is non-empty, one can still utilize it using [10].
3We assume that the Green’s function exists and is continuous. Detailed treatment of existence conditions is
beyond the scope of this work and can be found in text books such as [7].



Figure 1: Schematic illustration of the self-distillation process for two iterations.

Proposition 1 The variational problem (9) has a solution of the form,
[ (x) = gu(cI +G)ly. (1D

Notice that the matrix G is positive definite*. Since by definition ¢ > 0, the inverse of the matrix
cI + G is well-defined. Also, because G is positive definite, it can be diagonalized as G = viDvV,
where the diagonal matrix D contains the eigenvalues of G, denoted as dy, . . ., dx that are strictly
greater than zero, and the matrix V' contains the corresponding eigenvectors.

2.3 Bounds on Multiplier c

Earlier we showed that any ¢ > 0 thatis aroot of & >, (f (@) —yx) ? _ ¢ = 0 produces an optimal
solution f* via (9). However, in the settings that we are interested in, we do not know the underlying
c or f* beforehand; we have to relate them the given training data instead. As we will see later in
Proposition 3, knowledge of c allows us to resolve the recurrence on y created by self-distillation
loop and obtain an explicit bound ||y|| at each distillation round. Unfortunately finding c in closed

form by seeking roots of % >k ( fi(zr) — yk) — € = 0 w.r.t. ¢ is impossible, due to the nonlinear
dependency of f on ¢ caused by matrix inversion; see (11). However, we can still provide bounds
on the value of c as shown in this section. Throughout the analysis, it is sometimes easier to work
with rotated labels V'y. Thus we define z 2 Vy. Note that any result on z can be easily converted
back via y = V' 2, as V is an orthogonal matrix. Trivially ||z|| = ||y||. Our first step is to present a

simplified form for the error term & >, (f*(zx) — yk)2 using the following proposition.
Proposition 2 The following identity holds + >, (f*(xy) — yk)2 = % plzn 552

We now proceed to bound the roots of h(c) £ &+ >, (2 — €. Since we are considering

('+d )
lly||> > K e, and thus by (7) ¢ > 0, it is easy to construct the following lower and upper bounds

onh hic) & % Y2k m=—)? — & h(c) & & Y. (2 =5—)* — e The roots of h and h,

max min

namely c; and ¢y, can be easily derived ¢; = l“i:‘r" FV = H:i\m v \/7 Since h(c) < h(c), the

condition h(c;) = 0 implies that ~(c;) > 0. Similarly, since h(z) < h(c), the condition h(cy) = 0
implies that h(ce) < 0. By the intermediate value theorem, due to continuity of f and the fact that

Iz|l = ly|]| > V K e (non-collapse condition), there is a point ¢ between ¢; and ¢z at which h(c) = 0,
dmin K dmax V K
VIEE oo GmaxVRE (12)

Izl =vKe [zl - VKe

3 Self-Distillation

(>

Denote the prediction vector over the training data x1,...zx as fr.

[f*(z1)] ... |f*(acK)]T = VTD(cI + D)"'Vy. Self-distillation treats this prediction
as target labels for a new round of training, and repeats this process as shown in Figure 1.
With abuse of notation, denote the ¢’th round of distillation by subscript t. We refer to the

*This property of G comes from the fact that u is a positive definite kernel (definite instead of semi-definite,
due to empty null space assumption on the operator L), thus so is its inverse (i.e. g). Since g is a kernel, its
associated Gram matrix is positive definite.



standard training (no self-distillation yet) by the step ¢ = 0. Thus the standard training step
has the form _fo = VT D(coI + D)~"'Vy,, where y, is the ground truth labels as defined in
(6). Letting y, = fo, we achieve the next model by applying the first round of self-distillation
f, =VTD(c,I+ D)"'Vy,. In general, for any ¢ > 1 we have the following recurrence,

Vt>1;y,=VTA_\Vy, |, , Yt>0; Ay £ D(I+D)7". (13)

Note that A, is also a diagonal matrix. Furthermore, since at the ¢’th distillation step, everything is
the same as the initial step except the training labels, we can use Proposition 1 to express f: () as,
fi@) = gglad +G) 'y, =gV DT (I_gA)Vyq - (14)

