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Linear Code

A linear code C is a vector subspace of Fn
q. If the size of the code

is qk and its minimum Hamming weight is d we call it an [n, k, d ]
code.



Orthogonals

Equip the ambient space with the inner-product

[v,w] =
∑

viwi

and define
C⊥ = {v | [v,w = 0,∀w ∈ C}.

We assume that wi = wi unless otherwise stated. In the case when
it is not the identity we refer to it as the Hermitian inner-product.

C⊥ is a linear code and dim(C⊥) = n − dim(C ).
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Self-Dual Codes

A code is self-orthogonal if C ⊆ C⊥.

A code is self-dual if C = C⊥.



Self-Dual Codes

A code is self-orthogonal if C ⊆ C⊥.

A code is self-dual if C = C⊥.



Self-Dual Codes

Theorem
If C is a self-dual code of length n over Fq then n must be even.

Proof.
We have dim(C ) = dim(C⊥) and dim(C ) + dim(C⊥) = n which
gives dim(C ) = n

2 and so n must be even.
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Example

〈(1, 2)〉 = {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)} is a self-dual code of
length 2 over F5.

(
1 0 2 3
0 1 3 5

)
generates a self-dual code of length 4 over F7.

There are none of length 2.
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Gleason-Pierce-Ward

Theorem
Let p be a prime, m, n be integers and q = pm. Suppose C is a
linear [n, n2 ] divisible code over Fq with divisor ∆ > 1. Then one
(or more) of the following holds:
I. q = 2 and ∆ = 2,
II. q = 2, ∆ = 4, and C is self-dual,
III. q = 3, ∆ = 3, and C is self-dual,
IV. q = 4, ∆ = 2, and C is Hermitian self-dual,
V. ∆ = 2 and C is equivalent to the code over Fq with generator
matrix [I n

2
I n
2
], where I n

2
is the identity matrix of size n

2 over Fq.



Type I and Type II

A binary self-dual code with all weights congruent to 0 (mod 4) is
said to be a Type II code.

A binary self-dual code with a least one weight not congruent to 0
(mod 4) is said to be Type I. In this case all weights are congruent
to 0 (mod 2).
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A binary self-dual code with all weights congruent to 0 (mod 4) is
said to be a Type II code.

A binary self-dual code with a least one weight not congruent to 0
(mod 4) is said to be Type I. In this case all weights are congruent
to 0 (mod 2).



Type III and Type IV

A ternary self-dual code with all weights congruent to 0 (mod 3) is
said to be a Type III code.

A quaternary Hermitian self-dual code with weights congruent to 0
(mod 2) is said to be a Type IV code.



Type III and Type IV

A ternary self-dual code with all weights congruent to 0 (mod 3) is
said to be a Type III code.

A quaternary Hermitian self-dual code with weights congruent to 0
(mod 2) is said to be a Type IV code.



Cross Products

Theorem
If C and D are self-dual codes over Fq of length n and m then
C × D is self-dual of length n + m.



Example – Type I

A =
(

1 1
)

The matrix A generates a Type I code of length 2. Hence Type I
codes exists for all even lengths.



Example – Type II

A =


1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0


The matrix A generates a Type II code of length 8. Hence Type II
codes exists for all lengths congruent to 0 (mod 8).

This [8, 4, 4] code is formed by adding a parity check to the [7, 4, 3]
Hamming code.
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The matrix A generates a Type II code of length 8. Hence Type II
codes exists for all lengths congruent to 0 (mod 8).
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Example – Type III

A =

(
1 1 1 0
0 1 2 1

)
The matrix A generates a Type III code of length 4. Hence
Type III codes exists for all even lengths congruent to 0 (mod 4).



Example – Type IV

A =
(

1 ω
)

A generates a Type IV code of length 2. Hence Type IV codes
exists for all even lengths.



Hamming Weight Enumerator

Let C be a code in Fn
q. Then

WC (x , y) =
∑
c∈C

xn−wt(c)ywt(c)

where wt(c) = |{i | ci 6= 0}|.



