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Self-dual codes over rings and the Chinese
remainder theorem
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Abstract. We give some characterizations of self-dual codes over rings, specifically the
ring Zop, where Zoj; denotes the ring Z/2kZ of integers modulo 2k, using the Chinese
Remainder Theorem, investigating Type I and Type II codes. The Chinese Remainder
Theorem plays an important role in the study of self-dual codes over Zop when 2k is not
a prime power, while the Hensel lift is a powerful tool when 2k is a prime power. In
particular, we concentrate on the case k = 3 and use construction A to build unimodular

and 3-modular lattices.
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1. Introduction

Self-dual codes over finite fields, especially binary and ternary fields, are
a well studied subject, including their relationship to lattices and designs.
Recently, codes over rings have increased in importance, generating much
interest in these codes, for example see [1], [2], [3], [7], [8], [11], [15], and
. In this paper, we give some characterizations of self-dual codes over
rings, specifically the ring Zsy, where Zy, denotes the ring Z/2kZ of integers
modulo 2k, using the Chinese Remainder Theorem. Recently, in the
notion of Type II codes over Zqy has been introduced. Here, we investigate
Type II codes over Zs;, using this theorem, giving special attention to the
ring Zsg.

We begin with some definitions. A code C over a ring R of length n is
a subset of R", if it is an additive subgroup of R™ then it is called a linear
code. In this paper all codes are assumed to be lincar unless otherwise
specified. An element of C is called a codeword of C'. A generator matrix
of C is a matrix whose rows generate C. We equip R"™ with the standard
inner-product, i.e. [u,w] = Y v;w;. The orthogonal to a code is defined
in the usual way, ie. Ct = {v € R* | [v,w] = 0 for all w € C} where
v=(vy,v2,...,0,) and w = (wy,wy, ..., w,). We say that a code C is self-
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orthogonal if C C C* and C is self-dual if C = C+. MacWilliams relations
for codes over any finite Frobenius ring are given in .

The paper is organized as follows. Section 2 gives some characteriza-
tions of self-dual codes over rings, specifically the ring Zok. In Section 3,
we pay attention to the ring Zg. Some families of self-dual codes over Zg
(called senary codes) are also introduced. Section 4 deals with unimodular
lattices corresponding to senary codes. In Sections 5 and 6, we investigate
sclf-dual codes constructed from projective planes and weighing matrices.
In the final section, we introduce new weight enumerators and establish
their MacWilliams relations.

2. The Chinese Remainder Theorem and Self-Dual Codes

Let I? be a commutative ring (not necessarily finite) with a multiplica-
tive identity denoted by 1. Let I, I, ..., I be ideals of R such that:
1. §; = R/I; is finite,
2. Ij+ﬂk#jlk:Rfor 1<5<k.
That is, the ideals are relative prime, since R is commutative.
Set I = NI; and S = R/I. Define the map

U:5— (R/I) x (R/Iy) x -+ x (R/I}),
by
¥(a) = (@ (mod I1),a (mod Lp),...,a (mod I)).

The map ¥ ! is a ring isomorphism by the generalized Chinese Remainder
Theorem.

Let C, Oy, ..., C) be codes where C; is a code over S;, and define the
code

CRT(Cl,Cg, - ,Ck) = {‘11_1(1)1,1)2, .. .,Uk) I v; € CZ}

We say that the code CRT(C1,Cy,...,Cy) is the Chinese product of codes
C1,Cy, ..., Ck. Tt is clear that | CRT(Cy,Cy, ..., C)| = 1%, |Ci| and that
if C; is self-orthogonal for all i then CRT(Cy,Cy, ..., Cy) is self-orthogonal.
This gives the following:

Theorem 2.1 CRT(Cy,Cy,...,Cy) is a self-dual code over S if and only
if it 1is the Chinese product of self-dual codes Ci,...,C) over S1,..., S5k,
respectively.
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We have the following restriction on the length of certain self-dual codes
over Zy,.

