Self-dual and LCD double circulant and double negacirculant codes over \$\mathbb\{F\}_q+u\mathbb\{F\}_q+v\mathbb\{F\}_q\$ - Source link

Shikha Yadav, Habibul Islam, Om Prakash, Patrick Solé
Institutions: Indian Institute of Technology Patna, Aix-Marseille University
Published on: 25 Jan 2021 - Journal of Applied Mathematics and Computing (Springer Berlin Heidelberg)
Topics: Circulant matrix

Related papers:

- On self-dual and LCD double circulant and double negacirculant codes over \$\mathbb \{F\}_\{q\}+ulmathbb \{F\}_\{q\}\$
- On self-dual and LCD double circulant and double negacirculant codes over \$\mathbb\{F\}_q + ulmathbb\{F\}_q\$
- On codes over \$\$\mathbb $\{F\} _\{q\}+v \backslash m a t h b b\{F\} _\{q\}+v^{\wedge}\{2\} \backslash m a t h b b\{F\} _\{q\} \$ \$$
- On Self-dual and LCD Double Circulant Codes over a Non-chain Ring*
- Some results about double cyclic codes over $\$ \backslash m a t h b b\{F\} _\{q\}+\vee \backslash m a t h b b\{F\} _\{q\}+v^{\wedge} 2 \backslash m a t h b b\{F\} _\{q\} \$$

Self-dual and LCD double circulant and double negacirculant codes over $F _q+u F _q+v F _q$

Shikha Yadav, Habibul Islam, Om Prakash, Patrick Solé

- To cite this version:

Shikha Yadav, Habibul Islam, Om Prakash, Patrick Solé. Self-dual and LCD double circulant and double negacirculant codes over $F _q+u F _q+v F _q$. Journal of Applied Mathematics and Computing, Springer, 2021. hal-03112296

HAL Id: hal-03112296
 https://hal.archives-ouvertes.fr/hal-03112296

Submitted on 16 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Self-dual and LCD double circulant and double negacirculant codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}$

Shikha Yadav • Habibul Islam • Om Prakash • Patrick Solé

Received: date / Accepted: date

Abstract

Let q be an odd prime power, and denote by \mathbb{F}_{q} the finite field with q elements. In this paper, we consider the ring $R=\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}$, where $u^{2}=u, v^{2}=v, u v=v u=0$ and study double circulant and double negacirculant codes over this ring. We first obtain the necessary and sufficient conditions for a double circulant code to be self-dual (resp. LCD). Then we enumerate self-dual and LCD double circulant and double negacirculant codes over R. Last but not the least, we show that the family of Gray images of self-dual and LCD double circulant codes over R are good. Several numerical examples of self-dual and LCD codes over \mathbb{F}_{5} as the Gray images of these codes over R are given in short lengths.

Keywords Double circulant code • Self-dual code • LCD code • Gray map
Mathematics Subject Classification (2000) 94B05 • 94B15 • 94B35 • 94B60

1 Introduction

Cyclic codes are one of the oldest family of block codes. They have received very intensive attention during the last six decades [6]. In that period, several studies have shown their important uses in and out of mathematics. Many times, they have appeared through their generalized classes 4, 14, 15, 25] and have produced lots of good codes. Along with some other classes, namely, constacyclic, skew cyclic etc., quasi-cyclic codes have led to record-breaking codes [8]. Recall that a linear code is said to be a quasi-cyclic code of index l, if it is invariant under T^{l}, where T denotes the cyclic shift operator. In particular, a quasi-cyclic code of index 1 is indeed a cyclic code. In 2001, Ling and Solé [17] presented a new approach to study quasi-cyclic codes over finite fields. They regarded quasi-cyclic codes over a finite field F as linear codes of length l over the polynomial ring $R(F, m)=F[x] /\left(x^{m}-1\right)$ where $m=\frac{n}{l}$. Essential to that approach was the decomposition of $R(F, m)$ into local rings via the Chinese Remainder Theorem for polynomials. Later, in 2003, they extended their study to the case when F is itself a chain ring [18]. In 2016, Guneri et al. [7] have shown that quasi-cyclic codes include families of good LCD codes. Double circulant codes are particular types of quasi-cyclic codes having index 2. In 2018, Alahmadi et al. [2] have shown the self-dual double circulant codes of odd dimension to be dihedral or constadihedral depending upon the characteristic of the field. Meanwhile, self-dual negacirculant codes over finite fields were studied in [1]. To generalize the concept over finite rings, recently, Shi et al. 21] considered the finite commutative semi-local non-chain ring $\mathbb{F}_{q}+u \mathbb{F}_{q}, u^{2}=u$ and studied double circulant self-dual or LCD codes. They first enumerated these codes for self-dual and LCD codes, respectively, and later obtained distance bounds on them. A similar work has been reported over a semi-local non-chain ring $\mathbb{F}_{q}+u \mathbb{F}_{q}+u^{2} \mathbb{F}_{q}$, where $u^{3}=u$ in [28]. On the other

[^0]side, double circulant LCD codes over \mathbb{Z}_{4} in [22], $\mathbb{Z}_{p^{2}}$ in [10] and Galois ring in [23] were studied, respectively. Further, for some related studies on these topics, interested readers can see [20,24, 26, 27, [29. Therefore, because of available works on non-chain rings [21,28], it is logical to investigate these codes over other semi-local non-chain rings. Motivated by the above studies, here we consider the finite commutative semi-local non-chain ring $R=\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}$, where $u^{2}=u, v^{2}=v, u v=v u=0$. In fact, we first determine the necessary and sufficient conditions (Lemma 1) of double circulant codes to be self-dual and LCD. Then we enumerate self-dual and LCD double circulant codes of length $2 n$ over R when n is odd and double negacirculant codes when n is even, respectively. Finally, by taking Gray images of such codes we show that both families are good in terms of distance bounds (Theorem 22). It is worth mentioning that the ring R has an important interest and several classes of codes were considered over it [3, 12, 13] in the literature.

The paper is organized as follows: Section 2 contains some basic definitions and Gray maps. In Section 3, we study the structure of double circulant and double negacirculant codes over R and enumerate self-dual and LCD double circulant and double negacirculant codes. Section 4 provides the distance bounds and establishes that the families of Gray images of self-dual double circulant codes, and LCD double circulant codes over R are good. In Section 5, we present several non-trivial examples of self-dual and LCD codes over \mathbb{F}_{5} from the Gray images of these codes over R. Section 6 concludes the paper.

2 Preliminary

Let q be an odd prime power such that there exists $\omega \in \mathbb{F}_{q}$ with $\omega^{2}=-1$ (for the existence of such element see [18]). Throughout, we fix $R=\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}, u^{2}=u, v^{2}=v, u v=v u=0$. Now, following [3,12], we recall that R is a semi-local non-chain ring with three maximal ideals $\langle 1-u\rangle,\langle 1-v\rangle$ and $\langle u+v\rangle$. Again, by applying the Chinese Remainder Theorem (CRT) decomposition, we can write $R \cong(1-u-v) \mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}$. Hence, an arbitrary element $r \in R$ has a unique representation $r=(1-u-v) r_{1}+u r_{2}+v r_{3}$, where $r_{1}, r_{2}, r_{3} \in \mathbb{F}_{q}$. Further, R has $(q-1)^{3}$ units and $q^{3}-(q-1)^{3}$ nonunit elements where the set of units is calculated by the fact that r is a unit in R if and only if r_{1}, r_{2}, r_{3} are non-zero in \mathbb{F}_{q}. Now, we define a Gray map $\phi_{1}: R \rightarrow \mathbb{F}_{q}^{3}$ by $\phi_{1}(a+u b+v c)=(-b, 2 a+b, c)$, for all $a, b, c \in \mathbb{F}_{q}$. In addition, we consider another Gray map $\phi_{2}: R \rightarrow \mathbb{F}_{q}^{3}$ defined in 12 by $\phi_{2}(a+u b+v c)=(a, a+b, a+c)$, for all $a, b, c \in \mathbb{F}_{q}$. It is evident to check that ϕ_{i} is an \mathbb{F}_{q}-linear bijective map and can be naturally extended over R^{n}. In later portion, we show that these Gray maps preserve the orthogonality of a linear code, and hence carry Euclidean LCD and self-dual codes from R to \mathbb{F}_{q}.