MacWilliams Relations

Let C be a linear code over Fq, then

WC⊥(x , y) =
1

|C |
WC (x + (q − 1)y , x − y).



Invariant Theory

The theory of invariants came into existence about the middle of
the nineteenth century somewhat like Minerva: a grown-up virgin,
mailed in the shining armor of algebra, she sprang forth from
Cayley’s Jovian head.
Weyl – 1939

Like the Arabian phoenix rising out of its ashes, the theory of
invariants, pronounced dead at the turn of the century, is once
again at the forefront of mathematics.
Kung and Rota – 1984
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Invariant Theory

If C is a self-dual code then the weight enumerator is held invariant
by the MacWilliams relations and hence by the following matrix:

M =
1√
2

(
1 1
1 −1

)

If the code is doubly-even, then it is also held invariant by the
following matrix:

A =

(
1 0
0 i

)
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Invariant Theory

The group G = 〈G ,A〉 has order 192. The series Φ(λ) =
∑

aiλ
i

where there are ai independent polynomials held invariant by the
group G .

Theorem
(Molien) For any finite group G of complex m by m matrices,
Φ(λ) is given by

Φ(λ) =
1

|G |
∑
A∈G

1

det(I − λA)
(1)

where I is the identity matrix.
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Invariant Theory

For our group G we get

Φ(λ) =
1

(1− λ8)(1− λ24)
= 1 +λ8 +λ16 + 2λ24 + 2λ32 + . . . (2)

In particular, this shows that Type II codes exist only if the length
is a multiple of 8.
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Invariant Theory

The generating invariants in this case can be found. Specifically,
we have:

W1(x , y) = x8 + 14x4y4 + y8 (3)

and

W2(x , y) = x4y4(x4 − y4)4 (4)

Notice that W1 is the weight enumerator of the [8, 4, 4] code given
earlier.
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earlier.



Gleason’s Theorem

Then we have the well known Gleason’s Theorem.

Theorem
(Gleason) The weight enumerator of an Type II self-dual code is a
polynomial in W1(x , y) and W2(x , y), i.e. if C is a Type II code
then WC (x , y) ∈ C[W1(x , y),W2(x , y)].



Gleason’s Theorem

It follows that if C is a Type II [n, k , d ] code then

d ≤ 4b n

24
c+ 4 (5)

Codes meeting this bound are called extremal. We investigate
those with parameters [24k , 12k , 4k + 4]. It is not known whether
these codes exist until 24k ≥ 3720 at which a coefficient becomes
negative.
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Gleason Type Theorem

Applying the same techniques of the invariant theory we have the
following.

Theorem
(Gleason) The weight enumerator of an Type I self-dual code is a
polynomial in x2 + y2 and W1(x , y), i.e. if C is a Type I code then
WC (x , y) ∈ C[x2 + y2,W1(x , y)].



Gleason Type Theorem

Applying the same techniques of the invariant theory we have the
following.

Theorem
(Gleason) The weight enumerator of an Type I self-dual code is a
polynomial in x2 + y2 and W1(x , y), i.e. if C is a Type I code then
WC (x , y) ∈ C[x2 + y2,W1(x , y)].



Gleason Type Theorem

Theorem
The weight enumerator of an Type III self-dual code is a
polynomial in x4 + 8xy3 and y3(x3 − y3)3, i.e. if C is a Type I
code then WC (x , y) ∈ C[x4 + 8xy3, y3(x3 − y3)3].



Gleason Type Theorem

Theorem
The weight enumerator of an Type IV self-dual code is a
polynomial in x2 + 3y2 and y2(x2 − y2)2, i.e. if C is a Type IV
code then WC (x , y) ∈ C[x2 + 3y2, y2(x2 − y2)2].