Corollary 2.2 Let s = p'-- -p;fj where p; is prime for alli = 1,...,7.
Suppose that there is at least one i such that e; = 1. Then, if a self-dual
code C of length n over Zs exists, n is even. In addition, if p; = 3 (mod 4),
then, if a self-dual code C' of length n over Z exists, n is a multiple of four.

Proof.  If there is a self-dual code of length n over the finite field F,, where
p 1s prime then n is even. Since C is the Chinese product of a self-dual
codes over Zpelzl e pr'ij where at least one Z,,, is the finite field, the length

n of C' must be even. ﬂfloreover it is known that if there is a self-dual code
of length n over F, where p = 3 (mod 4) then n is a multiple of four (cf. [20]

and [21]). []

2.1. Type II Codes over Zy,

We begin by giving some characterizations of Type II codes over Zgy
by the Chinese product.

Recently, codes over Z4 have grown in importance. Interesting connec-
tions with binary codes and unimodular lattices have been found. Further
connections have been found with codes over Zy (cf. [1]). The connection
between codes over Z, and unimodular lattices prompted the definition of
the Euclidean weight of a vector of Z} (cf. [2] and [3]). We defined the
Euclidean weights of the elements 0,+1,4+2,43,...,+(k — 1),k of Zy; as
0,1,4,9,..., (k — 1), k?, respectively (cf. [1]). The Euclidean weight of a
vector is just the rational sum of the Euclidean weights of its components.
The Hamming weight of a vector is the number of non-zero components in
the vector. We defined a Type II code over Zg;, as a self-dual code with all
codewords having Euclidean weight a multiple of 4k, see [1] for a complete
discussion of these codes. If a self-dual code is not Type II, then it is said
to be Type I. The notion of extremality for the Euclidean weight was also

given in [I].

Theorem 2.3 Let 2k = 2™r where r is odd. A code C is a Type II code
over Loy, if and only if it is the Chinese product of a Type 11 code over Zgm
and a self-dual code over Z,.

Proof. If a € Zom, then there is a unique 0 < 3 < 2™ such that a =
q2™ + (3 for some integer q. This implies & = 3 (mod 2™) and, taking
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squares
6= (mod 2m+1),
i.e.
o? = (a (mod 2™))?  (mod 2™*1).

Then if v = (v;) is a vector over Zym, with Euclidean weight divisible
by 2™+l we have

ZU? =0 (mod 2™"'r),
if and only if both
Z(“i (mod 2™))2 =0 (mod 2™T1),
and
Z(vi (mod r))2 =0 (mod r),
hold. []

The following corollary was shown in [I]. Here we give an alternative
proof.

Corollary 2.4 If there is a Type 11 code C of length n over Zgn, where r
18 odd, then n is o multiple of eight.

Proof. Let r = p7* ---pjj where p; is prime. Then C is the Chinese

product of a self-dual code over Zym and codes over rings Zpil, ooy Lyei It
is known in [8| that if there is a Type II code of length n over Zom then n
must be a multiple of eight. L]

Recently the notion of shadow codes over Z4 has been introduced by
the authors [10]. Here we consider shadow codes over Zy. Similarly to Zy,
we pay attention to a certain subcode of index 2. The even weight subcode
Cy of a Type I code C over Zy; is the set of codewords of C of Euclidean
weights divisible by 4k.

Lemma 2.5 The subcode Cy is Zoy-linear of index 2 in C.

Proof.  The first assertion follows by the self-duality of C using the relation

wi(z +y) = we(z) + we(y) +2(z, y), (1)
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where wg(x) denotes the Euclidean weight of a vector . The second as-
sertion follows by observing that every codeword y of C has an Euclidean
weight divisible by 2k. By the preceding relation we see that Cy := C - Cy
is of the form x + Cy where z is any codeword of C of Euclidean weight
congruent to 2k mod 4k and that translation by x is a one to one map from
Cy onto C. O

By the preceding lemma we see that C' is of index 2 in Cf and we
let Cy = CUC;UC3. With these notations define the shadow of C as
S := C1 U Cs. Unlike the binary case, Cy /Cj is not necessarily isomorphic
to the Klein 4-group, it may be isomorphic to either the Klein 4-group or
the cyclic group of order 4.