A linear code C of length n over R is an R-submodule of R^{n}. The Hamming weight $w_{H}(c)$ of a vector $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in R^{n}$ is the number of non-zero coordinates while the minimum Hamming distance of the code C is

$$
d_{H}(C)=\min \left\{w_{H}(c): 0 \neq c \in C\right\} .
$$

Now, we define the Lee weight $w_{L}(c)$ of a vector $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in R^{n}$ as $w_{L}(c)=w_{H}\left(\phi_{i}(c)\right)$ while the minimum Lee distance of C is given by

$$
d_{L}(C)=\min \left\{w_{L}(c): 0 \neq c \in C\right\} .
$$

Therefore, it is checked that ϕ_{i} is a linear isometric map from $\left(R^{n}, d_{L}\right)$ to $\left(\mathbb{F}_{q}^{3 n}, d_{H}\right)$ for $i=1,2$. For any two elements $s=\left(s_{0}, s_{1}, \ldots, s_{n-1}\right)$ and $t=\left(t_{0}, t_{1}, \ldots, t_{n-1}\right)$ in R^{n}, their Euclidean (resp. Hermitian) inner product is defined by

$$
s \cdot t=\sum_{i=0}^{n-1} s_{i} t_{i}
$$

and

$$
\langle s, t\rangle_{H}=\sum_{i=0}^{n-1} s_{i} \bar{t}_{i}
$$

respectively, where for $x+u y+v z \in R$ its conjugate is defined by $\overline{x+u y+v z}=x^{\sqrt{q}}+u y^{\sqrt{q}}+v z^{\sqrt{q}}$. In this way, the Euclidean (resp. Hermitian) dual of a linear code C is denoted by C^{\perp} (resp. $C^{\perp_{H}}$) and defined by

$$
C^{\perp}=\left\{a \in R^{n}: a \cdot c=0 \text { for all } c \text { in } C\right\}
$$

and

$$
C^{\perp_{H}}=\left\{a \in R^{n}:\langle a, c\rangle_{H}=0 \text { for all } c \text { in } C\right\}
$$

respectively. A linear code C is said to be a Euclidean (resp. Hermitian) LCD code if and only if $C \cap C^{\perp}=\{0\}$ (resp. $C \cap C^{\perp_{H}}=\{0\}$). Also, C is said to be a Euclidean (resp. Hermitian) self-dual code if $C=C^{\perp}$ (resp. $C=C^{\perp_{H}}$). Now, the next result shows that ϕ_{i} preserve the orthogonality of a linear code.

Theorem 1 Let C be a linear code over R. Then C is a Euclidean LCD (resp. self-dual) code if and only if $\phi_{i}(C)$ is a Euclidean LCD (resp. self-dual) code over \mathbb{F}_{q} for $i=1,2$.

Proof The proof depends on the main fact $\phi_{i}\left(C^{\perp}\right)=\left(\phi_{i}(C)\right)^{\perp}$, which can be verified by using the similar procedure of [21], Theorem 2.2].

For solving the nonlinear equations in Theorem 3, we use the concept of norm functions which is defined as Norm $: \mathbb{F}_{q^{n}} \rightarrow \mathbb{F}_{q}$ given by

$$
\operatorname{Norm}(x)=x^{\frac{q^{n}-1}{q-1}}, \text { for } x \in \mathbb{F}_{q^{n}}
$$

Then Norm is a multiplicative surjective function and $\operatorname{Norm}(0)=0$. Further, each element in \mathbb{F}_{q}^{*} is a norm of exactly $\frac{q^{n}-1}{q-1}$ elements in $\mathbb{F}_{q^{n}}^{*}$ (see [16], Theorem 2.28). Now, we recall that a linear code is said to be a double circulant (resp. negacirculant) code, if its generator matrix is of the form

$$
G=(I, A)
$$

where A is a circulant (resp. negacirculant) matrix, i.e., the matrix whose rows can be obtained by successive circular shifts (resp. negashifts) of the first row. Let $C_{<n>}$ be a family of codes having parameters $\left[n, k_{n}, d_{n}\right]$ over \mathbb{F}_{q}. Then the rate ρ and relative distance δ are defined as $\rho=\limsup _{n \rightarrow \infty} \frac{k_{n}}{n}$ and $\delta=\limsup _{n \rightarrow \infty} \frac{d_{n}}{n}$. This family is said to be good, if $\rho \delta \neq 0$. To derive the main result which proposes that the Gray images of a subfamily of double circulant (LCD or self dual) codes over R are good (Theorem 22), we will use the entropy function [11] defined by

$$
H_{q}(x)= \begin{cases}0, & \text { if } x=0 \\ x \log _{q}(q-1)-x \log _{q}(x)-(1-x) \log _{q}(1-x), & \text { if } 0<x \leq 1-\frac{1}{q}\end{cases}
$$

Now, we state one of the main result of this paper, and prove it at the end of Section 4
Theorem 2 Let q be an odd prime power, and $\delta>0$ be given. Then there are families of double circulant self-dual (resp. LCD) codes of length $2 n$ over R, with code rate $\frac{1}{2}$, and with Gray images of relative distance δ as long as $H_{q}(\delta)<\frac{1}{12}$ (resp. $H_{q}(\delta)<\frac{1}{6}$). Moreover, we conclude that both of these families of codes are good.

Remark: This result shows that for all $\epsilon>0$ arbitrarily small there are families of the said types of relative distance $\delta_{0}-\epsilon$, with $H_{q}\left(\delta_{0}\right)=\frac{1}{12}$ (resp. $H_{q}\left(\delta_{0}\right)=\frac{1}{6}$). Unfortunately, the method does not allow us to make $\epsilon=0$.

3 Double circulant and double negacirculant codes

In this section, we enumerate self-dual and LCD double circulant codes over R. For this, we first obtain the necessary and sufficient conditions of double circulant codes to be self-dual or LCD. Further, the enumeration of self-dual and LCD double negacirculant codes is provided.

3.1 Enumeration of double circulant codes when n is odd

We assume that n is an odd positive integer and the factorization of $x^{n}-1$ into distinct irreducible polynomials over R is as follows:

$$
x^{n}-1=a(x-1) \prod_{i=2}^{s} g_{i}(x) \prod_{j=1}^{t} h_{j}(x) h_{j}^{*}(x),
$$

where

- $a \in R^{*}$ where R^{*} denotes the set of all units in R,
- $g_{i}(x)(2 \leq i \leq s)$ are self-reciprocal polynomials of even degree $2 e_{i}$, respectively,
$-h_{j}^{*}(x)(1 \leq j \leq t)$ are reciprocal polynomials of $h_{j}(x)$ with degree d_{j}, respectively.
By the Chinese Remainder Theorem (CRT), we have

$$
\begin{aligned}
\frac{R[x]}{\left\langle x^{n}-1\right\rangle} & \cong \frac{R[x]}{\langle x-1\rangle} \oplus\left(\oplus_{i=2}^{s} \frac{R[x]}{\left\langle g_{i}(x)\right\rangle}\right) \oplus\left(\oplus_{j=1}^{t}\left(\frac{R[x]}{\left\langle h_{j}(x)\right\rangle}\right) \oplus\left(\frac{R[x]}{\left\langle h_{j}^{*}(x)\right\rangle}\right)\right) \\
& \cong R \oplus\left(\oplus_{i=2}^{s} R_{2 e_{i}}\right) \oplus\left(\oplus_{j=1}^{t} R_{d_{j}} \oplus R_{d_{j}}\right),
\end{aligned}
$$

where $R_{r}=\mathbb{F}_{q^{r}}+u \mathbb{F}_{q^{r}}+v \mathbb{F}_{q^{r}}, u^{2}=u, v^{2}=v, u v=v u=0$ for $r=2 e_{i}$ or d_{j}. The above decomposition can be naturally extended as

$$
\left(\frac{R[x]}{\left\langle x^{n}-1\right\rangle}\right)^{2} \cong R^{2} \oplus\left(\oplus_{i=2}^{s}\left(R_{2 e_{i}}\right)^{2}\right) \oplus\left(\oplus_{j=1}^{t}\left(R_{d_{j}}\right)^{2} \oplus\left(R_{d_{j}}\right)^{2}\right)
$$

Now, using this decomposition, any linear code C of length 2 over $\frac{R[x]}{\left\langle x^{n}-1\right\rangle}$ can be decomposed as

$$
\begin{equation*}
C \cong C_{1} \oplus\left(\oplus_{i=2}^{s} C_{i}\right) \oplus\left(\oplus_{j=1}^{t}\left(C_{j}^{\prime} \oplus C_{j}^{\prime \prime}\right)\right) \tag{1}
\end{equation*}
$$

where C_{1} is a linear code over R, C_{i} is a linear code over $R_{2 e_{i}}$, for $2 \leq i \leq s$ and $C_{j}^{\prime}, C_{j}^{\prime \prime}$ are linear codes over $R_{d_{j}}$, for $1 \leq j \leq t$.

Lemma 1 Let C be a double circulant code over R given in the CRT decomposition (1) and $\alpha_{1}=$ $\left(1, c_{e_{1}}\right), \alpha_{i}=\left(1, c_{e_{i}}\right), \alpha_{j}^{\prime}=\left(1, c_{d_{j}}^{\prime}\right), \alpha_{j}^{\prime \prime}=\left(1, c_{d_{j}}^{\prime \prime}\right)$ be generators of the constituent codes $C_{1}, C_{i}, C_{j}^{\prime}, C_{j}^{\prime \prime}$ over $R, R_{2 e_{i}}, R_{d_{j}}$ and $R_{d_{j}}$, respectively, for $2 \leq i \leq s, 1 \leq j \leq t$. Then
(1) C is a self-dual code if and only if $1+c_{e_{1}}^{2}=0,1+c_{e_{i}}^{1+q^{e_{i}}}=0$ and $1+c_{d_{j}}^{\prime} c_{d_{j}}^{\prime \prime}=0$.
(2) C is a Euclidean LCD code if and only if $1+c_{e_{1}}^{2} \in R^{*}, 1+c_{e_{i}}^{1+q^{e_{i}}} \in R_{2 e_{i}}^{*}$ and $1+c_{d_{j}}^{\prime} c_{d_{j}}^{\prime \prime} \in R_{d_{j}}^{*}$.

Proof Let C be a double circulant code over R given by the CRT decomposition (1). By following the same procedure of [[18], Theorem 4.2], we get that C is a self-dual code if and only if C_{1}, C_{i} are self-dual codes with respect to the Euclidean, Hermitian inner product, respectively for $2 \leq i \leq s$ and $C_{j}^{\prime \prime}$ is the dual code of C_{j}^{\prime} with respect to Euclidean inner product, for $1 \leq j \leq t$. In our case, it further implies that C is a self-dual code if and only if $1+c_{e_{1}}^{2}=0,1+c_{e_{i}}^{1+q^{e_{i}}}=0$ and $1+c_{d_{j}}^{\prime} c_{d_{j}}^{\prime \prime}=0$.