Assmus-Mattson Theorem

Let C be a code over Fq of length n with minimum weight d , and
let d⊥ denote the minimum weight of C⊥. Let w = n when q = 2
and otherwise the largest integer w satisfying w − (w+q−2

q−1 ) < d ,

define w⊥ similarly. Suppose there is an integer t with 0 < t < d
that satisfies the following condition: for WC⊥(Z ) = BiZ

i at most
d − t of B1,B2, . . . ,Bn−t are non-zero. Then for each i with
d ≤ i ≤ w the supports of the vectors of weight i of C , provided
there are any, yield a t-design. Similarly, for each j with
d⊥ ≤ j ≤ min{w⊥, n − t} the supports of the vectors of weight j
in C⊥, provided there are any, form a t-design.



Assmus-Mattson Corollary

Let C be a Type II [24k , 12k, 4k + 4] code, then the vectors of
every weight form a 5 design.

The Golay code is a [24, 12, 8] Type II code and the vectors of all
weights hold 5 designs. This code is related to the Leech lattice
and the Witt designs.
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Invariant Theory

Theorem

I Type I codes exist if and only if n ≡ 0 (mod 2).
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Projective Plane of order 10

The proof of the non-existence of the projective plane of order 10
by Lam et al. was done by using the previous.

If a projective plane of order 10 exists then there exists a Type II
[112, 56, 12] code with no vectors of weight 16.

It was shown that no such code exists and hence no plane exists.
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Self-Dual Codes over Rings and their Applications

Self-Dual Codes over Rings



Definitions

Let R be a finite commutative Frobenius ring.

A linear code over R of length n is a submodule of Rn.
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Self-Dual Codes

Unlike for codes over fields the length does not have to be even.

E.g. Let C be the code of length 1 over Z4, c = {0, 2}. Then C is
a self-dual code of length 1.



Self-Dual Codes

Unlike for codes over fields the length does not have to be even.

E.g. Let C be the code of length 1 over Z4, c = {0, 2}. Then C is
a self-dual code of length 1.



Euclidean weight

The Euclidean weight wtE (x) of a vector (x1, x2, . . . , xn) is∑n
i=1 min{x2

i , (2k − xi )
2}.



Euclidean Divisible Codes

Theorem
Suppose that C is a self-dual code over Z2k which has the
property that every Euclidean weight is a multiple of a positive
integer. Then the largest positive integer c is either 2k or 4k.



Type I and Type II

A self-dual code over Z2k is said to be Type II if the Euclidean
weights of all vectors is congruent to 0 (mod 4k).

A self-dual code over Z2k is said to be Type I if the Euclidean
weight of at least one vector is not congruent to 0 (mod 4k). In
this case the Euclidean weights of all vectors is congruent to 0
(mod 2k).



Type I and Type II

A self-dual code over Z2k is said to be Type II if the Euclidean
weights of all vectors is congruent to 0 (mod 4k).

A self-dual code over Z2k is said to be Type I if the Euclidean
weight of at least one vector is not congruent to 0 (mod 4k). In
this case the Euclidean weights of all vectors is congruent to 0
(mod 2k).



Existence of Type II Codes

Theorem
There exists a Type II code C of length n over Z2k if and only if n
is a multiple of eight.



Proof

The matrix
( I4 , M4 ),

where I4 is the identity matrix of order 4 and

M4 =


a b c d
b −a −d c
c d −a −b
d −c b −a

 ,

then M4 · tM4 = (a2 + b2 + c2 + d2)I4 over Z where tA denotes
the transpose matrix of a matrix A.
From Lagrange’s theorem on sums of squares we have the solution
for a, b, c , d . Then the matrix generates a Type II code over Z2k .

Invariant theory gives the other direction.
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Example

Over Z4, a2 + b2 + c2 + d2 = 7
(mod 8) =⇒ a = 2, b = c = d = 1.


1 0 0 0 2 1 1 1
0 1 0 0 1 2 3 1
0 0 1 0 1 1 2 3
0 0 0 1 1 3 1 2


generates a Type II code over Z4.
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generates a Type II code over Z4.



Example

The code generated by (2) is a Type I code over Z4.

The code generated by

(
2 2
0 4

)
generates a Type I code over Z8.