We now give some characterizations of shadow codes using the Chinese
Remainder Theorem.

Lemma 2.6 If k is an odd prime and C = CRT(B, K) with B a binary
code and K a code over Zy, then Cyp = CRT(By, K), with By the even weight
subcode of B, that is, the doubly-even subcode.

Proof. Follows from the fact that the Euclidean weight of a vector z
1s divisible by 4k if and only if the Hamming weight of the binary vector
(z (mod 2)) is doubly-even and the Euclidean weight of the vector z (mod k)
over Zj, is divisible by k, where z is an element of Zy. ]

Proposition 2.7 Let S, be the shadow of B defined as By = B Ss.
Then Ci- = CRT(By, K) and S = CRT(S,, K).

Proof.  Let x and y be elements of Z7, , then it is easy to see that [z,y] = 0
if and only if [z (mod 2),y (mod 2)] = 0 and [z (mod k),y (mod k)] = 0.
By Lemma 2.6, Cy = CRT(By, K). Thus Cj- = CRT(Bg,K). Moreover
S = Cy — C is the same as CRT(Bg — B, K) = CRT(S;, K). ]

2.2. Codes over Polynomial Rings

Let F be a finite field and let F [z] be the ring of polynomials over F.
Let g(x) be a polynomial in F[z] such that the factorization of g(z) is given
by:

q(z) = p1(@)p2(z) - - - pr (),

where p;(z) is a non-constant irreducible polynomial and ged(p;(z), p;(z)}) €
F.
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Let S; = F [z]/(p:i(z)), i.e. S; is a finite field, and S = F [z]/(¢(x)),
which is a field only if » = 1. Given codes over S; the Chinese product can
be used to construct codes over S. This gives the following characterization
of codes over a certain residue class ring F [z]/(g(xz)).

Proposition 2.8 Let g(x) be a polynomial in F [x] such that the factor-
ization of q(x) is given by:

q(z) = pr(z)pa(z) - - pr(2),

where p;(x) is a non-constant irreducible polynomial and ged(p;(z),p;(z)) €
F for i # j. Then a code over the ring F [x]/(q(x)) is the Chinese product
of codes over some finite fields.

Ezample 1. Let F = Zy and let g(z) = x(2? + = + 1). This gives that S;
is isomorphic to the finite field Fy with 2 elements and S is isomorphic to
the finite field F4, and S is a ring with 8 elements.

3. Senary Self-Dual Codes

In this section we concentrate on self-dual codes over Zg. The sym-
metrized weight enumerator (swe) of a senary code C is defined as:

swec(a, b, c,d) Z amo(@) () gna(x) a(e)
zeC
where n;(z) denotes the number of j such that z; = £i. We say that
two codes over Zy, are equivalent if one can be obtained from the other by
permuting the coordinates and (if necessary) changing the signs of certain

coordinates. Codes differing by only a permutation of coordinates are called
permutation-equivalent.

3.1. Some Families of Senary Self-Dual Codes

We introduce a few families of senary self-dual codes together with
Type II codes. Note that we can regard the lifted symmetry codes and the
MacKay codes as bordered double circulant codes since the matrix W is a
circulant matrix.

3.1.1. Extended Cyclic Codes. The Chinese Remainder Theorem
gives much information on the Chinese product codes. For example, if a
permutation o € S, is an automorphism of the Chinese product CRT(B,T)
then o is also an automorphism of the binary code B and the ternary code
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T, where S,, is the symmetry group of degree n.

In fact, the Chinese product of two cyclic codes is again a cyclic code.
An extremal Type II code of length 24 was found in [1]. This code is an
extended cyclic code of length 24 and the Chinese product of two extended
cyclic quadratic residue codes over Zs and Zs. The next length for Type II
codes is 32. There is no ternary self-dual code of length 32 with automor-
phism of order 31 (cf. [14]). Thus, this gives that there is no senary extended
cyclic self-dual code of length 32.