Observe that the only dynamic component in the expression of f;* is II¢_, A;. In the following, we
show how IT!_, A; evolves over time. Specifically, we show self-distillation progressively sparsifies
the matrix ITf_, A; at a provided rate. Also recall from Section 2.1 that in each step of self-distillation

we require ||y,|| > v Ke. If this condition breaks, the solution collapses to zero function and
subsequent rounds of self-distillation keep producing f*(x) = 0. In this section we present a lower

bound on number of iterations ¢ guaranteeing all intermediate problems satisfy ||y,|| > v K e.

3.1 Unfolding the Recurrence

Our goal here is to understand how ||y,|| evolves in . By combining the equations in (13) we
obtain y, = V' D(¢;_1I + D)~'Vy,_,. By multiplying both sides from the left by V' we get
Vy,=VVTD(¢; I+ D) 'Vy, ,, which is equivalent to,

zi=D(c; I+ D) ? 2z =D(c; 1T+ D)} Zi 1. (15)

1 1
Zi ] = ——
ot vVEKe VvVKe

Also we can use the bounds on ¢ from (12) at any arbitrary ¢ > 0 and thus write ,

Inln vV K € < drnax V K €
S S —
|2 tII—F [z = VK
By combining RHS of (15) and (16) we obtain a recurrence solely in z as shown below, where
dmin S (% S dmax~
oV Ke
|ze-1ll = VE e

We now establish a lower bound on the value of ||z¢]|.

Vt>0; ||z > VEKe = (16)

z, = D( I+D) 'z ;. (17)

Propositi0n3 Foranyt > 0, if ||zi|| > VKe for

1 =
VK eb(r ) (”) 1 , where a(x) = (o= 1)+ (2rg-1) (if)) tﬁi;g ) , b(z) &

—ot, then ||z > a'(k)||zoll —

ﬁ dmax

dmin

T6T
(rgf(iJra:)z » To
3.2 Guaranteed Number of Self-Distillation Rounds

By looking at the LHS of (15) it is not hard to see the value of ||z;|| is decreasing in t. That is because
¢’ as well as elements of the diagonal matrix D are strictly positive. Hence D(c;—1I + D)™!
shrinks the magnitude of z;_; in each iteration. Thus, starting from ||zg|| > V'K €, as || z¢|| decreases,
at some point it falls below the value v/K ¢ and thus the solution collapses. We now want to find
out after how many rounds ¢, the solution collapse happens. Finding the exact such ¢, is difficult,
but by setting a lower bound of ||z;|| to v/K € and solving that in ¢, calling the solution ¢, we can
guarantee realization of at least ¢ rounds where the value of ||z;|| remains above v/K . We can use
the lower bound we developed in Proposition 3 in order to find such ¢. This is shown in the following
proposition. Note that when we are in near-interpolation regime, i.e. ¢ — 0, the form of ¢ simplifies:

t@M
= kVKe'

Proposition 4 Starting from ||y, || > V K €, meaningful (non-collapsing solution) self-distillation is
possible at least for t rounds,

pa YEE (18)
K

>c; > 0 following from the assumption ||z¢|| > V'K € and (7).



3.3 Evolution of Basis

Recall from (14) that the learned function after ¢ rounds of self-distillation has the form f;(z) =

gtviD™! (ITt_,A;)V'y,. The only time-dependent part is thus the following diagonal matrix B;
defined in (19). In this section we show how B; evolves over time. Specifically, we claim that the
matrix B, becomes progressively sparser as ¢ increases.

