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Abstract
Challenges for self-driving database systems, which tune their physical design and 
configuration autonomously, are manifold: Such systems have to anticipate future 
workloads, find robust configurations efficiently, and incorporate knowledge gained 
by previous actions into later decisions. We present a component-based framework 
for self-driving database systems that enables database integration and development 
of self-managing functionality with low overhead by relying on separation of con-
cerns. By keeping the components of the framework reusable and exchangeable, 
experiments are simplified, which promotes further research in that area. Moreover, 
to optimize multiple mutually dependent features, e.g., index selection and com-
pression configurations, we propose a linear programming (LP) based algorithm to 
derive an efficient tuning order automatically. Afterwards, we demonstrate the appli-
cability and scalability of our approach with reproducible examples.

Keywords Database systems · Self-driving · Recursive tuning · Workload 
prediction · Robustness

1  Self‑driving database systems

The topic of database systems that change their configuration autonomously came 
to recent popularity in academia  [19, 23, 31] and industry  [10, 30]. According to 
Chaudhuri and Weikum [5], the costs for database personnel are a major factor in the 
TCO of database systems. These costs can be further increased by a higher complex-
ity of configuration and tuning tasks which is caused, e.g., by non-stable workloads 
that change over time, a lack of domain knowledge and application context [10] in 
cloud environments, and more available dependent configuration options [39].
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Therefore, systems that are capable of autonomously adjusting their configura-
tion could save costs and lead to more efficient configurations. However, such sys-
tems face a multitude of challenges, e.g., finding efficient solutions for configuration 
problems in a scalable fashion [39], predicting future workloads [23], and learning 
from past self-management decisions.

The topic also offers interesting questions from a database system integration and 
architecture perspective since systems were usually not designed with such capa-
bilities in mind. We conducted interviews with industry database architects. These 
showed that low overhead, a maximum of 1% of additional runtime introduced by 
such capabilities, and minimally invasive changes to the architecture are mandatory. 
However, most of the work in this area mainly focuses on single aspects while holis-
tic approaches remain unexplored.

Contribution This paper is an extended version of [18]. The main contributions 
of [18] are the following. We present the concept of a component-based framework 
for self-driving database systems, which divides the significant challenge of incor-
porating self-management capabilities into manageable subproblems (separation of 
concerns). These subproblems are handled by clearly specified functions and inter-
faces. Thus, our framework simplifies experimentation and development of self-
management techniques by offering reusable and exchangeable components. Fur-
ther, we propose a linear programming (LP) model to tune multiple features in an 
optimized recursive order.

Compared to  [18], in this paper, we present additional explanations and make 
the following contributions: First, we discuss different concepts of workload model-
ling (Sect. 2). Second, we explain robust tuning concepts in more detail (Sect. 3.9). 
Third, we revised and extended the description of our LP-based tuning approach. In 
addition, we also added an evaluation of the approach mentioned above with repro-
ducible examples (Sect. 4).

This paper is organized as follows. In Sect. 2, we review related work in this area. 
Section 3 discusses the integration and design decisions on the basis of the ongo-
ing integration into our research DBMS Hyrise  [13]. Ideas on workload anticipa-
tion to allow robust optimizations are given in Sects. 3.8, 3.9, and 3.10. Besides, we 
explain our strategy of how to optimize multiple dependent features, for example, 
the selection of indexes, compression schemes, and clustering. (Sect. 4). Ideas for 
future work and final conclusions are given in Sects. 5 and 6.

2  Related work

The field of database systems that autonomously adjust their configuration regained 
popularity. In contrast to earlier solutions for commercial database systems (e.g., [4, 
8, 38, 42]), our work takes a holistic approach to the problem proposing a frame-
work to facilitate development and database integration.

Pavlo et  al.  [31] describe their vision of a self-driving database that autono-
mously adjusts the configuration of multiple features. Further, they discuss the inte-
gration and architecture of such a system in their database Peloton. In their work, the 
authors sketch the system’s architecture on a higher level and do not discuss the joint 
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optimization of multiple arbitrary features. In this work, we focus on the challenge 
of creating a self-driving DBMS from a system’s perspective (i) by dividing prob-
lems into smaller subproblems and by (ii) giving a more detailed specification of 
the components that handle these subproblems. Thereby, contrary to aforementioned 
work, also challenges from a software engineering and development point of view 
are considered.

As a third contribution, we present an approach to efficiently combine the tuning 
of multiple features which goes beyond the idea of Zilio et al. [42]. In their work, 
four features (indexes, partitioning, multi dimensional clustering, and materialized 
query tables) are considered for tuning and the dependencies are defined manually. 
We argue that dependencies are challenging to be manually determined with volatile 
workloads, varying hardware and an increasing number of features to tune. In addi-
tion, the joint optimization of dependent features is unfeasible because their number 
is, in general, prohibitively large. We also consider more dimensions to determine 
dependencies automatically and we do not limit the number of physical design fea-
tures to tune.

In the remainder of this section, we highlight related work from several areas that 
are vital to self-driving database systems.

2.1  (Learning) cost models & benefit estimation

Many tuning techniques rely on cost estimations of single queries or complete work-
loads to estimate the benefit of certain potential configurations. For example, what-if 
based index selection [4] approaches rely on optimizer cost models. However, recent 
work of Ding et al. [12] shows that cost estimates for the same query given different 
plans that reflect different index configurations are often wrong to an extent where 
a predicted improvement in execution time turned out to be a performance impedi-
ment in reality. The authors could improve on that by utilizing machine learning and 
formulating the aforementioned problem of determining the better plan as a classi-
fication task. The authors’ findings demonstrate that learning-based approaches are 
viable to improve the quality of benefit estimations.

In recent years, a couple of machine learning-based approaches for cost estima-
tion have been published. These rely on different model types, e.g., gradient boosting 
regressors [21], support vector machines [1], or neural networks [17, 24, 35]. Mar-
cus et al.  [24] present a deep learning approach for query performance prediction. 
The architecture of their plan-structured neural networks represents the structure 
of the input query plan whose execution time should be predicted. Their approach 
offers particularly high prediction accuracies without relying on manually-selected 
input features which is of special interest for self-managing database systems.