3.1.2. Lifted Symmetry Codes. We introduce families of double cir-
culant codes. Of course, senary double circulant codes are constructed from
binary and ternary double circulant codes.

Here we describe a family of codes above the Pless symmetry codes. Let
g be a prime power = —1 (mod 6), and denote by x the quadratic character
of F;. We begin by recalling some basic facts about the Jacobsthal matrix
which hold more generally for any odd ¢. This matrix W = (W; ;) is indexed
by the elements of Fy and has for a typical entry

Wi = x(j — i)
The matrix W is instrumental in building Hadamard matrices of Paley
type [17, Chap. II]. We collect here the properties that we need:
(J1) JW=WJ=0
(J2) WWT =ql -J
(J3) A= ogWoin=-1
(J4) B:=3%,gWi1=0

where J stands for the all-one matrix. See [17, Chap. I, Lemma 7] for
proofs of (J1) and (J2). To prove (J3), (J4) observe firstly that by (J1)
we have, knowing that —1 is not a quadratic residue, that A + B = —1.
Secondly we have

B=_ Z X(l - :UQ)?
z€Fy, 2#0
and by the character property of x

1
B=3 > x(1-o)x(1+z) =0,
z€Fq, z#0



260 S.T. Dougherty, M. Harada and P. Solé

the last equality coming from (J2).
Now we define the matrix 5, as

which is ¢ + 1 by ¢ + 1 and satisfies SqS:{ = ql. Define a generator matrix
of size ¢+ 1 by 2q + 2 over Zg by the rule

G=(I, 8,

Theorem 3.1 The matrizx G generates a self-dual code P(n) of length
n=2q+ 2 over Zg. If furthermore ¢ = —1 (mod 12) then P(n) is Type 1L

Proof. By (J1) the rows of G are pairwise orthogonal. They are isotropic
by the choice of ¢, since the inner-product of every row with itself is ¢ + 1.
Now in case q satisfies the congruence mod 12, the Euclidean weight of each
row of (7 is divisible by 12 by the choice of q. This carries over to the row

span by [1]. l

P(n) is the Chinese product of the ternary Pless symmetry code with
generator matrix GG and the binary self-dual codes with generator matrix
(I, J—1). Thus we say that the above codes P(n) are the lifted symmetry
codes. Of special interest are g = 5 yielding a Type I code above the Golay
code, g = 17 yielding a Type I code of length 36, ¢ = 11, 23 yielding Type 11
codes of lengths 24 and 48.

We have obtained by computer that the symmetrized weight enumera-
tors of the lifted symmetry codes P(12) and P(24) of lengths 12 and 24:

swep(rgy = d'? +24c%d° + 24¢"? + 1206c%d + 1206%c*d® + 12806°Pd°
+ 360b%c® + 1680b°c*d® + 2646°d°® + 768b%c° + 3606°
1 4406°d® + 24b'? + 240abc®d® + 1440ab?c” d? + 960ab33d®
+ 5760ab*c*d® + 3360ab®c*d® + 120a2c8d* + 2280a%b?c*d?
+ 3360a2b3cBd + 1800a2b*c?d* + 5760a%b°c*d + 1440a%b"c2d
+ 440a3c® + 960a3bc®d® + 3360a*0>3d® + 1680a°b*
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+ 960a°8° cd® + 1280a%K°¢® + 120a°68¢ + 15ad® + 1800atb?cd?
+ 2280a*b*2d? + 120a*b%d? + 960a°b*3d + 240a°b°cd
+ 32a%d® + 264a%¢® + 120480 ? + 2408t + 15a%d* + a2,