Now, following the same method of [[7], Theorem 3.1], we get C is an LCD code if and only if C_{1}, C_{i} are LCD codes with respect to the Euclidean, Hermitian inner product, respectively for $2 \leq i \leq s$ and $\left(C_{j}^{\prime \prime}\right)^{\perp} \cap C_{j}^{\prime}=\{0\}, C_{j}^{\prime \prime} \cap\left(C_{j}^{\prime}\right)^{\perp}=\{0\}$, for $1 \leq j \leq t$. In our case, it further implies that C is a Euclidean LCD code if and only if $1+c_{e_{1}}^{2} \in R^{*}, 1+c_{e_{i}}^{1+q^{e_{i}}} \in R_{2 e_{i}}^{*}$ and $1+c_{d_{j}}^{\prime} c_{d_{j}}^{\prime \prime} \in R_{d_{j}}^{*}$.

Using the necessary and sufficient conditions given in Lemma 1, we now find the total number of self-dual or LCD double circulant codes over R in the following results.

Theorem 3 Assume that for an odd integer n, the factorization of $x^{n}-1$ over R is

$$
x^{n}-1=a(x-1) \prod_{i=2}^{s} g_{i}(x) \prod_{j=1}^{t} h_{j}(x) h_{j}^{*}(x),
$$

where $a \in R^{*}$ and $n=1+\Sigma_{i=2}^{s} 2 e_{i}+2 \Sigma_{j=1}^{t} d_{j}$. Then the total number of self-dual double circulant codes over R is

$$
8 \prod_{i=2}^{s}\left(q^{e_{i}}+1\right)^{3} \prod_{j=1}^{t}\left(q^{d_{j}}-1\right)^{3}
$$

Proof We can obtain the total number of self-dual double circulant codes by just counting the constituent codes. There are 8 choices for C_{1} which have the generator polynomials as $(1, \omega),(1,-\omega),(1, \omega(1-$ $2 v)),(1, \omega(2 v-1)),(1, \omega(1-2 u)),(1, \omega(2 u-1)),(1, \omega(1-2 u-2 v))$ and $(1, \omega(-1+2 u+2 v))$, respectively, where $\omega^{2}=-1$.

For the second constituent codes, to count self-dual codes with respect to the Hermitian inner product, we need to find the number of solutions of the equation $1+c_{e_{i}} c_{e_{i}}^{q^{e_{i}}}=0$. Let $c_{e_{i}}=x(1-u-$ $v)+y u+z v$, for some $x, y, z \in \mathbb{F}_{q^{2 e_{i}}}$. Then

$$
1+(x(1-u-v)+y u+z v)(x(1-u-v)+y u+z v)^{q^{e_{i}}}=0
$$

if and only if

$$
x x^{q^{q_{i}}}=-1, y y^{q^{e_{i}}}=x x^{q^{e_{i}}}=-1 \text { and } z z^{q^{e_{i}}}=x x^{q^{e_{i}}}=-1
$$

i.e., $\operatorname{Norm}(x)=-1, \operatorname{Norm}(y)=-1$ and $\operatorname{Norm}(z)=-1$. There are $q^{e_{i}}+1$ solutions for each $\operatorname{Norm}(x)=-1, \operatorname{Norm}(y)=-1$ and $\operatorname{Norm}(z)=-1$, respectively. Therefore, the total number of solutions for the above system is $\left(q^{e_{i}}+1\right)^{3}$.

Now, we count the dual pairs (w.r.t. Euclidean inner product) of codes. For this, we need to find the number of solutions of the equation $1+c_{d_{j}}^{\prime} c_{d_{j}}^{\prime \prime}=0$. We have the following possibilities:

- If $c_{d_{j}}^{\prime} \in R_{d_{j}}^{*}$, then $c_{d_{j}}^{\prime \prime}=-\frac{1}{c_{d_{j}}^{\prime}}$ and we have $\left|R_{d_{j}}^{*}\right|=\left(q^{d_{j}}-1\right)^{3}$ choices for the pair $\left\{c_{d_{j}}^{\prime}, c_{d_{j}}^{\prime \prime}\right\}$.
- If $c_{d_{j}}^{\prime} \in R_{d_{j}} \backslash R_{d_{j}}^{*}$, then $c_{d_{j}}^{\prime}=x(1-u-v)+y u+z v$, for some $x, y, z \in \mathbb{F}_{q^{d_{j}}}$ and at least one of x, y or z is 0 . For $c_{d_{j}}^{\prime \prime}=\beta_{1}(1-u-v)+\beta_{2} u+\beta_{3} v \in R_{d_{j}}$, where $\beta_{1}, \beta_{2}, \beta_{3} \in \mathbb{F}_{q^{d_{j}}}$, we have

$$
1+c_{d_{j}}^{\prime} c_{d_{j}}^{\prime \prime}=\left(1+x \beta_{1}\right)+\left(y \beta_{2}-x \beta_{1}\right) u+\left(z \beta_{3}-x \beta_{1}\right) v=0
$$

which implies that $x \beta_{1}=-1, y \beta_{2}=-1, z \beta_{3}=-1$. If any one of x, y or z is 0 , then we get $-1=0$, a contradiction. Therefore, these cases doesn't occur.

Hence, we have $\left(q^{d_{j}}-1\right)^{3}$ choices for the dual pairs. Combining above all cases we get the desired result.

With the same notations used in the above theorem, we now count the total number of LCD double circulant codes over R.

Theorem 4 The total number of LCD double circulant codes over R is

$$
(q-2)^{3} \prod_{i=2}^{s}\left(q^{2 e_{i}}-q^{e_{i}}-1\right)^{3} \prod_{j=1}^{t}\left(q^{6 d_{j}}-3 q^{5 d_{j}}+6 q^{4 d_{j}}-7 q^{3 d_{j}}+6 q^{2 d_{j}}-3 q^{d_{j}}+1\right)
$$

Proof We can obtain the total number of LCD double circulant codes by just counting the constituent codes as done for the self-dual codes. If C_{1} is an LCD code with respect to the Euclidean inner product, then $1+c_{e_{1}}^{2} \in R^{*}$ and we have the following possibilities:

- If $c_{1}=0$, then $1+c_{1}^{2}=1 \in R^{*}$.
- If $0 \neq c_{1} \in\langle 1-u-v\rangle$ and $c_{1}=x(1-u-v)$, for some $x \in \mathbb{F}_{q}^{*}$, then $1+c_{1}^{2}=1+x^{2}(1-u-v) \in R^{*}$ if and only if $x \neq \pm \omega$, where $\omega^{2}=-1$. Therefore, we have $q-3$ choices. Similarly, when $0 \neq c_{1} \in\langle u\rangle$ or $\langle v\rangle$, we have $q-3$ choices for each.
- If $0 \neq c_{1} \in\langle 1-u-v, u\rangle$ and $c_{1}=x(1-u-v)+y u$, for some $x, y \in \mathbb{F}_{q}^{*}$, then $1+c_{1}^{2}=$ $1+x^{2}(1-u-v)+y^{2} u \in R^{*}$ if and only if $x \neq \pm \omega$ and $y \neq \pm \omega$, where $\omega^{2}=-1$. Therefore, we have $(q-3)^{2}$ choices. Similarly, when $0 \neq c_{1} \in\langle u, v\rangle$ or $\langle 1-u-v, v\rangle$, we have $(q-3)^{2}$ choices for each.
- If $0 \neq c_{1} \in\langle 1-u-v, u, v\rangle$ and $c_{1}=x(1-u-v)+y u+z v$, for some $x, y, z \in \mathbb{F}_{q}^{*}$, then $1+c_{1}^{2}=1+x^{2}(1-u-v)+y^{2} u+z^{2} v \in R^{*}$ if and only if $x, y, z \neq \pm \omega$, where $\omega^{2}=-1$. Therefore, we have $(q-3)^{3}$ choices.