2.2  Workload modeling and prediction

Even though self-managing database systems base their decisions typically on work-
load predictions, there is no common understanding of how to represent best what 
a database is processing, i.e., a workload. A detailed discussion and comparison 
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would go beyond the scope of this paper, but we want to briefly highlight the differ-
ent alternatives to justify our solution for workload representation.

In [39] the authors see two orthogonal approaches to capture a workload: (i) On 
runtime level where system performance KPIs, e.g., the CPU utilization, the number 
of pages read, or the currently open transactions characterize a workload. Alterna-
tively, (ii) on a logical level where the received queries and a representation of the 
stored data capture the processed workload. Since a self-driving database system is 
also optimizing its physical design for a particular (predicted) workload, a workload 
representation must model on which data the system operates as well as in which 
way and how often the data is accessed. Thus, we see it as insufficient to model the 
runtime behavior and decided to base tuning decisions on a logical workload rep-
resentation. However, runtime level information (Sect. 3.1) is helpful to assess the 
effect of previous decisions.

Logical workload representations can be created with different granularities. (i) 
The system could store the queries exactly as they are received, as SQL trace [9]. 
These SQL strings contain information about the accessed relations and attributes. 
However, since SQL is a declarative language, they lack certain details, e.g., regard-
ing the access paths. (ii) Alternatively, the workload can be captured on a query plan 
level: these represent more precisely how the data is accessed, which is a valuable 
input for optimization algorithms.

In addition, the points in time when a specific query was executed have to be 
stored to preserve effects like seasonality and concurrency.

Furthermore, there is some work on how to specifically represent, model, and 
store workloads. Besides describing primitives to summarize workloads, Chaud-
huri et al. [7] present a schema to summarize SQL workloads. This schema contains 
information of three categories per statement: (i) syntactic and structural, e.g., (the 
statement type and SQL string), (ii) plan information, for example, the estimated 
cost and number of join conditions, and (iii) execution information, for instance, the 
recorded IO time and memory consumption.

Tran et al. [37] propose a Markov-based approach, which is implemented in the 
Oracle Database, and that is capable of creating workload models which only rep-
resent the workload’s main characteristics. Thereby, they avoid over-fitting of their 
models in order to increase the potential for generalization.

Martin et al. [26] categorize workload models into two different types: (i) explor-
atory models [14] that are used for analysis and tuning tasks. The authors build such 
models, for example, by clustering the workload’s queries along dimensions as I/O 
utilization or CPU time consumption. (ii) Confirmatory workload models indicate 
whether certain conditions regarding the system or its performance are met. An 
example for this model type could be the classification of a workload into analyt-
ical (OLAP) or transactional (OLTP) based on, e.g., the ratio of queries vs data-
modifying statements, the throughput, the number of selected rows, and many more 
metrics.

In addition to above’s solutions for representing a workload, Ma et al. [23] pre-
sent a forecasting framework called QueryBot 5000 that is capable of predicting 
arrival rates of queries from historical observations. Their work also builds on a 
logical workload representation instead of a physical resource-based one. On a high 
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level, their approach focuses on a three-step approach: in the beginning, SQL query 
strings are preprocessed, constants are removed, and the formatting is normalized. 
Afterwards, the queries are clustered to reduce the total number of query templates, 
thereby making the approach feasible for a large number of templates. Lastly, the 
actual forecasting is applied. The authors evaluate forecasting techniques of varying 
complexity, e.g., linear regressions and recurrent neural networks.

2.3  Robust tuning approaches

Approaches for tuning problems in self-managing database systems usually assume 
that they operate on accurate and reliable input values. For example, in the literature, 
most index selection algorithms are designed to find the best index configuration for 
a specific workload while variation and uncertainty considerations of this workload 
are neglected.

However, it is difficult to perfectly predict, e.g., future workloads since database 
systems are often subject to unforeseeable events. Therefore, robustness is necessary 
to enable the application of self-managing approaches in practice [41]. This was also 
confirmed during the aforementioned interviews with industry database architects.

There are some approaches that specifically incorporate robustness. Boissier 
et  al.  [3] determine compression selections base on the system’s workload with a 
focus on robust configurations. The authors take measures to limit the impact of 
high-frequency queries in order to anticipate potential workload shifts and mitigate 
the effects of long-running queries.

Tan and Babu [36] demonstrate a robust self-tuning approach for resource man-
agement in multi-tenant parallel database systems. The authors note that robust-
ness is achieved by continuously monitoring quantitative metrics and reverting new 
system configurations in case the mentioned metrics do not dominate previously 
recorded ones.

Mozafari et  al.  [29] present a different approach called Cliffguard, which does 
not focus on tuning a single feature in a robust fashion. They describe a generic 
framework that employs robust optimization (RO) concepts [2]. Thereby, they add 
robustness to existing approaches independently of the concrete implementation or 
underlying database system. Robustness is discussed in more detail in Sect. 3.9.

3  Framework architecture

We present the architecture of our framework for self-managing database systems 
and the reasoning that influenced its design. The framework recursively divides 
common challenges in the context of self-managing database systems into smaller 
subproblems that are handled by exchangeable components. Thereby, we achieve 
a clear separation of concerns which simplifies the development of such systems. 
Also, the framework offers interfaces to access data that is provided by common 
database entities, e.g., cost models and the query plan cache. We detail the involved 
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components and their interfaces in the following subsections after giving a short 
general overview of the architecture.

3.1  Overview

A diagram of the proposed framework and an integration into the database system 
Hyrise is depicted in Fig. 1. We decided to divide the system into components, each 
handling smaller sub-problems for a couple of reasons. First, we recognized that 
when tuning different features often similar or related subproblems are solved. By 
making components reusable and shareable, we avoid redundancy, cf. Sect. 3.10 for 
more details. Second, by relying on components with clearly specified interfaces, we 
simplify the development and experiments of new approaches since components are 
exchangeable without effort.