B, 2T, A,. (19)

Theorem 5 Suppose ||y,| > VK eandt < Kuyi\/% — L. Then for any pair of diagonals of D,

K

namely d; and dy, with the condition that dy, > d;, the following inequality holds.

t
|

lwoll dipin
B, [k, k] < Viee 1t o0
B 1[5, j] — ‘\l/%_l+d37:n

The above theorem suggests that, as ¢ increases, the smaller elements of B;_; shrink faster and at
some point become negligible compared to larger ones. That is because in (20) we have assumed

dr > dj, and thus the r.h.s. expression in the parentheses is strictly greater than 1. The latter

implies that Bioalkik] g increasing in ¢. Observe that if one was able to push ¢ — oo, then only
Bi_1[j.j]

one entry of By (the one corresponding to d,,.x) would remains significant relative to others. Thus,
self-distillation process progressively sparsifies B,. This sparsification affects the expressiveness of
the regression solution f;*(x). To see that, use the definition of f;*(x) from (14) to express it in the
form (21), where we gave a name to the rotated and scaled basis p,, 2 D'V g_, and rotated vector
2o = Vy,. The solution f; is essentially represented by a weighted sum of the basis functions (the
components of p,,). Thus, the number of significant diagonal entries of B; determines the effective
number of basis functions used to represent the solution.

fi(x) = gtV D' B,Vy, =plB,z. 21

3.4 Self-Distillation versus Early Stopping

Broadly speaking, early stopping can be interpreted as any procedure that cuts convergence short of
the optimal solution. Examples include reducing the number of iterations of the numerical optimizer
(e.g. SGD), or increasing the loss tolerance threshold e. The former is not applicable to our setting, as
our analysis is independent of function parametrization and its numerical optimization. We consider
the second definition. This form of early stopping also has a regularization effect; by increasing e
in (1) the feasible set expands and thus it is possible to find functions with lower R(f). However,
we show here that the induced regularization is not equivalent to that of self-distillation. In fact,
one can say that early-stopping does the opposite of sparsification, as we show below. The learned
function via loss-based early stopping in our notation can be expressed as f; (single training, no
self-distillation) with a larger error tolerance e,

fi(x) = pLBozo = pLD(col + D) 'z. (22)

The effect of larger € on the value of cg is shown in (12). However, since cj is just a scalar value applied
to matrices, it does not provide any lever to increase the sparsity of D. We now elaborate on the latter
claim a bit more. Observe that, on the one hand, when ¢y is large, then D(coI + D)—1 ~ éD,
which essentially uses D and does not sparsify it further. On the other hand, if ¢y is small then
D(coI + D)~ ! = I, which is the densest possible diagonal matrix. Thus, at best, early stopping

maintains the original sparsity pattern of D and otherwise makes it even denser.

3.5 Advantage of Near Interpolation Regime

As discussed in Section (3.3), one can think of %[[’;’f]] as a sparsity measure (the larger, the
sparser). Thus, we define a sparsity index based on the lower bound we developed for %1%[[1;’?]] in



Proposition 5. In fact, by finding the lowest value of the bound across elements all elements satisfying
dy > d; and further assuming d; < dy < --- < dg, we can ensure at least the sparsity level of,

t

llyoll — 1+ dmin
R R S 23)
c€{1,2,..., —1 _ 1_|_ min
VKe k+1

One may wonder what is the highest sparsity S that self-distillation can attain. Since |yq| > VK e
and dy41 > dg, the term inside parentheses in (23) is strictly greater than 1 and thus S increases
in t. However, the largest ¢ we can guarantee before a solution collapse (see Proposition 4) is

t= K”yi\/% — % By plugging this ¢ into the definition of .S (23) we eliminate ¢ and obtain the largest

sparisity index as shown in (24). In the next theorem, we show Sg, , always improves as € gets
smaller. Thus, if high sparsity is desired, one can set € as small as possible. One should however note
that the value of e cannot be identically zero, i.e. exact interpolation regime, because then f, = y,,
and since y; = f ), self-distillation process keeps producing the same model in each round.

lwoll 1
llyoll — 1 + Hmin wVKe ®
R N ey - 24)
- LK — oll min
E{ 345 } o c 1+ e
Theorem 6 Suppose ||y,| > VK e. Then the sparsity index Sp, , (where t = Mol 1 ¢

rVEKe K
number of guaranteed self-distillation steps before solution collapse) decreases in €, i.e. lower
€ yields higher sparsity. Furthermore at the limit € — 0, the sparsity index lime_,0 S, , =
Dt minge2,.. k-13 (G —72)
e~ 2 de  dpg1’,