swepy) = d>F + 1104c2d"? + 48¢** + 3168bc>°d® + 23760b%¢ % d®
+ 116160b%c*2d® + 23760b* c3d'? + 3168b*¢?° + 31686°c1d*®
1 332640b°c1%d3 + 404025665c12d® + 104544067 Bd°
+ 190080b%c*d'? + 237606%¢® + 4048b°d'5 + 7846080b% 2 d?
+ 58449600 cd® + 20592006 ¢*d® + 61824b'241?
+ 142656b'2c'? + 332640063 Bd> + 37699200 1 db
+ 242880b'°d” + 23760b%c® 1 9028806 ctd? + 1983526'84°
+ 31686%%c* 4 24288b21d® + 48b% + 95040ab®c!?d?
+ 633600abc®d® + 3326400ab* ! d® + 380160ab°c”d!!
+ 31680ab®c3d + 2661120ab5c'°d? + 41665536ab" ¢! d®
+ 9504000ab®c"d® + 1013760ab’c3d!! + 28245888ab0c!1d?
+ 25470720ab' " d® 4 6177600ab'?2d® + 5702400ab' ¢7 d?
+ 6031872ab* 3 d® + 601920ab'® 2 d? + 1848008 d*
+ 95040a%bc*d” + 342144026 1040 + 316800265 a3
+ 601920a*b*c'®d + 6177600a%0% M d* + 28702080a%0°c!%d”
+ 25660800265 c8d® + 95040a2b" ¢*d'® + 57024004207 c!4d
+ 14298768006 c'0d* + 29367360a%b%c®d” + 1672704a%b'% 210
1 2824588800 c!d + 37224000ab'2c5d* + 57024000263 2d”
+ 266112000 cBd + 2827440a%b'5c2d* + 95040620 d
+ 8520a3c%d? + 24288a3c** + 443520a3bc! 7 d3
+ 1425600a*b%c'3d® + 312576003 ®d® + 142560a3b* 5 d'?
+ 902880a°b " + 22809600a3b° c!3d® + 112464000ab°cd°
+ 7223040a°b6" c*d® + 102960a3b8cd'? + 33264000383
1 212115200036 c?d® 4 41342400a36'%c%d® + 1013760a3b' ! cd®
+ 7846080a°b*?¢” + 2280960043613 d® + 1900800ab'* cdb
+ 332640a3b'0¢5 + 443520a3b' " cd® + 3168a3b%¢ + 66a1d?°
+ 23760a* ' 2d® 4 475200 bcBd*! 4 2827440a1b? 10 d?
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+9408960atb3c2d® + 17083440a*b* B d® + 4752000 b ctd™

+ 37224000a*b8¢12d? + 216311040a*07 Bd® + 10216800a*b%¢*d®
1 34320a%b%d" + 142987680ab'°c*d? + 28036800a* b ¢ d°

+ 190080ab'2d® + 6177600a*b**c*d”® + 190080a*b*°d®

+ 18480a*b'8d? + 190080a° c!°d? + 380160a°bc''d”

+ 494208a°bc7d'° + 6031872a°b° c'°d + 28036800a°b" M d*

+ 41817600a°b " d" + 696960a°b°c3d*0 + 25470720a°" M d

+ 216311040a°6%c7d* + 7223040a°b°c*d” 4 41665536a°b' 7 d
+ 9408960a°b' 23 d* + 633600a°b5c3d + 198352a%¢"®

+ 1900800a8bc™d® + 2566080a°b%c'0d® + 1858560a°5% P d”

+ 3769920a°b*c'* + 41342400a°6°c0d® + 59000832a°0°c5d®

+ 475200a%672d® + 5844960a%b%c + 112464000a°6° 5 d®

+ 2566080a%0'°c2d® + 40402560562 c® + 1425600a°b'c*d®

+ 23760a%b'5¢% + 1584007 c%d® + 57024004 b c'*d”

+ 72230400763 °d® + 3611520070 > d® 4 29367360a7 % d”

+ 41817600a7d" > d® + 166320a"b8cd® + 2870208007610 4

+ 380160a"b L ed® + 9504007 b cd? + 495a8d'® + 190080a®c 2 d*
1 166320a%bcd™ + 6177600a%b* 1 2d + 10216800a%b* c*d*

+ 3611520a88°c*d” + 9504000a%b” B d + 17083440a°6°c*d*

+ 15840a®b°d” + 3326400a%b'! c*d + 23760a%b'2d*

+ 242880a”c"® + 1013760a’bc 1 d3 + 475200a%b% " d°

+ 2059200a°b% 't + 7223040a°b%c7d® + 1858560a7° 3 d°

+ 1045440a°6%¢7 + 3125760662 d® + 116160a”b%c?