The driver is the central entity encapsulating all the other components that 
are responsible for adding self-management capabilities. It consists of three key 
components:

– Workload predictor The effect of a particular database configuration largely 
depends on the executed workload. Therefore, a component is required that pre-
dicts the upcoming workload based on historical workload data. In this context, 
the workload predictor is detailed in Sect. 3.8.

– Tuner Based on these predictions, the tuner employs a multi-step process to cal-
culate a selection for a certain feature. Section 3.10 contains further information 
regarding the tuner.

– Organizer The organizer is orchestrating the whole self-managing processes. It 
is responsible for starting and stopping tunings during database runtime, enforc-
ing constraints and assessing runtime KPIs; for more details see Sect. 3.11. Fur-
ther, it determines in which order features should be tuned (Sect. 4).

Furthermore, the driver is the interface for accessing other database or system 
components that serve as external inputs. The aforementioned components loosely 
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resemble the MAPE (monitor, analyze, plan, execute) cycle [16] of autonomic sys-
tems. A direct one-to-one mapping of the cycle’s tasks to our components is not pos-
sible since tasks like monitoring are fulfilled by multiple components, the organizer 
and workload predictor. We describe these inputs in the following paragraphs.

3.2  Query plan cache

Most relational database systems, e.g., SAP HANA  [33] and Microsoft SQL 
Server [27] employ query plan caches. These have typically two purposes: the sup-
port of prepared statements and caching of optimized query plans to avoid repeated 
re-optimizations. We take advantage of the second aspect because information about 
past workload is necessary for workload-driven optimizations. In addition to query 
plans, information such as the execution time and the number of executions of the 
queries is stored and used by the workload predictor to generate forecasts of future 
workloads.

3.3  Configurations

The configuration of a DBMS is the combination of all of its configurable entities. 
These are categorized into features regarding the physical database design, the knob 
configuration of the database, or hardware resources that are available to the system. 
The selection of indexes, a partitioning scheme, or data placement are examples for 
physical design features while the buffer pool size or the number of available threads 
are typical examples for knobs. A particular configuration is called configuration 
instance. When the configuration is adjusted, former configuration instances are 
stored. This storing is central to establish a feedback loop for past decisions by ena-
bling the assessment of the impact of past tuning decisions.

3.4  Constraints

Constraints are DBMS-related or result from the available hardware resources. 
Examples for the first case are user-defined service level agreements (SLAs) or limi-
tations of the memory utilized for indexes. Other entities, as management software 
in cloud scenarios or applications itself, could also set these constraints. Further, 
hardware resource constraints limit the available options during the tuning process 
from a physical perspective. A configuration instance that requires more memory 
than actually available on the system should not be considered. Both types of con-
straints could conflict. In such cases, available hardware resources overwrite exter-
nally specified ones.

3.5  Cost estimators

Cost estimation is a crucial part of self-managing database systems. To determine 
efficient configurations, different options must be compared. Therefore, cost estima-
tion must be involved at every stage of the tuning process. It is required to quantify 
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the impact of all decisions the system may take. To also make these decisions and 
actions of the system comparable across different features, cost must be estimated 
in the same unit, for instance, runtime. The cost of adjusting the configuration, for 
example, the utilized CPU time for indexing a number of attributes must be as quan-
tifiable as the processing of a workload given a set of indexes. For example, the 
computation cost of a query given a particular index (cf. what-if optimization  [4, 
12]) must be determinable to enable the proposed workload-driven approach.

Simple logical cost models are not capable of representing the interplay of, e.g., 
data types, encodings, and coprocessors in their cost estimations. We argue that 
hardware-dependent and possibly adaptive cost models are necessary to ensure a 
maximum of precision of cost predictions which, in turn, enable well-suited data-
base configurations. There are a couple of existing approaches where cost models 
are created by learning from observed query execution costs, see Sect. 2.1.

3.6  Runtime KPIs

We classify runtime KPIs as DBMS or system specific. Examples for typical DBMS 
KPIs are query response times or the number of aborted transactions. On the other 
hand, system KPIs are mostly comprised of hardware metrics: CPU utilization, 
memory usage, or cache misses. The use cases of runtime KPIs are manifold. First, 
they are necessary for determining the impact of adjusted configurations, e.g., how 
did a certain index decision influence the average query response time? Second, 
runtime KPIs disclose when the configuration should be adjusted. For example, 
when SLAs are constantly violated or performance peaks are detected. Furthermore, 
these KPIs help to identify phases of low resource utilization that are used to run 
resource-intensive tunings. Therefore, these are used by the organizer to identify 
favorable points in time for tuning runs.

3.7  Implementation strategies

Our proposed architecture is currently under implementation in our research data-
base system Hyrise1, which is categorized as a relational in-memory database sys-
tem and tables are stored in column-major format. Every table is implicitly parti-
tioned into chunks of a certain size. Decisions about, e.g., compression, indexes, or 
data distribution in NUMA systems are all taken on a per-chunk instead of a per-
table basis. This chunking increases the flexibility in the context of self-managing 
database systems since decisions are possible for fractions of the data of an attribute. 
For example, the system decides to create indexes only on the frequently accessed 
and most beneficial chunks to save memory. This approach is especially useful for 
skewed data which is often found in real-world systems [40]. Further, applying new 
configurations to a whole table is a heavyweight operation. Applying these itera-
tively to chunks reduces the cost of these operations.

1 Source Code available at: https ://githu b.com/hyris e/hyris e

https://github.com/hyrise/hyrise
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We see two strategies for implementing self-driving capabilities: as a standalone 
application outside of the DBMS or as component of the database core  [32]. For 
the first option, a standalone application running outside the database system, the 
DBMS itself has to provide interfaces to adjust the configuration from outside, 
access KPIs and other entities which are usually not publicly accessible, e.g., the 
cost estimators. Providing these interfaces would induce additional development 
efforts while also introducing overhead by further layers of indirection.