3.6 Multiclass Extension

We can formulate multiclass classification, by regressing to a one-hot encoding. Specifically,
a problem with ) classes can be modeled by ) output functions fi,..., fo. An easy exten-
sion of our analysis to this multiclass setting is to require the functions fi, ..., fo be smooth
by applying the same regularization R to each and then adding up these regularization terms.
This way, the optimal function for each output unit can be solved for each ¢ = 1,...,Q as

fq = argming, e % > op(folzr) — qu)2 + cq R(fq)-
3.7 Generalization Bounds

Our result can be easily translated into generalization guarantees. Recall from (14) that the regression
solution after ¢ rounds of self-distillation has the form f;(x) = gLV D (II'_,A;)Vy,. We
can show that (proof in Appendix B), there exists a positive definite kernel g (., .) that performing
standard kernel ridge regression with it over the same training data UX_, {(xk,yx)} yields the
function fT such that fT = f7. Furthermore, we can show that the spectrum of the Gram matrix
lell [j, k] = % g'(x;, x)) in the latter kernel regression problem relates to spectrum of G via,

1

A=y
k OT_ (dr+e:) 1
dt+1 -
k

(25)

The identity (25) enables us to leverage existing generalization bounds for standard kernel ridge regres-
sion. These results often only need the spectrum of the Gram matrix. For example, Lemma 22 in [4]

shows the Rademacher complexity of the kernel class is proportional to \/ tr(GT) = \/ Zszl d£ and
then Theorem 8 of [4] translates that Rademacher complexity into a generalization bound. Note that

t .
% increases in ¢, which implies dL and consequently \/tr(GT) decreases in .

A more refined bound in terms of the tail behavior of the eigenvalues d,t (to better exploit the sparsity
pattern) is the Corollary 6.7 of [3] which provides a generalization bound that is affine in the form
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Figure 2: (a,b,c) Example with R(f fo ( dLQ ) dx. (a) Green’s function associated
with the kernel of R. (b) Noisy tralmng samples (blue dots) from underlying function (orange)
y = sin(27x). Fitting without regularization leads to overfitting (blue curve). (c) Four rounds
of self-distillation (blue, orange, green, red) with e = 0.04. (d) Evolution of diagonal entries of
(diagonal matrix) By from (19) at distillation rounds ¢ = 0 (left most) to ¢ = 3 (right most). The
number of training points is K = 11, so B; which is K x K diagonal matrix has 11 entries on its
diagonal, each corresponding to one of the bars in the chart.

minge(o,1,...,K} ( + 4/ 2 e Z] k1 ]>, where the eigenvalues dz fork =1,..., K, are sorted

in non-increasing order .

4 Illustrative Example

Let F be the space of twice differentiable functions that map [0, 1] to R as F 2{f|f:[0,1] = R}.
Define the linear operator P : F — F as [Pf](z) = j—:g f(x) subject to boundary conditions
f (0) f (1) = £”(0) = (1) = 0. The associated regularization functional becomes R(f) =

fo ( er )2 dz. Observe that this regularizer encourages smoother f by penalizing the second
order derlvatlve of the function. The Green’s function of the operator associated with the kernel of
R subject to the listed boundary conditions is a spline g(z, 2") = § max ((z — 27)3,0) — t2(1 —

1) (2% — 22T + ot? ) [28] (see Figure 2-a). Now consider training points (z, y) sampled from
the function y = sin(27x). Let xj, be evenly spaced in the interval [0, 1] with steps of 0.1, and
Yr = X + 1 where 7 is a zero-mean normal random variable with o = 0.5 (Figure 2-b). As shown
in Figure 2-c, the regularization induced by self-distillation initially improves the quality of the fit,
but after that point additional rounds of self-distillation over-regularize and lead to underfitting. We
also computed the diagonal matrix By (see (19) for definition) at each self-distillation round ¢, for
t =0,...,3 (after that, the solution collapses). Recall from (21) that the entries of this matrix can be
thought of as the coefficients of basis functions used to represent the solution. As predicted by our
analysis, self-distillation regularizes the solution by sparsifying these coefficients. This is evident in
Figure 2-b where smaller coefficients shrink faster.