+ 16727040 °0?c'°d? + 6969600 °6%8d> + 2566080a' b8P d?

+ 4942080 %07 *d® + 342144a%6'°c2d? + 34320a' ¢ d*

+ 101376001637 d + 475200a' 23 dt + 3801600’ b d

+ 475200 b8 cd® + 2972a'2d"? + 61824a%c!? 4 102960a*bc®d?
+ 190080a'2b%c® + 142560a*2b°c*d® + 23760a'%b°c?
+3520a'20%d? + 1104a'2b'? 4 95040a'3b?¢"d + 31680a" 368 c*d?
+ 316802 *b3%d + 4048a'°¢° + 3168a'°b*c5 + 495a'%d®

+ 66a*°d* + a*.
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3.1.3. MacKay Codes. Let ¢ be a prime power congruent to —5
(mod 12). Define a matrix By bordering Jacobsthal as

2 1.1
1

B, =
o W =21
1

A double circulant code M, is then introduced by its generator matrix

(I, By).

Theorem 3.2 The MacKay code My is a self-dual Type 11 code of length
2g + 2.

Proof.  Follows from the property of W which is skew-symmetric for ¢ =
—1 (mod 4). Observe that the inner-product of each row with itself is this
time q + 5. L]

Remark. M, is the Chinese product of the binary doubly-even self-dual
code with generator matrix (I , J — I) and the ternary self-dual code with
generator matrix (I , Bg).

In particular ¢ = 19 yields after the real construction Ag an extremal
lattice in dimension 40 [6]. For the first case ¢ = 7, we have found its
symmetrized weight enumerator:

swep, = d'° + 480bcBd” + 179203 c12d + 24864b*cB3d* + 5376°c*d”
1 224654 4 253440 Bd + 2553665 c1d* + 27206%d7 + 5376b' ¢1d
+ 3360612d* 4 256b5d + 256ac'® + 2688abcld® + 10752ab%c7 d8
+ 896ab3c3d® + 5376abtc!! 4 166656ab°c’d® + 24192ab5 3 d°
+ 25344ab®c” + 45696ab°c3d® + 1792ab2¢® + 20160ab%c!0d?
+ 72576ab3cOd® + 2016a%b c*d® + 282240a°b° 0 o
+ 32256a°b" c2d® + 20160a2b*%c%d? + 1568ac’d* + 26884 bc’d”
+ 45696a36%c%d + 185472a°b* > d* + 2688a°bcd” + 166656037 c>d
+ 12768a°b%cd* + 2688a3b' cd + 28ad'? + 3360a’c!?
+12768a*bc®d® + 11424a* b2 c*d® + 2553646 c® + 185472a*b° A o



264 S.T. Dougherty, M. Harada and P. Solé

+ 67201 05d8 + 24864a*b8c* + 1568a*b°d® + 322560°bc” d?

+ 16128a°b3c3d® + 72576a°b5c3d? + 672a%Pd* -+ 2419200 cBd
+ 1142408 2 d* + 107520°0 ¢2d + 27204 ¢ + 2688a” bcd®
+5376a b ¢ + 2688a7 b7 cd® + 480a" b8 ¢ + 198a°d°

+ 2016a%p% 1 d? + 896a°b3cPd + 224015 + 28a'2d* + a'f.

3.1.4. A Family of Type II Codes. It is well known that there is a
unique binary doubly-even self-dual code B and there is a unique ternary
self-dual code T' of length 8, up to equivalence. B and T have the following
generator matrices:

1000 0111 1000 1200
0100 1011 0100 1100
Gg = and Gt — ,
0010 1101 0010 0012
0001 1110 0001 0011

respectively. A generator matrix of the Chinese product CRT(B,T) of B
and T is

1000 4533
0100 1433
0010 3345
0001 3314

The symmetrized weight enumerator of the senary code CRT(B,T) is

sweerrp.r) = d° + 192b%c'd® + 166°d° + 64b°d* + 16ac’d*
+ 512ab3c3d + 6dq2cb + 96a’bc?d” 4+ 192a2b% 2
1+ 96a°b%cd? + 14a*d* + 16a*b°d + 16a°® + ob.