On the other hand, the database core functionality could be extended by integrat-
ing self-management with the database source code. This extension introduces tight 
coupling between the self-management system and the database core which would, 
in turn, complicate the development process because every developer has to be 
aware of and understand the self-managing system. The proposed framework works 
with both implementation strategies as long as the interfaces to the necessary data 
are provided.

We decided to implement self-driving capabilities with the plugin infrastructure2 
of Hyrise. Thereby, we combine the strengths of the aforementioned approaches. The 
plugin interfaces offer direct access to database core methods without implemen-
tation or performance overhead. In addition, it avoids tight coupling of the devel-
opment of database core and self-management functionality. Plugins are dynamic 
libraries which are loaded during database runtime. The development of plugins is 
identical to the development of the database core, but plugin code is not compiled 
with the database system itself. Thus, the database system remains independent.

3.8  Workload predictor

The workload predictor is responsible for creating forecasts about future workloads. 
Such predictions are indispensable for self-managing database systems. The config-
urations itself (determined by the tuner) as well as the points in time when the pro-
cess of deciding on configurations should be triggered (by the Organizer) are based 
on these predictions. Robust predictions (see Sect. 3.9) support the system in being 
less sensitive to irregular workload patterns, as seen, e.g., during crises or hypes, 
and seasonal effects like quarter ending calculations or payroll processing. In this 
work, we do not present a new technique for workload prediction but describe the 
functioning and interfaces with other components of our framework.

3.8.1  Workload analyzer

As a first step, the workload predictor accesses information about past workloads 
from the query plan cache (cf. Sect. 3.1). The information contains which queries 
were executed and their execution count and cost. By relying on the query plan 

2 Example plugin available at: https ://git.io/Hyris eExam plePl ugin

https://git.io/HyriseExamplePlugin
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cache, no further overhead is added during query execution time and the data-
base system’s architecture remains unchanged. The prediction itself is a multistep 
process.

First, depending on how the query plan cache stores information about past que-
ries, these are transformed into an abstract logical representation of query templates 
to remove unnecessary information.

The second step is an optional query clustering (e.g., similar to [23]) for large and 
diverse workloads. Here, similar queries can be combined to reduce the number of 
queries that have to be processed in the following and, in the end, reduce the time 
necessary for predictions and tunings. Lastly, a workload analyzer calculates a fore-
cast of future workloads. The system offers the flexibility to hold multiple workload 
analyzer instances that each employ different methods to create forecasts, e.g., based 
on expert knowledge, latest scenarios (seasonal time intervals) as well as simple lin-
ear regressions, time series analysis (cf. ARIMA), or more expensive recurrent neu-
ral networks.

3.9  Robustness and reconfiguration costs

Robustness is crucial for large database deployments where workloads are uncertain 
and not stable. We distinguish the following two aspects of robustness.

First, we refer to the robustness of a system’s performance. The goal is to tune 
the system in a way that workload changes do not seriously affect the system’s per-
formance. Instead of optimizing the tuning for an average workload scenario, the 
tuning should be organized in a way that an acceptable performance is guaranteed 
for various workload scenarios. Thus, during tuning, common scenarios as well as 
rarely occurring extreme cases have to be taken into account. To achieve this, not 
only the expected workload has to be incorporated but also information about the 
distribution of potential future scenarios, cf. Sect. 3.8. In general, to obtain robust 
configurations users are willing to sacrifice a certain share of the optimal expected 
performance.

The second type of robustness refers to the actual installation of configurations. 
As workloads may change over time, the system’s configurations have to be re-
optimized regularly. Therefore, it is possible that an updated optimized configura-
tion suggests an entirely different configuration even though the associated perfor-
mance increase is comparably small. Its installation diminishes the benefit. To avoid 
such effects reconfiguration costs are considered to efficiently balance performance 
improvements and the installation of configurations to identify minimal-invasive 
configuration improvements. This has been applied, e.g., for index selection  [34] 
and replication [25].

3.10  Tuner

Tuners are components that take workload forecasts and cost estimations as input 
and deliver configurations for features as output. There is one tuner instance 
per feature, e.g., a tuner for index selection and another tuner for determining 
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efficient partitioning schemes. Tuning relies heavily on accurate cost estimations (cf. 
Sect. 3.1) to determine configurations. Without sufficiently precise estimations dif-
ferent configuration options cannot be compared. We specified tuning as a multi-
step process where each step is mapped to a subcomponent to enable reuse across 
the tuning of multiple features (see Sect.  4). A tuner, can contain multiple differ-
ent instances of its subcomponents (Fig.  1). Thereby, different techniques can be 
employed and compared based on the outcome of former tuning runs or (time) con-
straints. In the following, we detail the involved subcomponents.

3.10.1  Enumerator

Enumerators provide a list of Candidates to the tuning process. Typically, the can-
didate set size is one of the main influence factors for the execution time of optimi-
zation algorithms. Hence, providing a variety of enumeration algorithms is advis-
able to be able to influence the runtime. Some enumeration algorithms restrict the 
candidate set based on heuristics (cf. [4]) while others consider all available candi-
dates. The framework allows to switch between different enumerators or fall back 
to restrictive enumerators when necessary. Candidates are of various forms to rep-
resent different types, i.e., physical design features or knobs. For discrete problems, 
for example for index selection, candidates would be a set of lists (to support multi-
attribute indexes) of attributes. For continuous problems, e.g., the decision about 
the buffer pool size candidates are specified by providing the start and the end of a 
range, e.g., 0.1 GB to 500.0 GB and the way the value is increased: linearly, e.g., by 
0.2 GB with each step or exponentially. Users can either implement enumerators on 
their own or utilize general ones provided by the system.