Notice this code has 4221 vectors. It is not generated by a single
element unlike self-dual codes over fields of length 1.
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Free

A code C is free if it is isomorphic to Rk . Otherwise it is said to
be not free.


1 0 0 0 0 1 1 1
0 1 0 0 3 0 1 3
0 0 1 0 3 3 0 1
0 0 0 1 3 1 3 0


generates a free self-dual code over Z4 of length 8.



Free

A code C is free if it is isomorphic to Rk . Otherwise it is said to
be not free.


1 0 0 0 0 1 1 1
0 1 0 0 3 0 1 3
0 0 1 0 3 3 0 1
0 0 0 1 3 1 3 0


generates a free self-dual code over Z4 of length 8.



Invariant Theory

Theorem
The Hamming weight enumerator of a self-dual code over Z4 is an
element of
C[x + y , xy(x2 + y2− 2y4] + b4(a− b)4C[x + y , xy(x2 + y2− 2y4].



Connection to Lattices

Theorem
(Bannai, Dougherty, Harada, Oura) If C is a self-dual code of
length n over Z2k , then the lattice

Λ(C ) =
1√
2k
{ρ(C ) + 2kZn},

is an n-dimensional unimodular lattice, where
ρ(C ) = {(ρ(c1), . . . , ρ(cn)) | (c1, . . . , cn) ∈ C}. The minimum
norm is min{2k , dE/2k} where dE is the minimum Euclidean
weight of C . Moreover, if C is Type II then the lattice Λ(C ) is an
even unimodular lattice.



Connection to Lattices

There exists a length 72 self-dual code with minimum Euclidean
weight 64 which gives an extremal lattice of length 72.

No binary code can give this lattice.
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Rings of Order 4

Z4 = {0, 1, 2, 3}

F4 = {0, 1, ω, ω2}

F2 + uF2 = {0, 1, u, 1 + u}, u2 = 0

F2 + vF2 = {0, 1, v , 1 + v}, v2 = v
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Rings of Order 4

Z4 is a chain ring

F4 is a finite field and so it is within the area of classical coding
theory.
F2 + uF2 is a local ring with maximal ideal 〈u〉 (it is also a chain
ring but its generalization is not).
F2 + vF2 is a principal ideal ring isomorphic to Z2 ×Z2
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Gray Maps

The following are the distance preserving Gray maps from the rings
of order 4 to F2

2.

Z4 F4 F2 + uF2 F2 + vF2 F2
2

0 0 0 0 00
1 1 1 v 01
2 1 + ω u 1 11
3 ω 1 + u 1 + v 10



Hermitian

Over F2 + vF2 we have an involution:

0 = 0

1 = 1

v = 1 + v

1 + v = v



Type IV

A Type IV code over a ring of order 4 is one in which all of the
Hamming weights are 0 (mod 2).



Type IV

Theorem
If C is a Type IV Z4-code of length n then all the Lee weights of C
are divisible by four and its Gray image φ(C ) is a self-dual Type II
binary code.

Theorem
A Type IV code over Z4 of length n exists if and only if n ≡ 0
(mod 4).



Type IV

Theorem
If C is a Type IV Z4-code of length n then all the Lee weights of C
are divisible by four and its Gray image φ(C ) is a self-dual Type II
binary code.

Theorem
A Type IV code over Z4 of length n exists if and only if n ≡ 0
(mod 4).



Type IV

Theorem
Let C ,D be a dual pair of binary codes with even weights and
C ⊆ D. Then C + uD is a Type IV code over F2 + uF2.



Type IV

F2 + vF2 is isomorphic via the Chinese Remainder Theorem to
F2 × F2.

Theorem
CRT (C1,C2) is a Hermitian self-dual code if and only if C1 = C⊥2 .
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Type IV

Theorem
Let CRT (C1,C2) be a Hermitian self-dual code. CRT (C1,C2) is
Type IV if and only if C1 and C2 are even.

Theorem
A Hermitian Type IV F2 + vF2-code of length n exists if and only
if n is even.



Type IV

Theorem
Let CRT (C1,C2) be a Hermitian self-dual code. CRT (C1,C2) is
Type IV if and only if C1 and C2 are even.