S Experiments

In our experiments, we aim to empirically evaluate our theoretical analysis in the setting of deep
networks. Although our theoretical results apply to Hilbert space rather than deep neural networks,
recent findings show that at least very wide neural networks (NTK Regime) can be viewed as a
reproducing kernel Hilbert space [16].

We adopt a clear and simple setup that is easy to reproduce (see the provided code) and also light-
weight enough to run more then 10 rounds of self-distillation. Readers interested in stronger baselines
are referred to [8, 36, 2]. However, these works are limited to one or two rounds of self-distillation.
The ability to run self-distillation for a larger number of rounds allows us to demonstrate the eventual
decline of the test performance. To the best of our knowledge, this is the first time that the performance
decline regime is observed. The initial improvement and later continuous decline is consistent with
our theory, which shows rounds of self-distillation continuously amplify the regularization effect.
While initially this may benefit generalization, at some point the excessive regularization leads to
under-fitting.

We use Resnet [12] and VGG [30] neural architectures and train them on CIFAR-10 and CIFAR-100
datasets [18]. Training details and additional results are left to the appendix. Each curve in the plots
corresponds to 10 runs from randomly initialized weights, where each run is a chain of self-distillation
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Figure 3: (Top/Bottom): Accuracy of self-distillation steps using Resnet with ¢5/cross-entropy loss.
(Left Two Plots / Right Two Plots) test and train accuracy on CIFAR-10/CIFAR-100.

steps indicated in the x-axis. In the plots, a point represents the average and the envelope around it
reflects standard deviation. Any training accuracy reported here is based on assessing the model f; at
the ¢’th self-distillation round on the original training labels y,. WE first train the neural network
using {5 loss. The error is defined as the difference between predictions (softmax over the logits) and
the target labels. These results are in concordance with a regularization viewpoint of self-distillation.
The theory suggests that self-distillation progressively amplifies the underlying regularization effect.
As such, we expect the training accuracy (over ¥y,) to drop in each self-distillation round. Test
accuracy may go up if training can benefit from amplified regularization. However, from the theory
we expect the test accuracy to go down at some point due to over regularization and thus underfitting.
Both of these phenomena are observed in four left plots Figure 3. Although, our theory only applies
to /o, loss, we empirically observed similar phenomena for cross entropy as shown in four right
plots in Figure 3. We have included additional plots in the appendix showing the performance of
{5 distillation on CIFAR-100 using VGG network (hence concluding that the theory and empirical
findings are not dependent to a specific structure and apply to architectures beyond Resnet). In the
appendix we have also shown that self-distillation and early-stopping have different regularization
effects.

6 Conclusion

In this work, we presented a rigorous analysis of self-distillation for ridge regression in a Hilbert space
of functions. We showed that self-distillation iterations in the setting we studied cannot continue
indefinitely; at some point the solution collapses to zero. We provided a lower bound on the number
of meaningful (non-collapsed) distillation iterations. In addition, we proved that self-distillation acts
as a regularizer that progressively employs fewer basis functions for representing the solution. We
discussed the difference in regularization effect induced by self-distillation against early stopping.
We also showed that operating in near-interpolation regime facilitates the regularization effect. We
discussed how our regression setting resembles the NTK view of wide neural networks, and thus may
provide some insight into how self-distillation works in deep learning. We hope that our work can be
used as a stepping stone to broader settings. In particular, studying cross-entropy loss as well as other
forms of regularization are interesting directions for further research.

Broader Impact

We believe that this paper is categorized as fundamental and theoretical research and is not targeted to any
specific application area. The insights and theory developed here may inspire novel algorithms and more
investigations in knowledge distillation and more generally in neural network regularization and generalization.
Consequently this may lead to better training algorithms with lower training time, computational cost, or energy
consumption. The research presented here can be used for many different application areas and a particular use
may have both positive or negative implications. Though, we are not aware of any immediate short term negative
impact of this research.
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