P, CRT(B,T) is a Type II code of length 8n whose symmetrized weight
enumerator is swecrr ()"

3.2. Properties of Senary Self-Dual Codes
Any code over Zg is permutation-equivalent to a code generated by the
following matrix:
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I, Ao A1z Ay
0 2Ik2 2A2’3 2A2,4 , (2)
0 0 3L, 3434

where A; ; are binary matrices for ¢ > 1. Such a code is said to have rank
{1F1,2k2 3ks} see [1].

Lemma 3.3 Let C be a senary code of rank {1¥1,2%2 3kY [f C is a
self-dual code of length n then ky = ks and ki + ky = n/2.

Proof. A senary self-dual code of length n has 6% codewords. A code
of rank {ki, kg, k3} has 6¥13%22%3 codewords. Hence, if the code is self-dual
then k9 must be equal to k3 otherwise the number of codewords would not
be a multiple of 6. Moreover ki + ky = %, since 613%22k2 = gk1(3 . 2)k2.

]

If C is a code over Zg, let C3 be the code read (mod 2) and let Cs be
the code read (mod 3). That is,

Co={v|lv=w (mod?2), weC},
and
C3={v|lv=w (mod3), weC}.

The code 'y is permutation-equivalent to a code with generator matrix of
the form:

(Ik1 Arg A1z Aig )

(3)
0 0 B3I, 3As,

where A; ; are binary matrices for ¢ > 1. Notice 3 = 1 (mod 2) hence this
code generates a binary code of dimension k1 + k3 = 5. And the ternary
code Cj is permutation-equivalent to a code with generator matrix of the
form:

(Ikl Ao Aigs A1,4) (1)

0 21k2 2A2,3 2A2,4

where A; ; are binary matrices for ¢ > 1. Notice 2 is a unit in Z3 hence this
code generates a ternary code of dimension ky + ky = 3.

We now consider self-dual codes of length n over Zg constructed from a
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fixed binary self-dual code C5 and a fixed ternary self-dual code C3 by the
Chinese product. Let T  be the set of all codes constructed by permuting the
coordinates of Cy and C3. Let C4 be a ternary code obtained from Cs by
changing the signs of certain coordinates, then it is clear that CRT(Cs, C3)
is equivalent to CRT(Cy,C}). Moreover CRT(Co®, C5”) is equivalent to
CRT(C’Q"(ﬁ)fl,Cg) where « and 3 are element of the symmetric group S,
of degree n. Of course, S, acts on the coordinates of Cy and C3. Hence

T = {CRT(C,*,C5") |, B € S}
- {CRT(CQ’Y,C;}) | Y € Sn}.
In addition, if y is an element of the automorphism group Aut(C5) of Cy then
CRT(Cy,C3) = CRT(C27,Cs). Therefore the number N of inequivalent

codes obtained from C3 and C3 by permuting the coordinates and changing
the signs is at most

n!
| Aut(Cy)|’
where | Aut(Cy)| denotes the order of Aut(Ch).

Let Aut(Cs) be the group of all permutations which preserve Cs, simi-
larly, we have

n!

N <
|Aut(C3)|

Thus we have

N < mm{|Aut(02)1, [Aut(Cs)| }

This gives the following upper bound on the number of inequivalent
senary self-dual codes.