Theorem
A Hermitian Type IV F2 + vF2-code of length n exists if and only
if n is even.



Generalizations

I F2 + uF2 generalizes to Rk , Rk = F2[u1, v2, . . . , uk ], u2
i = 0,

which is a local ring.

I F2 + vF2 generalizes to Ak , Ak = F2[v1, v2, . . . , vk ], v2
i = vi ,

which is isomorphic to Fk
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Self-dual codes over Frobenius Rings

Self-dual codes over Frobenius Rings



Chinese Remainder Theorem

Let R be a finite ring, m1, . . . ,mk the maximal ideals of R,
e1, . . . , ek their indices of stability.

Then the ideals me1
1 , . . . ,m

ek
k are relatively prime in pairs and∏k

i=1m
ei
i = ∩ki=1m

ei
i = {0}.
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Chinese Remainder Theorem

By the ring version of the Chinese Remainder Theorem, the
canonical ring homomorphism Ψ : R →

∏k
i=1 R/mei

i , defined by
x 7→ (x + me1

1 , . . . , x + mek
k ), is an isomorphism.

Denote the local rings R/mei
i by Ri (i = 1, . . . , k).
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Chinese Remainder Theorem

Note that R is Frobenius if and only if each Ri is Frobenius.

For a code C ⊂ Rn over R and the maximal ideal mi of R, the
mi -projection of C is defined by

C(mi ) = Ψm
ei
i

(C )

where Ψm
ei
i

: Rn → Rn
i is the canonical map.

We denote by Ψ : Rn →
∏k

i=1 Rn
i the map defined by

Ψ(v) = (Ψm
e1
1

(v), . . . ,Ψm
ek
k

(v))

for v ∈ Rn. By the module version of the Chinese Remainder
Theorem, the map Ψ is an R-module isomorphism and

C ∼= C(m1) × · · · × C(mk ).
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Chinese Remainder Theorem

Conversely, given codes Ci of length n over Ri (i = 1, . . . , k), we
define the code C = CRT(C1, . . . ,Ck) of length n over R in the
following way:

C = {Ψ−1(v1, . . . , vk) : vi ∈ Ci (i = 1, . . . , k)}
= {v ∈ Rn : Ψ

m
ti
i

(v) ∈ Ci (i = 1, . . . , k)}.

Then C(mi ) = Ci (i = 1, . . . , k). The code C = CRT(C1, . . . ,Ck)
is called the Chinese product of the codes Ci .
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Chinese Remainder Theorem

Theorem
Let R be a finite Frobenius ring, n a positive integer, then

Rn = CRT(Rn
1 ,R

n
2 , · · · ,Rn

k ),

where each Ri is a local Frobenius ring.



Chinese Remainder Theorem

Theorem
Let C1,C2, · · · ,Ck be codes of length n with Ci a code over Ri ,
and let C = CRT (C1,C2, . . . ,Ck). Then:

I |C | =
∏t

i=1 |Ci |;
I C is a free code if and only if each Ci is a free code of the

same free rank.



Chinese Remainder Theorem

Theorem
If Ci is a self-dual code over Ri then C = CRT (C1,C2, . . . ,Ck) is a
self-dual code over R.



Self-Dual Codes

Lemma
If |R| is not a square and C is a self-dual code of length n then n
must be even.

Lemma
Let C be a self-dual code of length n over R and D be a self-dual
code of length m over R then the direct product C × D is a
self-dual code of length n + m over R.



Self-Dual Codes

Lemma
If |R| is not a square and C is a self-dual code of length n then n
must be even.

Lemma
Let C be a self-dual code of length n over R and D be a self-dual
code of length m over R then the direct product C × D is a
self-dual code of length n + m over R.



Non-Free Self-Dual Codes

Theorem
Let R be a finite local ring with maximal ideal m. If R/m has
characteristic 1 (mod 4) or 2 then there exists a self-dual code of
length 2 over R that is not free.