So, we have $1+3(q-3)+3(q-3)^{2}+(q-3)^{3}=(q-2)^{3}$ choices for C_{1}.
Now, we find the choices for $C_{e_{i}}$ such that it is an LCD code over $R_{2 e_{i}}$ with respect to the Hermitian inner product. The linear code $C_{e_{i}}$ is Hermitian LCD if $1+c_{e_{i}}^{1+q^{e_{i}}} \in R_{2 e_{i}}^{*}$ and we have the following possibilities:

- If $c_{e_{i}}=0$, then $1+c_{e_{i}}^{1+q^{e_{i}}}=1 \in R_{2 e_{i}}^{*}$.
- If $0 \neq c_{e_{i}} \in\langle 1-u-v\rangle$ and $c_{e_{i}}=x(1-u-v)$, for some $x \in \mathbb{F}_{q^{2} e_{i}}^{*}$, then $1+c_{e_{i}}^{1+q^{e_{i}}}=1+x^{1+q^{e_{i}}}(1-$ $u-v) \in R_{2 e_{i}}^{*}$ if and only if $x^{1+q^{e_{i}}} \neq-1$. Therefore, we have $q^{2 e_{i}}-q^{e_{i}}-2$ choices. Similarly, when $0 \neq c_{e_{i}} \in\langle u\rangle$ or $\langle v\rangle$, we have $q^{2 e_{i}}-q^{e_{i}}-2$ choices for each.
- If $0 \neq c_{e_{i}} \in\langle 1-u-v, u\rangle$ and $c_{e_{i}}=x(1-u-v)+y u$, for some $x, y \in \mathbb{F}_{q^{2} e_{i}}^{*}$, then $1+c_{e_{i}}^{1+q^{e_{i}}}=$ $1+x^{1+q^{e_{i}}}(1-u-v)+y^{1+q^{e_{i}}} u \in R_{2 e_{i}}^{*}$ if and only if $x^{1+q^{e_{i}}} \neq-1$ and $y^{1+q^{e_{i}}} \neq-1$. Therefore, we have $\left(q^{2 e_{i}}-q^{e_{i}}-2\right)^{2}$ choices. Similarly, when $0 \neq c_{e_{i}} \in\langle u, v\rangle$ or $\langle 1-u-v, v\rangle$, we have $\left(q^{2 e_{i}}-q^{e_{i}}-2\right)^{2}$ choices for each.
- If $0 \neq c_{e_{i}} \in\langle 1-u-v, u, v\rangle$ and $c_{e_{i}}=x(1-u-v)+y u+z v$, for some $x, y, z \in \mathbb{F}_{q^{2 e_{i}}}^{*}$, then $1+c_{e_{i}}^{1+q^{e_{i}}}=1+x^{1+q^{e_{i}}}(1-u-v)+y^{1+q^{e_{i}}} u+z^{1+q^{e_{i}}} v \in R_{2 e_{i}}^{*}$ if and only if $x^{1+q^{e_{i}}} \neq-1, y^{1+q^{e_{i}}} \neq-1$ and $z^{1+q^{e_{i}}} \neq-1$. Therefore, we have $\left(q^{2 e_{i}}-q^{e_{i}}-2\right)^{3}$ choices.

So, in this case, we have $1+3\left(q^{2 e_{i}}-q^{e_{i}}-2\right)+3\left(q^{2 e_{i}}-q^{e_{i}}-2\right)^{2}+\left(q^{2 e_{i}}-q^{e_{i}}-2\right)^{3}=\left(q^{2 e_{i}}-q^{e_{i}}-1\right)^{3}$ choices for C_{i}, where $2 \leq i \leq s$.

Now, for the last case we need to find choices for the pairs $\left\{c_{d_{j}}^{\prime}, c_{d_{j}}^{\prime \prime}\right\}$ such that $1+c_{d_{j}}^{\prime} c_{d_{j}}^{\prime \prime} \in R_{d_{j}}^{*}$ and we have the following possibilities:

- If $c_{d_{j}}^{\prime}=0$, then $1+c_{d_{j}}^{\prime} c_{d_{j}}^{\prime \prime} \in R_{d_{j}}^{*}$ for any $c_{d_{j}}^{\prime \prime} \in R_{d_{j}}^{*}$. So, we have $q^{3 d_{j}}$ choices for $c_{d_{j}}^{\prime \prime}$.
- If $c_{d_{j}}^{\prime} \in R_{d_{j}}^{*}$ then $c_{d_{j}}^{\prime \prime} \in R_{d_{j}}^{*}-\frac{1}{c_{d_{j}}^{\prime}}$ and $\left|R_{d_{j}}^{*}-\frac{1}{c_{d_{j}}^{\prime}}\right|=\left|R_{d_{j}}^{*}\right|$. We have $\left|R_{d_{j}}^{*}\right|^{2}=\left(q^{d_{j}}-1\right)^{6}$ choices for the pairs $\left\{c_{d_{j}}^{\prime}, c_{d_{j}}^{\prime \prime}\right\}$.
- If $0 \neq c_{d_{j}}^{\prime} \in\langle 1-u-v\rangle$ and $c_{d_{j}}^{\prime}=x(1-u-v)$, for some $x \in \mathbb{F}_{q^{d_{j}}}^{*}$. Assume that $c_{d_{j}}^{\prime \prime}=$ $\beta_{1}(1-u-v)+\beta_{2} u+\beta_{3} v$, for some $\beta_{1}, \beta_{2}, \beta_{3} \in \mathbb{F}_{q^{d_{j}}}$. Then $1+c_{d_{j}}^{\prime} c_{d_{j}}^{\prime \prime}=1+x \beta_{1}(1-u-v) \in R_{d_{j}}^{*}$ if and only if $x \beta_{1} \neq-1$. Therefore, we have $\left(q^{d_{j}}-1\right)^{2} q^{2 d_{j}}$ choices. Similarly, when $0 \neq c_{e_{i}} \in\langle u\rangle$ or $\langle v\rangle$, we have $\left(q^{d_{j}}-1\right)^{2} q^{2 d_{j}}$ choices for each.
- If $0 \neq c_{d_{j}}^{\prime} \in\langle 1-u-v, u\rangle$ and $c_{d_{j}}^{\prime}=x(1-u-v)+y u$, for some $x, y \in \mathbb{F}_{q^{d_{j}}}^{*}$. Assume that $c_{d_{j}}^{\prime \prime}=$ $\beta_{1}(1-u-v)+\beta_{2} u+\beta_{3} v$, for some $\beta_{1}, \beta_{2}, \beta_{3} \in \mathbb{F}_{q^{d_{j}}}$ Then $1+c_{d_{j}}^{\prime} c_{d_{j}}^{\prime \prime}=1+x \beta_{1}(1-u-v)+y \beta_{2} u \in R_{d_{j}}^{*}$ if and only if $x \beta_{1} \neq-1$ and $y \beta_{2} \neq-1$. Therefore, we have $\left(q^{d_{j}}-1\right)^{4} q^{d_{j}}$ choices. Similarly, when $0 \neq c_{d_{j}}^{\prime} \in\langle u, v\rangle$ or $\langle 1-u-v, v\rangle$, we have $\left(q^{d_{j}}-1\right)^{4} q^{d_{j}}$ choices for each.

In this case, we have $q^{3 d_{j}}+\left(q^{d_{j}}-1\right)^{6}+3\left(q^{d_{j}}-1\right)^{2} q^{2 d_{j}}+3\left(q^{d_{j}}-1\right)^{4} q^{d_{j}}=\left(q^{6 d_{j}}-3 q^{5 d_{j}}+6 q^{4 d_{j}}-\right.$ $7 q^{3 d_{j}}+6 q^{2 d_{j}}-3 q^{d_{j}}+1$) choices for the pairs $\left\{C_{j}^{\prime}, C_{j}^{\prime \prime}\right\}$, where $1 \leq j \leq t$. Now, summing all these above choices we get the required result.

3.2 Enumeration of double negacirculant codes when n is even

The present subsection deals with the enumeration of self-dual or LCD double negacirculant codes over R. Here, we take n to be an even positive integer such that $\operatorname{gcd}(n, q)=1$. We assume that the factorization of $x^{n}+1$ into distinct irreducible polynomials over R is as follows:

$$
x^{n}+1=a \prod_{i=1}^{s} g_{i}(x) \prod_{j=1}^{t} h_{j}(x) h_{j}^{*}(x),
$$

where $a \in R^{*}, g_{i}(x)(1 \leq i \leq s)$ are self-reciprocal polynomials of even degree $2 e_{i}$ and $h_{j}^{*}(x)(1 \leq$ $j \leq t$) are reciprocal polynomials of $h_{j}(x)$ with degree d_{j}, respectively. Using the arguments similar to double circulant codes, we get

$$
\frac{R[x]}{\left\langle x^{n}+1\right\rangle} \cong\left(\oplus_{i=1}^{s} R_{2 e_{i}}\right) \oplus\left(\oplus_{j=1}^{t} R_{d_{j}} \oplus R_{d_{j}}\right)
$$

where $R_{r}=\mathbb{F}_{q^{r}}+u \mathbb{F}_{q^{r}}+v \mathbb{F}_{q^{r}}, u^{2}=u, v^{2}=v, u v=v u=0$ for $r=2 e_{i}$ or d_{j}. Also, any linear code C of length 2 can be written as

$$
\begin{equation*}
C \cong\left(\oplus_{i=1}^{s} C_{i}\right) \oplus\left(\oplus_{j=1}^{t}\left(C_{j}^{\prime} \oplus C_{j}^{\prime \prime}\right)\right) \tag{2}
\end{equation*}
$$

where C_{i} is a linear code over $R_{2 e_{i}}$, for $1 \leq i \leq s$ and $C_{j}^{\prime}, C_{j}^{\prime \prime}$ are linear codes over $R_{d_{j}}$, for $1 \leq j \leq t$. To enumerate the self-dual and LCD double negacirculant codes, we need the following result which can be proved using the same procedure of Lemma 1.

Lemma 2 Let C be a double negacirculant code over R and $\alpha_{i}=\left(1, c_{e_{i}}\right), \alpha_{j}^{\prime}=\left(1, c_{d_{j}}^{\prime}\right), \alpha_{j}^{\prime \prime}=\left(1, c_{d_{j}}^{\prime \prime}\right)$ be generators of the constituent codes $C_{i}, C_{j}^{\prime}, C_{j}^{\prime \prime}$ over $R_{2 e_{i}}, R_{d_{j}}$ and $R_{d_{j}}$, respectively, for $1 \leq i \leq s$, $1 \leq j \leq t$. Then
(1) C is a self-dual code if and only if $1+c_{e_{i}}^{1+q^{e_{i}}}=0$ and $1+c_{d_{j}}^{\prime} c_{d_{j}}^{\prime \prime}=0$.
(2) C is a Euclidean LCD code if and only if $1+c_{e_{i}}^{1+q^{e_{i}}} \in R_{2 e_{i}}^{*}$ and $1+c_{d_{j}}^{\prime} c_{d_{j}}^{\prime \prime} \in R_{d_{j}}^{*}$.