3.10.2  Assessor

This component provides assessments of the previously generated candidates. A 
positive or negative desirability indicating its impact on the overall system perfor-
mance given a forecast scenario is assigned to each candidate. The system assigns 
different desirability values to the same candidate for different forecast scenarios. 
Later in the decision process these, possibly differing, desirability values are uti-
lized for robustness considerations. Besides, the assessor assigns an associated con-
fidence, describing the certainty of the assessment, and a cost to each assessment. 
The cost component is twofold: it consists of permanent costs (e.g., the memory 
consumption of an index) and one-time costs for applying the configuration (e.g., 
the cost of constructing an index). The sum of all these one-time costs are so-called 
reconfiguration costs. These are of importance in the following scenario: The tuner 
might find a new improved configuration that suggests to completely change the cur-
rent one even though the associated performance increase is comparably small. To 
avoid such effects reconfiguration costs are used to balance performance improve-
ments and reconfigurations to identify minimally invasive changes. Thus, accurate 
cost models are indispensable for precise and fast assessments.

Again, the system can contain different assessors that reflect the use of differ-
ent cost models, e.g., simple logical, physical or what-if optimizer-based models. 
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Choosing an assessor is a trade-off between accuracy and runtime. Learnings from 
past decisions, i.e., the effect of specific configurations on runtime KPIs are incorpo-
rated during this step.

3.10.3  Selector

A selector chooses candidates based on the previous assessments and specified con-
straints, e.g., a memory budget for indexes. As in the previous steps, there are mul-
tiple selectors available, each following a different strategy. For selection, a third 
component is added to the trade-off of finding optimized solutions or achieving low 
computation times for the optimization: robustness of the chosen candidates. We 
consider the following classes of selectors (including existing approaches for the 
tuning of specific features) to be interesting for self-managing database systems:

– Greedy: The greedy selector chooses candidates based on the desirability per 
cost. Choosing the candidates with the highest ratio first and proceeding until the 
constraint is violated. The strength of the greedy selector is its short runtime. For 
example, [34, 38] for index selection with greedy approaches.

– Optimal: Such selectors find optimal configurations (e.g., Dash et  al.  [11] for 
index selection or Halfpap et al.  [15] for database replication). This selector is 
usually based on off-the-shelf solvers that are heavily optimized for such a task. 
Optimal selectors might lead to long runtimes.

– Genetic: These algorithms are based on the biological principles of mutation, 
selection, and crossover [28]. Genetic algorithms (e.g., for index selection Krat-
ica et  al.  [20]) can be applied when the search space is too large to find opti-
mal solutions. They usually find close-to-optimal solutions in relatively short 
amounts of time.

– Robust and risk-averse: Such selectors are beneficial when acceptable perfor-
mance in most cases is more important than best performance in the expected 
case which is likely the case when SLAs are specified  [29]. Criteria based on 
mean-variance optimization, utility functions, value at risk, and worst-case con-
siderations are used in such scenarios.

By strictly relying on the interfaces between components, selectors are exchange-
able and shared between features. Selectors can also request re-assessments of cer-
tain candidates from the assessors. This is useful to reflect changed circumstances or 
incorporate interaction between candidates.

3.10.4  Executor

The executor takes care of applying the choices that were selected previously. There 
are different application strategies regarding order, point in time and sequential or 
parallel application. The executor accesses runtime KPIs to determine favorable 
points in time for applying the choices.
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3.11  Organizer

The whole self-managing process is orchestrated by the organizer. It identifies con-
venient points in time (e.g., phases of low system resource utilization) for tuning by 
constantly monitoring runtime KPIs and taking workload forecasts into account. The 
organizer also decides whether changes observed in workload forecasts are signifi-
cant enough to justify possibly expensive tunings. This decision relies, upon other 
terms, on the difference of the current workload cost and the estimated workload 
cost for the forecasted workload given the current configuration.

Furthermore, self-managing database systems manage the configuration of mul-
tiple features. The organizer decides on the order of tuning processes for these fea-
tures. More details are given in Sect. 4. In the future, the organizer could also, based 
on the workload forecast, decide to only tune the subset of features which is expected 
to yield the largest benefits to avoid wasting resources on unprofitable tunings.

4  Tuning of multiple mutually dependent features

The tuning of multiple features is highly challenging as their inter-dependencies 
are usually complex and have a significant performance impact  [39, 42]. Building 
an omnipotent model that is capable of determining efficient configurations for all 
features in a combined fashion is hardly feasible. As the solution space of single 
features for real-world problems is already substantial, a global model possesses a 
prohibitively large complexity. Instead, tuning each feature separately is computa-
tionally feasible, but also likely to provide a poor performance as feature dependen-
cies are not considered.

4.1  Recursive tuning of single features

The key idea of our approach is to recursively tune single features. As features are 
mutually dependent the tuning order is crucial. For example, depending on the 
chosen compression scheme the impact of indexing a particular attribute might be 
affected. Furthermore, resource constraints might prohibit the tuning of all potential 
features. In such scenarios, only the features with the most significant impact are 
tuned. Therefore, the overall cost and benefit of the tuning of a specific feature need 
to be assessed.

Our approach is related to Zilio et al. [42]. They describe a hybrid approach that 
orders tuning processes by their pairwise dependence: (i) Non-dependent features 
are tuned one after another in any order, (ii) unidirectional dependent ones are 
tuned in the most efficient order, and (iii) mutually dependent ones are tuned simul-
taneously. However, due to (iii) the approach is limited if the number of mutually 
dependent features and their joint tuning complexity is too large, see also the dis-
cussion above and Sect.  2 for more details. Further, the dependencies of features 
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cannot be assumed to be known in advance. Accurately determining dependencies is 
of high complexity because it relies on expensive calculations (conducting tunings 
for all considered features as well as many calls to cost estimators).