Non-Free Self-Dual Codes

Proof
We can assume e, the nilpotency index of m, is odd since if it were
even we would have a self-dual code of length 2.

Since R/m is a field of characteristic order 1 (mod 4) or 2 then
there exists (1, α) which generates a self-dual code of length 2 over
R/m.

Let
A = {(a, aα) |a ∈ m

e−1
2 }.

Then

[(a1, a1α), (a2, a2α)] = a1a2 + a1a2α
2 = a1a2(1 + α2).
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Non-Free Self-Dual Codes

We know that 1 +α2 ∈ m and a1a2 ∈ m
e−1
2 m

e−1
2 = me−1. Then we

have a1a2 + a1a2α
2 ∈ me and then a1a2 + a1a2α

2 = 0. Therefore
A is self-orthogonal and obviously linear with |A| = |m

e−1
2 |.

Let B = {(0, b) | b ∈ (m
e−1
2 )⊥ = m

e−1
2

+1}.

We know |B| = |m
e−1
2

+1|.

We know B ⊆ B⊥ since b ∈ m
e−1
2

+1 = m
e+1
2 ⊂ m

e−1
2 so that

b2 = 0.
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Non-Free Self-Dual Codes

Let C = 〈A,B〉. The code C is self-orthogonal since
[(a, aα), (0, b)] = abα and ab = 0.

Next assume (a, aα + b) = (a′, a′α + b′). Then we have a = a′ by
equating the first coordinate and then aα + b = aα + b′. By
equating the second coordinate we have b = b′. This gives that

|C | = |A||B| = |m
e−1
2 ||m

e−1
2

+1| = |m
e−1
2 ||m

e+1
2 | = |R|, by the fact

that the product of the cardinality of a code and the cardinality of
its orthogonal is the cardinality of the ambient space. Then C is a
self-dual code. QED
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Non-free Self-Dual Codes

Corollary

Let R be a finite local ring with maximal ideal m. If R/m has
characteristic 1 (mod 4) or 2 then there exists self-dual codes over
R of all even lengths that are not free.



Non-Free Self-Dual Codes

Theorem
Let R be a finite local ring with maximal ideal m. If R/m has
characteristic 3 (mod 4) then there exists a self-dual code of
length 4 over R that is not free.

Corollary

Let R be a finite local ring with maximal ideal m. If |R/m| ≡ 3
(mod 4) then there exist self-dual codes over R of all even lengths
divisible by 4.
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Self-Dual Codes

Theorem
Let R be a finite Frobenius ring with maximal ideals m1, . . . ,mk

whose indices of stability are e1, . . . , ek and the corresponding
residue fields are F1, . . . ,Fk . Then the following results hold.

(1) If ei is even for all i then there exist self-dual codes of all
lengths;
(2) If for all i either Fi has characteristic 2 or 1 (mod 4) or the
index of stability is even, then self-dual codes exist for all even
lengths;
(3) If Fi has characteristic 3 (mod 4) for some i then there exist
self-dual codes over R of all lengths congruent to 0 (mod 4).
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Free Self-Dual Codes

Theorem
Let R be a local ring with characteristic congruent to 1 (mod 4)
then there exist free self-dual codes for all even lengths over R.



Free Self-Dual Codes

Proof
We know that there exists an element a ∈ R such that a2 = −1.
Let C be a code generated by (1, a). Then |C | = |R|, C is free,
and C is self-orthogonal. We know that

|C | · |C⊥| = |R|2,

since R is a Frobenius ring.

This implies that |C⊥| = |R|, and so C is a self-dual code of length
2. The direct product of this code with itself gives self-dual codes
of all even lengths. QED



Free Self-Dual Codes

Proof
We know that there exists an element a ∈ R such that a2 = −1.
Let C be a code generated by (1, a). Then |C | = |R|, C is free,
and C is self-orthogonal. We know that

|C | · |C⊥| = |R|2,

since R is a Frobenius ring.