Using this lemma, we now enumerate self-dual and LCD double negacirculant codes over R.
Theorem 5 Assume that for an even integer n, the factorization of $x^{n}+1$ over R is

$$
x^{n}+1=a \prod_{i=1}^{s} g_{i}(x) \prod_{j=1}^{t} h_{j}(x) h_{j}^{*}(x)
$$

where $a \in R^{*}$ and $n=\sum_{i=1}^{s} 2 e_{i}+2 \sum_{j=1}^{t} d_{j}$. The total number of self-dual double negacirculant codes over R is

$$
\prod_{i=1}^{s}\left(q^{e_{i}}+1\right)^{3} \prod_{j=1}^{t}\left(q^{d_{j}}-1\right)^{3}
$$

Proof We enumerate self-dual double negacirculant codes by counting the constituent codes. To count the choices for C_{i}, we need to find the number of solutions of the equation $1+c_{e_{i}} q_{e_{i}}^{q^{e_{i}}}=0$. Let $c_{e_{i}}=x(1-u-v)+y u+z v$, for some $x, y, z \in \mathbb{F}_{q^{2 e_{i}}}$. Then

$$
1+(x(1-u-v)+y u+z v)(x(1-u-v)+y u+z v)^{q^{e_{i}}}=0
$$

if and only if

$$
x x^{q^{e_{i}}}=-1, y y^{q^{e_{i}}}=x x^{q^{e_{i}}}=-1 \text { and } z z^{q^{e_{i}}}=x x^{q^{e_{i}}}=-1
$$

i.e., $\operatorname{Norm}(x)=-1, \operatorname{Norm}(y)=-1$ and $\operatorname{Norm}(z)=-1$. There are $q^{e_{i}}+1$ solutions for each $\operatorname{Norm}(x)=-1, \operatorname{Norm}(y)=-1$ and $\operatorname{Norm}(z)=-1$, respectively. Therefore, the total number of solutions for the above system is $\left(q^{e_{i}}+1\right)^{3}$.

Now, to count the choices for the dual pairs $\left\{C_{j}^{\prime}, C_{j}^{\prime \prime}\right\}$, we need to find the number of solutions of the equation $1+c_{d_{j}}^{\prime} c_{d_{j}}^{\prime \prime}=0$. There are the following possibilities:

- If $c_{d_{j}}^{\prime} \in R_{d_{j}}^{*}$, then $c_{d_{j}}^{\prime \prime}=-\frac{1}{c_{d_{j}}^{\prime}}$, i.e., a unique choice for $c_{d_{j}}^{\prime \prime}$ corresponding to each $c_{d_{j}}^{\prime}$. Therefore, there are $\left|R_{d_{j}}^{*}\right|=\left(q^{d_{j}}-1\right)^{3}$ choices for $c_{d_{j}}^{\prime}$ and hence for the pair $\left\{c_{d_{j}}^{\prime}, c_{d_{j}}^{\prime \prime}\right\}$.
- If $c_{d_{j}}^{\prime} \in R_{d_{j}} \backslash R_{d_{j}}^{*}$, then $c_{d_{j}}^{\prime}=x(1-u-v)+y u+z v$, for some $x, y, z \in \mathbb{F}_{q^{d_{j}}}$, where not all x, y or z are non-zero. For $c_{d_{j}}^{\prime \prime}=\beta_{1}(1-u-v)+\beta_{2} u+\beta_{3} v \in R_{d_{j}}$, where $\beta_{1}, \beta_{2}, \beta_{3} \in \mathbb{F}_{q^{d_{j}}}$, we have

$$
1+c_{d_{j}}^{\prime} c_{d_{j}}^{\prime \prime}=\left(1+x \beta_{1}\right)+\left(y \beta_{2}-x \beta_{1}\right) u+\left(z \beta_{3}-x \beta_{1}\right) v=0
$$

which implies that $x \beta_{1}=-1, y \beta_{2}=-1, z \beta_{3}=-1$. Any one of x, y or z equal to 0 , yields $-1=0$, a contradiction. Therefore, these cases are not possible.
From all the above cases, we conclude that there are $\prod_{i=1}^{s}\left(q^{e_{i}}+1\right)^{3} \prod_{j=1}^{t}\left(q^{d_{j}}-1\right)^{3}$ self-dual double negacirculant codes over R.

With the same assumptions and notations of Theorem 5, the following result provides the enumeration of LCD double negacirculant codes over R.
Theorem 6 The total number of LCD double negacirculant codes over R is

$$
\prod_{i=1}^{s}\left(q^{2 e_{i}}-q^{e_{i}}-1\right)^{3} \prod_{j=1}^{t}\left(q^{6 d_{j}}-3 q^{5 d_{j}}+6 q^{4 d_{j}}-7 q^{3 d_{j}}+6 q^{2 d_{j}}-3 q^{d_{j}}+1\right)
$$

Proof The total number of LCD double negacirculant codes over R can be obtained by counting the constituent codes. To count the choices for C_{i}, we need to find the number of solutions for the equation $1+c_{e_{i}}^{1+q^{e_{i}}} \in R_{2 e_{i}}^{*}$. The following cases arise:

- If $c_{e_{i}}=0$, then clearly $1+c_{e_{i}}^{1+q^{e_{i}}} \in R_{2 e_{i}}^{*}$.
- Let $c_{e_{i}} \in\langle 1-u-v\rangle$ and $c_{e_{i}}=x(1-u-v)$, for some $x \in \mathbb{F}_{q^{2} e_{i}}^{*}$. Then $1+c_{e_{i}}^{1+q^{e_{i}}}=1+x^{1+q^{e_{i}}}(1-$ $u-v) \in R_{2 e_{i}}^{*}$ if and only if $x^{1+q^{e_{i}}} \neq-1$. Therefore, we have $q^{2 e_{i}}-q^{e_{i}}-2$ choices for x and hence for $c_{e_{i}}$. Similarly, there are $q^{2 e_{i}}-q^{e_{i}}-2$ choices for each case $0 \neq c_{e_{i}} \in\langle u\rangle$ or $\langle v\rangle$.
- Let $c_{e_{i}} \in\langle 1-u-v, u\rangle$ and $c_{e_{i}}=x(1-u-v)+y u$, for some $x, y \in \mathbb{F}_{q^{2 e_{i}}}^{*}$. Then $1+c_{e_{i}}^{1+q^{e_{i}}}=$ $1+x^{1+q^{e_{i}}}(1-u-v)+y^{1+q^{e_{i}}} u \in R_{2 e_{i}}^{*}$ if and only if $x^{1+q^{e_{i}}} \neq-1$ and $y^{1+q^{e_{i}}} \neq-1$. Therefore, we have $q^{2 e_{i}}-q^{e_{i}}-2$ choices for each x, y and hence $\left(q^{2 e_{i}}-q^{e_{i}}-2\right)^{2}$ choices for $c_{e_{i}}$. Similarly, there are $\left(q^{2 e_{i}}-q^{e_{i}}-2\right)^{2}$ choices for $0 \neq c_{e_{i}} \in\langle u, v\rangle$ or $\langle 1-u-v, v\rangle$ each.
- Let $c_{e_{i}} \in\langle 1-u-v, u, v\rangle$ and $c_{e_{i}}=x(1-u-v)+y u+z v$, for some $x, y, z \in \mathbb{F}_{q^{2 e_{i}}}^{*}$. Then $1+c_{e_{i}}^{1+q^{e_{i}}}=1+x^{1+q^{e_{i}}}(1-u-v)+y^{1+q^{e_{i}}} u+z^{1+q^{e_{i}}} v \in R_{2 e_{i}}^{*}$ if and only if $x^{1+q^{e_{i}}} \neq-1, y^{1+q^{e_{i}}} \neq-1$ and $z^{1+q^{e_{i}}} \neq-1$. Therefore, we have $q^{2 e_{i}}-q^{e_{i}}-2$ choices for each x, y, z and hence $\left(q^{2 e_{i}}-q^{e_{i}}-2\right)^{3}$ choices for $c_{e_{i}}$.
Hence, there are $1+3\left(q^{2 e_{i}}-q^{e_{i}}-2\right)+3\left(q^{2 e_{i}}-q^{e_{i}}-2\right)^{2}+\left(q^{2 e_{i}}-q^{e_{i}}-2\right)^{3}=\left(q^{2 e_{i}}-q^{e_{i}}-1\right)^{3}$ choices for C_{i}, where $1 \leq i \leq s$.