In the following, we propose a mechanism to recursively tune all features in a 
reasonable order by taking their dependencies into account. The basic dependen-
cies are automatically determined. The organizer retrieves the expected workload 
forecast from the workload predictor. Based on this forecast the cost ( W∅ ) of execut-
ing the expected workload without any optimization is determined using the cost 
estimators. This cost serves as a reference for future considerations. Afterward, a 
separate tuning run is conducted for each single feature A and the cost for the execu-
tion of the expected workload WA is determined. The ratios W∅∕WA provide a simple 
way of assessing the impact of the tuning of each feature (while not considering 
any dependencies). Note, considering the costs of the respective tunings allows a 
heuristic-based ranking of impact per cost which can be utilized when resources do 
not suffice for tuning all features. Furthermore, sampling or clustering of queries, as 
provided by the workload predictor, are techniques to reduce the workload size.

In addition, we determine whether the order in which two features A and B are 
optimized is of importance. We first optimize feature A followed by feature B and 
determine the workload cost: WA,B . We repeat the same for WB,A . A dependence ratio 
dA,B ∶=

WB,A

WA,B

 close to 1 indicates that the order of optimizing A and B is less impor-
tant. A value of dA,B > 1 indicates that A should be optimized before B and the other 
way around if dA,B < 1 . In the following, if dA,B ≥ 1 and A is tuned before B, we say 
that A and B were tuned in beneficial order. Further, for all combinations of features 
we can calculate d pairwise. The ratios are used to determine an optimized order to 
recursively tune all features.

Since we define the dependency of two features A,  B by workload cost, effi-
cient and precise ways to estimate these costs are required. Hence, cost estimators, 
as described in Sect. 3.1 are crucial. In addition, the estimation of workload costs 
for many combinations and large workloads can become expensive. Decreasing the 
workload size, e.g., by clustering (cf. Workload Compression  [6]) mitigates this 
problem in exchange for possibly less accuracy.

4.2  Optimization of the tuning order using linear programming

Deriving an optimized order of all features is a highly challenging task as (i) the 
number of potential orders (permutations) can be large and (ii) a consistent order 
satisfying all preferred pairwise relations does not have to exist.

Based on the values dA,B the preferable order, as well as its importance, can be 
quantified for all pairs of features A and B. To determine an optimized tuning order 
of features we propose the following integer linear programming (LP)3 approach. By 
the family of binary variables xA,k we denote whether feature A ∈ S is tuned in step k 
( xA,k = 1 ) or not ( xA,k = 0 ), k = 1,… , |S| , where S is the set of features. The second 

3 Source Code available at: https ://git.io/SelfD rivin gTune Multi pleFe ature s

https://git.io/SelfDrivingTuneMultipleFeatures
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family of binary variables yA,B expresses whether feature A ∈ S is tuned before fea-
ture B ∈ S�{A} (i.e., yA,B = 1 ) or not ( yA,B = 0 ). To optimize the tuning order, we 
propose the following integer LP formulation:

subject to the feasibility constraints    

as well as the coupling constraints

The objective (1) optimizes the sum of the dependence ratios d weighted by the 
associated impact coefficients W∅∕WA,B , A ∈ S,B ∈ S�{A} . The first two families 
of constraints (2) guarantee an admissible permutation order of all features: (i) each 
feature is assigned to exactly one tuning step and (ii) each tuning step is associ-
ated to exactly one feature. The last two families of constraints (3)–(4) uniquely 
couple the variables x and y in a linear way. The first one, cf. (3), guarantees that 
exactly one of the variables yA,B and yB,A is equal to one (for all pairs of features 
A ∈ S,B ∈ S�{A} ). The last constraint (4) works as follows: If a feature B is sup-
posed to be tuned after a feature A then the right-hand side of the inequality is posi-
tive and, hence, yA,B has to be equal to one.

The number of variables and constraints is 2 ⋅ |S|2 − |S| and 2 ⋅ |S|2 , respectively. 
The integer LP can be solved using off-the-shelf solvers. Our LP approach is (i) via-
ble, (ii) allows the consideration of many features, and (iii) effectively accounts for 
mutual dependencies when tuning multiple features. Further, in case certain features 
are required to be tuned in a specific order or in a particular step (for instance, deter-
mined by domain knowledge) such additional information is formulated as addi-
tional constraints and directly included in the LP. As a result, the complexity of the 
LP will decrease because there is less freedom for feasible tuning orders.

Robust tuning approaches are also applicable in this framework, see Sect. 3.9. In 
this case the workload costs W will typically describe a risk-averse criterion, e.g., 
the expected utility of a certain tuning configuration assuming different potential 
workloads. Note, the complexity of the LP to determine a suitable order of tuning 
the features under robustness considerations is not affected as the model remains the 
same and only the inputs W change.

Further, reconfiguration costs should, in general, also be part of W to take the cur-
rent state of configurations into account, cf. Sect. 3.9. Alternatively, they could also 
be left out in the workload cost estimations for pairwise tunings to first determine an 

(1)
maximize

xA,k, yA,B ∈ {0, 1}

A ∈ S,B ∈ S�{A}, k = 1,… , |S|

∑

A∈S,B∈S�{A}

yA,B ⋅ dA,B ⋅W∅∕WA,B

(2)
∑

k=1,…,|S|
xA,k = 1, ∀A ∈ S and

∑

A∈S

xA,k = 1, ∀k = 1,… , |S|

(3)yA,B + yB,A = 1, ∀A ∈ S,B ∈ S�{A} and

(4)|S| ⋅ yA,B ≥

∑

k=1,…,|S|
k ⋅ xB,k −

∑

k=1,…,|S|
k ⋅ xA,k, ∀A ∈ S,B ∈ S�{A}
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unbiased tuning order and then take them into account when tuning all components 
recursively.

4.3  Case study: tuning index selection, data compression, and clustering

In this subsection, we highlight the complexity and challenges when multiple fea-
tures are tuned. For this discussion we focus on the tuning of features that can be 
tuned automatically in the main memory database system hyrise: indexes [34], data 
compression [3], and column clustering choices [22].