This implies that |C⊥| = |R|, and so C is a self-dual code of length
2. The direct product of this code with itself gives self-dual codes
of all even lengths. QED



Self-Dual Codes

Theorem
Let R be a local ring with characteristic congruent to 3 (mod 4)
then there exist self-dual codes for all lengths congruent to 0
(mod 4) over R.



Self-Dual Codes

Theorem
Let R be a finite local ring with the unique maximal ideal m and
the even nilpotency index e of R. Then
(i) if R/m has characteristic 1 (mod 4) then there exist free and
non-free self-dual codes of length n for all n ≡ 0 (mod 2);
(ii) if R/m has characteristic 3 (mod 4) then there exist free and
non-free self-dual codes of length n for all n ≡ 0 (mod 4).



Self-Dual Codes

Corollary

Let R be a finite Frobenius ring whose residue fields (with respect
to the maximal ideals) are F1, . . . ,Fk . Then
(1) If Fi has characteristic 1 (mod 4) for all i then there exist free
self-dual codes of all even lengths.
(2) If for each i , Fi has characteristic 1 or 3 (mod 4), then there
exist free self-dual codes of all lengths congruent to 0 (mod 4).



Generalization of Type II

A ring R is even if there exist a ring S and a surjective
homomorphism η : S → R such that if s ∈ Ker(η) then 2s = 0 and
s2 = 0 in S .



Generalization of Type II

We know that S/Ker(η) ∼= R. We denote this isomorphism by η̄.
Namely

η̄ : S/Ker(η)→ R, s + Ker(η) 7→ η(s).



Generalization of Type II

For each a ∈ R, there exist s ∈ S such that
a = η(s) = η̄(s + Ker(η)). If s ′ ∈ s + Ker(η), then s ′ = s + z ,
where z ∈ Ker(η). Then we have that

s ′2 = (s + z)2 = s2 + 2sz + z2.

Since z ∈ Ker(η), we have that 2sz = z2 = 0 in S , and this gives
that s ′2 = s2. This means that for any a ∈ R, although we may
have that s 6= s ′, where both s and s ′ correspond to a, we must
have that s ′2 = s2 in S .



Example of R and S

For example, considering the rings Z3 and Z6.

The choice of Z6 is a natural choice for the Euclidean weight of
Z3. There is a natural surjective homomorphism η : Z6 → Z3 with
Z6/Ker(η) ∼= Z3. Notice that 3 ∈ Ker(η) and 2 · 3 = 0 in Z6, but
32 = 3 6= 0 ∈ Z6.
This has the following implication. The vector (1, 1, 2) has
Euclidean weight 0 in Z6 but (1, 1, 2) + (1, 1, 2) = (2, 2, 1), which
has Euclidean weight 3 in Z6 and hence the sum of two
doubly-even vectors is not necessarily doubly-even. So Z3 is not an
even ring.
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Example of R and S

Let R be a finite chain ring with nilpotency index e such that
R/(γ) ∼= F2r , where F2r denotes the finite field with 2r elements.
We construct S by using R as follows:

S = R + Rγ = {a + bγ | a, b ∈ R},

where γe is not zero in S , but γe+1 is zero in S .



Euclidean Weight

Let a be an element of an even ring R, the Euclidean weight of a,
denoted by Euc(a), is defined to be (ε(a))2 = s2, where
a = η̄(s + Ker(η)). For a vector v = (v1, · · · , vn) ∈ Rn the
Euclidean weight of v is Euc(v) =

∑n
i=1 Euc(vi ).



Type II

A code C of length n over an even ring R is called Type II if C is
self-dual and

Euc(c) =
n∑

i=1

Euc(ci ) = 0 ∈ S , for all c = (c1, · · · , cn) ∈ C .



Even rings

Theorem
Let R = CRT(R1, · · · ,Rt), where Ri are finite rings. If there exists
i , 1 ≤ i ≤ t, such that Ri is even, then R is even.



Type II

Theorem
Let R = CRT(R1, . . . ,Rt) with Ri even for some i. If Cj is
self-dual over Rj for all j and Ci is Type II over Ri , then
CRT(C1, . . . ,Ct) is a Type II code over R.