Now, to count the choices for the pairs $\left\{C_{j}^{\prime}, C_{j}^{\prime \prime}\right\}$, we need to find the number of solution pairs $\left\{c_{d_{j}}^{\prime}, c_{d_{j}}^{\prime \prime}\right\}$ for the equation $1+c_{d_{j}}^{\prime} c_{d_{j}}^{\prime \prime} \in R_{d_{j}}^{*}$. Here the following cases arise:

- If $c_{d_{j}}=0$, then clearly $1+c_{d_{j}}^{\prime} c_{d_{j}}^{\prime \prime} \in R_{d_{j}}^{*}$ for all $c_{d_{j}}^{\prime \prime} \in R_{d_{j}}^{*}$. Thus, there are $q^{3 d_{j}}$ choices for $c_{d_{j}}^{\prime \prime}$.
- If $c_{d_{j}}^{\prime} \in R_{d_{j}}^{*}$, then $c_{d_{j}}^{\prime \prime} \in R_{d_{j}}^{*}-\frac{1}{c_{d_{j}}^{\prime}}$ and we have $\left|R_{d_{j}}^{*}-\frac{1}{c_{d_{j}}^{\prime}}\right|=\left|R_{d_{j}}^{*}\right|$ choices for $c_{d_{j}}^{\prime \prime}$ corresponding to each $c_{d_{j}}^{\prime}$. Therefore, there are $\left|R_{d_{j}}^{*}\right|^{2}=\left(q^{d_{j}}-1\right)^{6}$ choices for the pair $\left\{c_{d_{j}}^{\prime}, c_{d_{j}}^{\prime \prime}\right\}$.
- If $c_{d_{j}}^{\prime} \in\langle 1-u-v\rangle \backslash\{0\}$, then $c_{d_{j}}^{\prime}=x(1-u-v)$, for some $x \in \mathbb{F}_{q^{d_{j}}}^{*}$. Assume that $c_{d_{j}}^{\prime \prime}=$ $\beta_{1}(1-u-v)+\beta_{2} u+\beta_{3} v$, for some $\beta_{1}, \beta_{2}, \beta_{3} \in \mathbb{F}_{q^{d_{j}}}$. Then $1+c_{d_{j}}^{\prime} c_{d_{j}}^{\prime \prime}=1+x \beta_{1}(1-u-v) \in R_{d_{j}}^{*}$ if and only if $x \beta_{1} \neq-1$. Once $c_{d_{j}}^{\prime}$ is fixed, there are $q^{d_{j}}-1$ choices for β_{1} and $q^{d_{j}}$ choices for each β_{2}, β_{3}. Therefore, there are $\left(q^{d_{j}}-1\right)^{2} q^{2 d_{j}}$ choices for the pair $\left\{c_{d_{j}}^{\prime}, c_{d_{j}}^{\prime \prime}\right\}$. Similarly, if $0 \neq c_{e_{i}} \in\langle u\rangle$ or $\langle v\rangle$, there are $\left(q^{d_{j}}-1\right)^{2} q^{2 d_{j}}$ choices for each case.
- If $c_{d_{j}}^{\prime} \in\langle 1-u-v, u\rangle$ and $c_{d_{j}}^{\prime}=x(1-u-v)+y u$, for some $x, y \in \mathbb{F}_{q_{j}}^{*}$. Assume that $c_{d_{j}}^{\prime \prime}=$ $\beta_{1}(1-u-v)+\beta_{2} u+\beta_{3} v$, for some $\beta_{1}, \beta_{2}, \beta_{3} \in \mathbb{F}_{q^{d_{j}}}$ Then $1+c_{d_{j}}^{\prime} c_{d_{j}}^{\prime \prime}=1+x \beta_{1}(1-u-v)+y \beta_{2} u \in R_{d_{j}}^{*}$ if and only if $x \beta_{1} \neq-1$ and $y \beta_{2} \neq-1$. Once $c_{d_{j}}^{\prime}$ is fixed, there are $q^{d_{j}}-1$ choices for each β_{1}, β_{2} and $q^{d_{j}}$ choices for β_{3}. Therefore, there are $\left(q^{d_{j}}-1\right)^{4} q^{d_{j}}$ choices for the pair $\left\{c_{d_{j}}^{\prime}, c_{d_{j}}^{\prime \prime}\right\}$. Similarly, if $0 \neq c_{d_{j}}^{\prime} \in\langle u, v\rangle$ or $\langle 1-u-v, v\rangle$, we have $\left(q^{d_{j}}-1\right)^{4} q^{d_{j}}$ choices for each pair $\left\{c_{d_{j}}^{\prime}, c_{d_{j}}^{\prime \prime}\right\}$.
Summing all these cases, we get that there are $q^{3 d_{j}}+\left(q^{d_{j}}-1\right)^{6}+3\left(q^{d_{j}}-1\right)^{2} q^{2 d_{j}}+3\left(q^{d_{j}}-1\right)^{4} q^{d_{j}}=$ $\left(q^{6 d_{j}}-3 q^{5 d_{j}}+6 q^{4 d_{j}}-7 q^{3 d_{j}}+6 q^{2 d_{j}}-3 q^{d_{j}}+1\right)$ choices for the pairs $\left\{C_{j}^{\prime}, C_{j}^{\prime \prime}\right\}$, where $1 \leq j \leq t$. Now, combining all the above choices for C_{i} and the pairs $\left\{C_{j}^{\prime}, C_{j}^{\prime \prime}\right\}$, we get the desired result.

4 Distance bounds for double circulant codes

In this section, we provide distance bounds for self-dual or LCD double circulant codes and show that the families of Gray images of self-dual or LCD double circulant codes are good (which is one of the main results of this paper).

Let n be an odd prime and q be a primitive root modulo n. We assume that the factorization of $x^{n}-1$ into distinct irreducible polynomials over R is

$$
\begin{equation*}
x^{n}-1=(x-1)\left(1+x+\cdots+x^{n-1}\right)=(x-1) h(x), \tag{3}
\end{equation*}
$$

where $h(x)=1+x+\cdots+x^{n-1}$ is an irreducible polynomial over R. By the Chinese Remainder Theorem (CRT), we have

$$
\begin{aligned}
\frac{R[x]}{\left\langle x^{n}-1\right\rangle} & \cong \frac{R[x]}{\langle x-1\rangle} \oplus \frac{R[x]}{\langle h(x)\rangle} \\
& \cong R \oplus R_{1},
\end{aligned}
$$

where $R_{1}=\mathbb{F}_{q^{n-1}}+u \mathbb{F}_{q^{n-1}}+v \mathbb{F}_{q^{n-1}}, u^{2}=u, v^{2}=v, u v=v u=0$. We denote $\mathcal{R}=\frac{R[x]}{\langle h(x)\rangle}$.
Definition 1 Let C be a cyclic code over R of odd length n and $h(x)$ be a polynomial given in the above discussion. Then a non-zero codeword in C is said to be a constant vector if it is generated by $h(x)$.

Now, we provide two lemmas which will be used to prove the main result.
Lemma 3 Let $z=(e, f) \in R^{2 n}$ be a non-zero vector such that e is not a constant vector. Then there are at most $q^{2 n+1}$ double circulant codes $C_{a}=(1, a)$ over R such that $z \in C_{a}$, where $a \in \mathcal{R}$.

Proof The vector z can be written as $z=(e, f) \cong\left(e_{1}, f_{1}\right) \oplus\left(e_{2}, f_{2}\right)$ by the CRT decomposition. As $z \in C_{a}$, we have $f=e a, f_{1}=e_{1} a_{1}$ and $f_{2}=e_{2} a_{2}$, where $e_{1}, f_{1}, a_{1} \in R$ and $e_{2}, f_{2}, a_{2} \in \mathcal{R}$. Let $a_{1}=r_{1}(1-u-v)+u s_{1}+v t_{1}$ and $a_{2}=r_{2}(1-u-v)+u s_{2}+v t_{2}$, for some $r_{1}, s_{1}, t_{1} \in \mathbb{F}_{q}$ and $r_{2}, s_{2}, t_{2} \in \mathbb{F}_{q^{n-1}}$. Now, we discuss the first constituent of the code C_{a} through e_{1}.

- If $e_{1}=0$, then we have q^{3} choices for a_{1}.
- If $0 \neq e_{1} \in\langle 1-u-v\rangle$, then $e_{1}=(1-u-v) x_{1}$ and $f_{1}=(1-u-v) x_{1}^{\prime}$, for some $x_{1} \in \mathbb{F}_{q}^{*}, x_{1}^{\prime} \in \mathbb{F}_{q}$. Now,

$$
f_{1}=(1-u-v) x_{1}^{\prime}=(1-u-v) x_{1} a_{1}=(1-u-v) x_{1} r_{1} .
$$

This implies that $r_{1}=\frac{x_{1}^{\prime}}{x_{1}}$ and we have q^{2} choices for a_{1}. Similarly, when $0 \neq e_{1} \in\langle u\rangle$ or $\langle v\rangle$, we have q^{2} choices for each case.

- If $0 \neq e_{1} \in\langle 1-u-v, u\rangle$ and $e_{1}=x_{1}(1-u-v)+y_{1} u$, for some $x_{1}, y_{1} \in \mathbb{F}_{q}^{*}$, then $f_{1}=$ $x_{1}^{\prime}(1-u-v)+y_{1}^{\prime} u$, for some $x_{1}^{\prime}, y_{1}^{\prime} \in \mathbb{F}_{q}$. Now,

$$
f_{1}=(1-u-v) x_{1}^{\prime}+u y_{1}^{\prime}=\left((1-u-v) x_{1}+u y_{1}\right) a_{1}=(1-u-v) x_{1} r_{1}+u y_{1} s_{1}
$$

This implies that $r_{1}=\frac{x_{1}^{\prime}}{x_{1}}, s_{1}=\frac{y_{1}^{\prime}}{y_{1}}$ and we have q choices for a_{1}. Similarly, when $0 \neq c_{1} \in\langle u, v\rangle$ or $\langle 1-u-v, v\rangle$, we have q choices for each case.

- If $e_{1} \in R^{*}$, then we have a unique choice for $a_{1}=\frac{f_{1}}{e_{1}}$.

Therefore, for each case we have at most q^{3} choices for a_{1}.
For the second constituent code of C_{a}, we discuss choices for a_{2} through e_{2}.