In such a scenario, tuning decisions are mutually dependent because decisions 
for one feature influence the performance impact of other features. For data com-
pression the objective is mainly to reduce the memory footprint without affect-
ing the performance too much, the objective for index selection is to improve the 
overall workload performance while only spending a fixed amount of memory. The 
main goal of clustering is again to avoid data access but on a more coarse-grained 
level than for indexes. The stored data is organized in a way that maximizes prun-
ing opportunities during query processing. The above-presented chunk concept of 
Hyrise enables these optimizations.

To give a more practical example: In general, frequently accessed attributes are 
candidates for being indexed because the increased memory footprint has the chance 
to pay off in such cases. On the other hand, infrequently accessed attributes could 
be heavily compressed to reduce the memory footprint while indexes and cluster-
ing could be used in such scenarios to improve performance and avoid unneces-
sary but costly accesses of compressed data. Conflicting optimization goals, e.g., 
memory consumption and performance, demonstrate the need to consider feature 
dependencies.

To optimize the tuning order for S ∶= {Index,Comp,Clust} , we determine the 
dependencies of, e.g., compression and indexes, dComp,Index based on workload pro-
cessing costs. For example, WIndex,Comp is the cost of executing the workload at hand 
when indexes are selected before the compression configuration is chosen. The 
workload costs for all feature combinations, cf. S, serve as input for the above-speci-
fied LP, which finally provides an optimized tuning order.

Table  1 shows workload processing costs WA,B , relative and normalized to 
W∅ ∶= 100 for the three features index selection, data compression, and automatic 

Table 1  Tuning order problem input values: relative workload costs WA,B for tuning feature B after fea-
ture A, A ∈ S,B ∈ S�{A} , for the 3-dimensional example with S ∶= {Index,Comp,Clust} ; no tuning 
refers to the reference workload costs of W∅ ∶= 100

A B

Index Comp Clust

Index – 75 89
Comp 68 – 60
Clust 84 66 –
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clustering, A,B ∈ S ∶= {Index,Comp,Clust} . The workload processing costs were 
obtained with Hyrise’s TPC-H benchmark executable while the particular configura-
tions were applied. The executable generates and loads the data set before executing 
each TPC-H query for one minute if not configured differently. For this scenario we 
used a scale factor of 10. The default (not tuned) configuration does not encode col-
umns, no indexes are created and the data is not clustered or sorted in any particu-
lar order. For the case study, we also utilize compression configurations that, e.g., 
encode attributes which are accessed in the benchmark more heavily. Such attributes 
are natural index candidates for cost-based index selection algorithms since access-
ing these attributes is more expensive. This effect cannot be observed if indexes are 
determined before compression configurations.

While for instance, tuning feature ‘Index’ before feature ‘Comp’ reduces the 
workload costs to WIndex,Comp = 75 , tuning ‘Index’ after ‘Comp’ appears more ben-
eficial as the costs WComp,Index = 68 are lower than before. This difference indicates 
that the tuning order matters.

Finally, based on the workload costs in Table 1 the optimal solution of the LP 
(1)–(4) yields the tuning order: (i) compression (ii), clustering, and (iii) indexes. The 
associated relative workload costs are 51.

The obtained tuning order seems plausible since indexes can mitigate the elevated 
access costs for heavily compressed data. Furthermore, indexes are of help where 
data access cannot be avoided by simple data access avoidance techniques like 
pruning through clustering. The result can be easily reproduced using the provided 
AMPL program (see Footnote 3) and the input data. In this context, Table 2 summa-
rizes the potential and finally selected cost terms of the weighted objective, cf. (1), 
that are associated with the tuning order obtained. In the final order of the example, 
all three pairs of features are tuned in beneficial order. The associated optimal objec-
tive value is 1.62 + 1.83 + 1.26 = 4.71 , cf. Table 2.

Finally, for comparison, we applied the three tuning features (Comp, Clust, Index) 
in all 6 possible orders. We obtained the following results for the (relative) workload 
costs: 

 i. Comp, Clust, Index: 51
 ii. Comp, Index, Clust: 60
 iii. Clust, Comp, Index: 55

Table 2  Tuning order solution: selected costs components dA,B ⋅W∅∕WA,B for tuning feature B after fea-
ture A, A ∈ S,B ∈ S�{A} , for the 3-dimensional example with S ∶= {Index,Comp,Clust} ; unselected 
terms ( y∗

A,B
= 0 ) are given in brackets

A B

Index Comp Clust

Index – (1.21) (1.06)
Comp 1.62 – 1.83
Clust 1.26 (1.38) –
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 iv. Clust, Index, Comp: 69
 v. Index, Comp, Clust: 62
 vi. Index, Clust, Comp: 77

For our exemplary case study the results show that the order derived by the LP 
approach is indeed the best one leading to the lowest workload costs (i.e., 51). 
The results indicate that proper tuning orders can be determined based on pair-
wise tuning inputs and the presented LP approach. Note, as the approach is a heu-
ristic, optimal solutions cannot be guaranteed for all scenarios.

4.4  Scalability considerations

In this section, we demonstrate the feasibility and functioning of our solution for 
larger problem instances containing more features (|S|). To illustrate the applica-
bility of our LP approach, we consider a scalable synthetic example with |S| = K 
features, see Example 1.

Example 1 (Scalable tuning problem) We assume a tuning problem with K poten-
tially dependent features. We consider (randomized) inputs WA,B ∈ [0, 100] for 
tuning feature B after feature A, A ∈ S,B ∈ S�{A} , S ∶= {1, 2,… ,K} . The inputs 
are chosen that two features are independent (i.e., WA,B = WB,A ) with probability 
� ∈ [0, 1].

The source code for the example is available as open source, see Footnote 3. 
While pairwise dependencies (in total |S| ⋅ (|S| − 1) ) can still be derived for a 
more significant number of features an exhaustive computation of the results of 
all potential tuning permutations (in total |S|!) is intractable.