- If $e_{2}=0$, then e is a constant vector, i.e., $e \equiv 0(\bmod h(x))$, which is a contradiction to the choice of e.
- If $0 \neq e_{2} \in\langle 1-u-v\rangle$, then $e_{2}=(1-u-v) x_{2}$ and $f_{2}=(1-u-v) x_{2}^{\prime}$, for some $x_{2} \in \mathbb{F}_{q^{n-1}}^{*}, x_{2}^{\prime} \in$ $\mathbb{F}_{q^{n-1}}$. Now,

$$
f_{2}=(1-u-v) x_{2}^{\prime}=(1-u-v) x_{2} a_{2}=(1-u-v) x_{2} r_{2}
$$

This implies that $r_{2}=\frac{x_{2}^{\prime}}{x_{2}}$ and we have $q^{2 n-2}$ choices for a_{2}. Similarly, when $0 \neq e_{2} \in\langle u\rangle$ or $\langle v\rangle$, we have $q^{2 n-2}$ choices for each case.

- If $0 \neq e_{2} \in\langle 1-u-v, u\rangle$ and $e_{2}=x_{2}(1-u-v)+y_{2} u$, for some $x_{2}, y_{2} \in \mathbb{F}_{q^{n-1}}^{*}$, then $f_{2}=$ $x_{2}^{\prime}(1-u-v)+y_{2}^{\prime} u$, for some $x_{2}^{\prime}, y_{2}^{\prime} \in \mathbb{F}_{q^{n-1}}$. Now,

$$
f_{2}=(1-u-v) x_{2}^{\prime}+u y_{2}^{\prime}=\left((1-u-v) x_{2}+u y_{2}\right) a_{2}=(1-u-v) x_{2} r_{2}+u y_{2} s_{2} .
$$

This implies that $r_{2}=\frac{x_{2}^{\prime}}{x_{2}}, s_{2}=\frac{y_{2}^{\prime}}{y_{2}}$ and we have q^{n-1} choices for a_{2}. Similarly, when $0 \neq c_{2} \in\langle u, v\rangle$ or $\langle 1-u-v, v\rangle$, we have q^{n-1} choices for each case.

- If $e_{2} \in \mathcal{R}^{*}$, then we have a unique choice for $a_{2}=\frac{f_{2}}{e_{2}}$.

From the above cases, we conclude that the number of choices for a_{2} is at most $q^{2 n-2}$. Therefore, there are at most $q^{2 n+1}$ choices for a such that $z \in C_{a}$.

Keeping the same notations, we have the following result.
Lemma 4 Let $z=(e, f) \in R^{2 n}$ be a non-zero vector such that e is not a constant vector. Then there are at most $8\left(1+q^{\frac{n-1}{2}}\right)^{2}$ self-dual codes $C_{a}=(1, a)$ such that $z \in C_{a}$, where $a \in \mathcal{R}$.

Proof Intially, we discuss the first constituent of the code C_{a}. From Theorem 3, there are at most 8 choices for C_{1}, a self-dual double circulant code over R.

For the second constituent code of C_{a}, we discuss choices for a_{2} through e_{2}. Let $a_{2}=(1-u-$ $v) r_{2}+u s_{2}+v t_{2}$, for some $r_{2}, s_{2}, t_{2} \in \mathbb{F}_{q^{n-1}}$.

- If $e_{2}=0$, then e is a constant vector, i.e., $e \equiv 0(\bmod h(x))$, which is a contradiction to the choice of e.
- If $0 \neq e_{2} \in\langle 1-u-v\rangle$, then $e_{2}=(1-u-v) x_{2}$ and $f_{2}=(1-u-v) x_{2}^{\prime}$, for some $x_{2} \in \mathbb{F}_{q^{n-1}}^{*}, x_{2}^{\prime} \in$ $\mathbb{F}_{q^{n-1}}$. Now,

$$
f_{2}=(1-u-v) x_{2}^{\prime}=(1-u-v) x_{2} a_{2}=(1-u-v) x_{2} r_{2}
$$

This implies that $r_{2}=\frac{x_{2}^{\prime}}{x_{2}}$. Further, as C_{a} is self-dual, $1+a_{2} \bar{a}_{2}=1+a_{2} a_{2}^{q^{\frac{n-1}{2}}}=0$ which implies that $r_{2} r_{2}^{q^{\frac{n-1}{2}}}=-1, s_{2} s_{2}^{q^{\frac{n-1}{2}}}=-1$ and $t_{2} t_{2}^{q^{\frac{n-1}{2}}}=-1$, i.e., $\operatorname{Norm}\left(r_{2}\right)=-1, \operatorname{Norm}\left(s_{2}\right)=-1$ and $\operatorname{Norm}\left(t_{2}\right)=-1$. Therefore, we have $\left(1+q^{\frac{n-1}{2}}\right)^{2}$ choices for a_{2}. Similarly, when $0 \neq e_{2} \in\langle u\rangle$ or $\langle v\rangle$, we have $\left(1+q^{\frac{n-1}{2}}\right)^{2}$ choices for each case.

- If $0 \neq e_{2} \in\langle 1-u-v, u\rangle$ and $e_{2}=x_{2}(1-u-v)+y_{2} u$, for some $x_{2}, y_{2} \in \mathbb{F}_{q^{n-1}}^{*}$, then $f_{2}=$ $x_{2}^{\prime}(1-u-v)+y_{2}^{\prime} u$, for some $x_{2}^{\prime}, y_{2}^{\prime} \in \mathbb{F}_{q^{n-1}}$. Now,

$$
f_{2}=(1-u-v) x_{2}^{\prime}+u y_{2}^{\prime}=\left((1-u-v) x_{2}+u y_{2}\right) a_{2}=(1-u-v) x_{2} r_{2}+u y_{2} s_{2}
$$

This implies that $r_{2}=\frac{x_{2}^{\prime}}{x_{2}}, s_{2}=\frac{y_{2}^{\prime}}{y_{2}}$. Further, as C_{a} is self-dual, $1+a_{2} \bar{a}_{2}=1+a_{2} a_{2}^{q \frac{n-1}{2}}=0$, which implies that $r_{2} r_{2}^{q^{\frac{n-1}{2}}}=-1, s_{2} s_{2}^{q^{\frac{n-1}{2}}}=-1$ and $t_{2} t_{2}^{q^{\frac{n-1}{2}}}=-1$, i.e., $\operatorname{Norm}\left(r_{2}\right)=-1, \operatorname{Norm}\left(s_{2}\right)=$ -1 and $\operatorname{Norm}\left(t_{2}\right)=-1$. Therefore, we have at most $\left(1+q^{\frac{n-1}{2}}\right)$ choices for a_{2}. Similarly, when $0 \neq c_{2} \in\langle u, v\rangle$ or $\langle 1-u-v, v\rangle$, we have at most $\left(1+q^{\frac{n-1}{2}}\right)$ choices for each case.

- If $e_{2} \in \mathcal{R}^{*}$, then we have a unique choice for $a_{2}=\frac{f_{2}}{e_{2}}$.

From the above cases, we conclude that the number of choices for a_{2} is at most $\left(1+q^{\frac{n-1}{2}}\right)^{2}$. Therefore, there are at most $8\left(1+q^{\frac{n-1}{2}}\right)^{2}$ choices for a such that $z \in C_{a}$.

Using the Artin's conjecture for primitive roots, we see that for a fixed q which is not a square, there are infinitely many primes n such that q is primitive root modulo n. In that situation, the factorization given in (3) of $x^{n}-1$ into two irreducible factors holds. Thus, we get an infinite family of double circulant codes over R. (Note that Artin's conjecture is known to be true for all non-square q 's except at most two unspecified exceptions [19]). Now, we are in a position to prove Theorem 2
Proof We denote the size of the family by A_{n}. Then using Theorem 3 and Theorem 4 for n tending to infinity, we can approximate A_{n} to $8 q^{\frac{3 n-1}{2}}$, for self-dual and $q^{3 n}$, for LCD double circulant codes. Let $B\left(d_{n}\right)$ be the number of elements in $R^{2 n}$, whose image under ϕ_{i} have Hamming weight less than d_{n}. Assume that we have

$$
\begin{equation*}
A_{n}>a_{n} B\left(d_{n}\right), \tag{4}
\end{equation*}
$$

(see [21,28]) where $a_{n}=8\left(1+q^{(n-1) / 2}\right)^{2}$ for self-dual and $q^{2 n+1}$, for LCD codes. Therefore, by Lemma 3 and Lemma 4 we conclude that in the family, there exist codes of length $2 n$ over R whose images under ϕ_{i} have Hamming distance $\geq d_{n}$.

To enforce inequality (4) for large n, we make the following argument. We consider δ to be the relative distance of the above family and assume that d_{n} is the largest such that $A_{n}>a_{n} B\left(d_{n}\right)$. Also, we assume that the growth is of the form $d_{n}=6 \delta n$. Then by [11], Lemma 2.10.3], we get that $B\left(d_{n}\right)$ is approximately equal to $q^{6 n H_{q}(\delta)}$. From this, we can see that if $H_{q}\left(\delta_{0}\right)<\frac{1}{6}$, for LCD and $<\frac{1}{12}$, for self-dual codes, then inequality (4) holds for n large enough.

5 Numerics

Here, we present several examples of double circulant LCD and self-dual codes under the map ϕ_{i}, for $i=1,2$. To determine their parameters we need a result as below.

Lemma 5 Assume that C has the generator matrix $G=(I, A)$, where $A=A_{1}+u A_{2}+v A_{3}, A_{i}$ is an $n \times n$ matrix over \mathbb{F}_{q}, for $i=1,2,3$ and I is the identity matrix of order n. Then $\phi_{i}(C)$ has a generator matrix

$$
M_{1}=\left(\begin{array}{ccccc}
0 & 2 I & 0 & -A_{2} & 2 A_{1}+A_{2} \\
A_{3} \\
-I & I & 0 & -A_{1}-A_{2} & A_{1}+A_{2} \\
0 & 0 & I & 0 & 0 \\
A_{1}+A_{3}
\end{array}\right)_{3 n \times 6 n} .
$$

and

$$
M_{2}=\left(\begin{array}{cccccc}
I & I & I & A_{1} & A_{1}+A_{2} & A_{1}+A_{3} \\
0 & I & 0 & 0 & A_{1}+A_{2} & 0 \\
0 & 0 & I & 0 & 0 & A_{1}+A_{3}
\end{array}\right)_{3 n \times 6 n} .
$$

for $i=1,2$, respectively.
Proof The matrix M_{i} is constructed by applying Gray map ϕ_{i} on $G=(I, A), u G$ and $v G$, for $i=1,2$, respectively.

Now, by using the generator matrices given by Lemma 5 and the Magma computation system [5], we calculate the minimum distances d in Table 1 for the double circulant codes of length $2 n$ over $R=\mathbb{F}_{5}+u \mathbb{F}_{5}+v \mathbb{F}_{5}$. In this way, we obtain their \mathbb{F}_{5} parameters $[6 n, 3 n, d]$ (sixth-column). Note that second to fourth columns include the generator polynomials $a_{i}(x)$, for $i=1,2,3$, respectively. Also, we write the coefficients of these polynomials in decreasing powers of x, for instance, we write 3242 to represent the polynomial $3 x^{3}+2 x^{2}+4 x+2$. In last column, we also mention their nature in terms of LCD or self-dual.

6 Conclusion

In this paper, we have calculated the total number of self-dual and LCD double circulant and double negacirculant codes over the semi-local ring R. Further, we study the distance bounds for the family of Gray images of self-dual and LCD double circulant codes over R and show that these families are good. It would be a worthy study to investigate these codes for other semi-local non-chain rings in the future.

Table 1: \mathbb{F}_{5}-images of double circulant codes of length $2 n$ over $\mathbb{F}_{5}+u \mathbb{F}_{5}+v \mathbb{F}_{5}$

n	$a_{1}(x)$	$a_{2}(x)$	$a_{3}(x)$	Map	Parameters	Remark
2	30	23	22	ϕ_{2}	$[12,6,2]_{5}$	Self-dual
3	133	114	344	ϕ_{2}	$[18,9,4]_{5}$	Self-dual
3	121	402	121	ϕ_{1}	$[18,9,4]_{5}$	LCD
4	0334	3242	4234	ϕ_{1}	$[24,12,4]_{5}$	LCD
4	1114	3332	3332	ϕ_{2}	$[24,12,4]_{5}$	Self-dual
5	43030	04131	33303	ϕ_{1}	$[30,15,5]_{5}$	LCD
6	010044	132202	142241	ϕ_{1}	$[36,18,5]_{5}$	LCD
7	1402124	2113424	1402124	ϕ_{1}	$[42,21,6]_{5}$	LCD
8	34430110	24023121	31231143	ϕ_{1}	$[48,24,6]_{5}$	LCD
9	033302122	314321000	342123122	ϕ_{1}	$[54,27,7]_{5}$	LCD

Acknowledgement

The authors are thankful to the University Grants Commission (UGC), Govt. of India for financial support and Indian Institute of Technology Patna for research facilities. Also, authors would like to thank the anonymous referee(s) and the Editor for their valuable comments to improve the presentation of the manuscript.

References

1. Alahmadi, A., Güneri, C., Ozkaya, B., Shoaib, H., Solé, P.: On self-dual double negacirculant codes. Discret. Appl. Math. 222, 205-212 (2017).
2. Alahmadi, A., Özdemir, F., Solé, P.: On self-dual double circulant codes. Des. Codes Cryptogr. 86(6), 1257-1265 (2018).
3. Ashraf, M., Mohammad, G.: Skew cyclic codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}$. Asian-Eur. J. Math. 11(5), 1850072 (2018).
4. Aydin, N., Cengellenmis, Y., Dertli, A.: On some constacyclic codes over $\mathbb{Z}_{4}[u] /\left\langle u^{2}-1\right\rangle$, their \mathbb{Z}_{4} images, and new codes. Des. Codes Cryptogr. 86(6), 1249-1255 (2018).
5. Bosma, W., Cannon, J.: Handbook of Magma Functions. Univ. of Sydney (1995).
6. Blake, I. F.: Codes over certain rings. Inform. Contr. 20, 396-404 (1972).
7. Guneri, C., Ozkaya, B., Solé, P.: Quasi-cyclic complementary dual codes. Finite Fields Their Appl. 42, 67-80 (2016).
8. Gulliver, T. A., Bhargava, V. K.: Some best rate $\frac{1}{p}$ and rate $\frac{p-1}{p}$ systematic quasi-cyclic codes. IEEE Trans. Inf. Theory. 37, 552-555 (1991).
9. Gulliver, T. A., Bhargava, V. K.: Twelve good rate $\frac{(m-r)}{p m}$ binary quasi-cyclic codes. IEEE Trans. Inf. Theory 39, 1750-1751 (1993).
10. Huang, D., Shi, M., Solé, P.: Double Circulant Self-Dual and LCD Codes Over $\mathbb{Z}_{p^{2}}$. Int. J. Found. Comput. Sci. 30(3), 407-416 (2019).
11. Huffman, W. C., Pless, V.: Fundamentals of Error Correcting Codes. Cambridge University Press, (2003).
12. Islam, H., Prakash, O.: A note on skew constacyclic codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}$. Discrete Math. Algorithms Appl. 11(3), 1950030 (2019).
13. Islam, H., Prakash, O.: New quantum codes from constacyclic and additive constacyclic codes. Quantum Inf. Process 19(9), 1-17 (2020).
14. Islam, H., Bag, T., Prakash, O.: A class of constacyclic codes over $\mathbb{Z}_{4}[u] /\left\langle u^{k}\right\rangle$. J. Appl. Math. Comput. 60(1-2), 237-251 (2019).
15. Islam, H., Prakash, O.: A class of constacyclic codes over the ring $\mathbb{Z}_{4}[u, v] /\left\langle u^{2}, u^{2}, u v-v u\right\rangle$ and their Gray images. Filomat 33(8), 2237-2248 (2019).
16. Lidl, R., Niederreiter, H.: Finite Fields. Addison-Wesley, Reading (1983).
17. Ling, S., Solé, P.: On the algebraic structure of quasi-cyclic codes I: Finite fields. IEEE Trans. Inf. Theory 47(7), 2751-2760 (2001).
18. Ling, S., Solé, P.: On the algebraic structure of quasi-cyclic codes II: Chain rings. Des. Codes Cryptogr. 30(1), 113-130 (2003).
19. Moree, P.: Artin's primitive root conjecture a survey. Integers 10(6), 1305-1416 (2012).
20. Qian, L., Shi, M., Solé, P.: On self-dual and LCD quasi-twisted codes of index two over a special chain ring. Cryptogr. Commun. 11(4), 717-734 (2019).
21. Shi, M., Zhu, H., Qian, L., Sok, L., Solé, P.: On self-dual and LCD double circulant and double negacirculant codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}$. Cryptogr. Commun. 12(1), 53-70 (2020).
22. Shi, M., Huang, D., Sok, L., Solé, P.: Double circulant LCD codes over \mathbb{Z}_{4}. Finite Fields Appl. 58, 133-144 (2019).
23. Shi, M., Huang, D., Sok, L., Solé, P.: Double circulant self-dual and LCD codes over Galois ring. Adv. Math. Commun. 13(1), 171-183 (2019).
24. Shi, M., Zhu, H., Qian, L., Solé, P.: On self-dual four circulant codes. Int. J. Found. Comput. Sci. 29(07), 1143-1150 (2018).
25. Shi, M., Sok, L., Aydin, N., Sole, P.: On constacyclic codes over $\mathbb{Z}_{4}[u] /\left\langle u^{2}-1\right\rangle$. Finite Fields Appl. 45, 86-95 (2015).
26. Shi, M., Zhang, Y.: Quasi-twisted codes with constacyclic constituent codes. Finite Fields Their Appl. 39, 159-178 (2016).
27. Shi, M., Qian, L., Solé, P.: On self-dual negacirculant codes of index two and four. Des. Codes Cryptogr. 11, 2485-2494 (2018).
28. Yao, T., Zhu, S., Kai, X.: On self-dual and LCD double circulant codes over a non-chain ring. Chinese Journal of Electronics 28(5), 1018-1024 (2019).
29. Zhu, H., Shi, M.: On linear complementary dual four circulant codes. Bull. Aust. Math. Soc. 98(1), 159-166 (2018).

[^0]: Shikha Yadav
 Habibul Islam
 Om Prakash
 Department of Mathematics
 Indian Institute of Technology Patna, Patna 801 106, India
 E-mail: 1821ma10@iitp.ac.in, habibul.pma17@iitp.ac.in,om@iitp.ac.in
 Patrick Solé
 I2M, (CNRS, Aix-Marseille University, Centrale Marseille)
 Marseilles, France
 E-mail: sole@enst.fr