Table 3  Tuning order problem 
input for K = 10 features: 
Relative workload costs WA,B 
for tuning feature B after 
feature A, A ∈ S,B ∈ S�{A} , 
S ∶= {1,… , 10} ; no tuning 
refers to the reference workload 
costs of W∅ ∶= 100 ; Example 1

A B

1 2 3 4 5 6 7 8 9 10

1 – 46 53 37 43 22 45 55 39 48
2 34 – 29 30 15 30 9 16 5 13
3 53 29 – 67 22 60 21 53 29 69
4 37 34 47 – 24 37 22 23 25 62
5 43 89 22 86 – 66 91 84 47 20
6 22 25 14 37 10 – 7 10 17 34
7 45 9 21 37 22 75 – 57 35 72
8 71 16 53 40 84 10 57 – 43 8
9 39 36 24 23 47 12 26 43 – 18
10 49 13 69 62 20 34 72 34 15 –
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Table 3 illustrates the input for a (reproducible) tuning order problem of Exam-
ple 1 with K = 10 features. In this example, the feature dependency probability � 
is 0.5.

Table  4 illustrates the optimal order (for the example presented in Table  3) 
revealed by the LP (1)–(4) as well as the summands of the objective. We observe 
that in the final order all except two pairs of features ((2,6) and (4,9)) are tuned in 
the beneficial order (according to the input). For these two pairs of features, we 
observe that opportunity costs of the wrong tuning order (as intended) is compa-
rably low, which is guaranteed by the weighting factors used in the objective (1).

In general, as it is not possible to consistently tune each of the ( K ⋅ (K − 1)∕2 ) 
pairs in the beneficial order, the LP is designed to realize the beneficial tuning 
order of important pairs, i.e., if their impact on performance is significant or their 
order strongly matters (cf. (6,7) or (2,9)).

All examples were solved single-threaded on a consumer notebook from 2013 
with 20 GB of main memory and an Intel i7 CPU with 2.4 GHz, using the Gurobi 
solver version 8.1.0. The LP’s solving time for the setting of Table 3 is close to 
zero (0.02 seconds). To assess the scalability of our LP approach further, Table 5 

Table 4  Tuning order solution for K = 10 features: selected costs components dA,B ⋅W∅∕WA,B for tuning 
feature B after feature A, A ∈ S,B ∈ S�{A} , S ∶= {1, 2,… ,K} ; unselected terms ( y∗

A,B
= 0 ) are given in 

brackets; Example 1

The two pairs of features that are not tuned in beneficial order are highlighted with bold type

A B

1 2 3 4 5 6 7 8 9 10

1 – (1.61) 1.89 2.70 2.33 4.55 2.22 2.35 2.56 2.13
2 3.98 – 3.45 3.78 39.56 2.78 11.11 6.25 144.00 7.69
3 (1.89) (3.45) – (1.05) (4.55) (0.39) (4.76) (1.89) (2.85) (1.45)
4 (2.70) (2.60) 3.03 – 14.93 2.70 7.64 7.56 3.68 1.61
5 (2.33) (0.19) 4.55 (0.32) – (0.23) (0.27) (1.19) (2.13) (5.00)
6 (4.55) (4.80) 30.61 (2.70) 66.00 – 153.06 (10.00) (4.15) (2.94)
7 (2.22) (11.11) 4.76 (1.61) 18.80 (0.12) – (1.75) (2.12) (1.39)
8 (1.09) (6.25) 1.89 (1.44) 1.19 10.00 1.75 – 2.33 53.12
9 (2.56) (0.39) 5.03 (4.73) 2.13 11.81 5.18 (2.33) – (4.63)
10 (2.00) (7.69) 1.45 (1.61) 5.00 2.94 1.39 (0.69) 8.00 –

Table 5  Runtimes in seconds 
of the LP (1)–(4) for different 
numbers of features K and 
dependency probabilities � ; 
Example 1

K � = 0.0 (s) � = 0.2 (s) � = 0.5 (s) � = 0.8 (s)

3 0.02 0.02 0.01 0.01
6 0.05 0.03 0.02 0.02
10 0.40 0.18 0.14 0.03
15 3.43 3.12 1.01 0.25
20 120.14 72.23 8.48 0.51
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illustrates the solving times for different numbers of features (K). The table also 
studies the impact of the share of independent feature inputs characterized by the 
probability � , cf. Example 1.

We observe that the share of pairwise independent features has a significant 
impact on the LP’s runtime. Overall, the results verify that the approach is appli-
cable for determining tuning orders for at least up to 20 strongly dependent fea-
tures in a reasonable amount of time.

For higher numbers of features LP relaxation approaches such as time limits or 
the use of optimality gaps could be applied. For instance, using an optimality gap 
of 10% , for the case K = 20 and � = 0.2 (see Table 5), we obtain a solution with 
95% of the optimal objective value in less than 2% of the time (1.3 s).

5  Future work

The presented concepts and ideas open many opportunities for further research. 
Self-driving systems must be able to precisely assess costs and benefits of prefer-
ably each and every operation and action. Thus, the focus of our current work is 
to incorporate observed execution costs into the current cost models to increase 
their accuracy.

Robust configurations are especially important for the adoption of self-driving 
DBMSs in practice. If the performance of such systems degrades as soon as the 
actual workload deviates from the expected workload, customers will not adopt 
these systems. Thus, we incorporated support for different forecast scenarios in 
the workload predictor and see their application and evaluation as an important 
area for further research.

Lastly, a thorough end-to-end evaluation of the presented approach, see Sect. 4, 
on determining a favorable order to tune multiple features is necessary to better 
assess the viability and performance implications for large problem instances.

6  Conclusion

The proposed framework describes how to divide the challenge of integrating 
self-management capabilities in database systems into smaller problems that 
are tackled by components. We gave a detailed definition of the specific compo-
nents and their interfaces. Separation of concerns facilitates exchange and reuse 
of components to streamline experimentation and development. The presented 
workload predictor is capable of anticipating multiple potential workload sce-
narios that are incorporated by the respective tuners to allow robust solutions. 
Moreover, in Sect.  4, we proposed and tested an LP-based approach to identify 
an efficient order for tuning of mutually dependent features by determining their 
degree of dependency.
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