Proposition 3.4 Let Cy and C3 be the sets of all inequivalent self-dual
codes of length n over Zy and Zs, respectively. Let Ng(n) be the number of
inequivalent self-dual codes of length n over Zg. Then Ng(n) is bounded by

n! n!
v swnfed i) 2, )} ©

We give a classification of self-dual codes over Zg of length 4. By
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Lemma 3.3, the rank of a self-dual code of length 4 is either {12} or
{1',2},3'}. When rank is {12}, any code is equivalent to a code with
generator matrix of the form:

1 012
0141/,

When rank is {1!,2!,3'}, it is easy to see that a generator matrix of a
self-dual code can be transformed into a matrix of the form:

1
0
0

D o R

b
1
3

Lo = 0

where a,b,¢c € Zg. We found all self-dual codes by finding all possible

(a,b,c). Then any code of rank {1',2!,31} is equivalent to a code with
generator matrix of the form:

1
0
0

el N

0 4
11
3 3

Therefore there are exactly two inequivalent self-dual codes of length 4.
Since Ng(4) < 3, the above bound (5) is always not tight in general.

All binary self-dual codes of length up to 30 and all ternary self-dual
codes of length up to 20 have been classified (cf. and [22]). It would
be interesting to determine equivalence classes of senary self-dual codes of
length up to 20 from these codes.

4. Corresponding Lattices

An n-dimensional lattice A in R™ is the set of integer linear combinations
of n linearly independent vectors vy, ..., v,, where R" is the n-dimensional
Euclidean space. The dual lattice A* is given by A* = {x € R" | [z,q] €
Z for all @ € A}, where [z,a] = z1a1 + -+ + Zpa, and z = (71,...,Ty),
a = (a,...,a,). A lattice A is integral if the inner product of any two
lattice points is integral, or equivalently, if A C A*. An integral lattice with
A = A* is called unimodular. The theta series 65(q) of a lattice A is the



268 S.T. Dougherty, M. Harada and P. Solé

formal power series

Oala) = Y g

z€A

The kissing number is the first non-trivial coefficient of the theta series.

4.1. Construction Ag
Every senary code C can be attached a lattice by the formula

1
R

Using that construction the Leech lattice was constructed anew in [1]. If

C is self-dual then Ag(C) is unimodular, moreover if C is Type II then

Ag(C) is even unimodular (cf. [I]). We observe that construction Bs of

Leech and Sloane [6, p. 148] is in fact construction Ag applied to the code

S = —2C'+3P,, where C is a ternary code and P, is the binary parity-check

code of length n. In other words, S is the Chinese product of C by P,.
Let v; denote the theta series of Z + % for i = 1,2,3. Clearly

A6(C) (C +62™).

0 a(c) = swec(fs,v1, va,13).

With the denotations of [6, p. 105] we have vy = g, 19 = 13, 13 = O5.

4.2. Even Unimodular Lattices

In Section 3, we gave a family of Type II codes @,, CRT(B,T) of length
8n. Since there is a unique 8-dimensional even unimodular lattice, up to
equivalence, namely Eg, Ag(CRT(B,T)) must be Eg. In addition, it is easy
to see that Ag(,, CRT(B,T)) is Eg + - -- + Es.

The minimum norm of the lattice Ag(P(12)) is 1, the kissing number is
24 and the lattice is a unimodular lattice. Thus Ag(P(12)) is Z'2. Since the
code M7 of length 16 is Type II and dg = 12, Ag(M7) is a 16-dimensional
even extremal unimodular lattice, that is, either Eg + Eg or Dfy by Table
16.7 of [6].

The lattice Ag(P(24)) is a 24-dimensional even unimodular lattice.
Moreover, from swep(a4y of P(24) in Section 3, the theta series 04, p(24))
of the lattice Ag(P(24)) is 1 + 1104¢% + ---. Thus the lattice is Dj, by
Table 16.1 in [6].
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4.3.

generator matrices

Odd Unimodular Lattices
From [5, Table II], there is a unique odd unimodular lattice with the
minimum norm 2 in dimensions 12 and 16. By the Chinese product, we
have Type I codes Ciy and Cig of lengths 12 and 16 with the following

10000000 44411111

100000 231155 \ 01000000 42521511
010000 141113 00100000 42512115
001000 112355 00010000 42151455
000100 151235 and 00001000 44511525
000010 513545 00000100 42115554

\ 000001 355112 ) 00000010 14422242
00000001 41222424

respectively. Their symmetrized weight enumerators swe;s and swe;g are

swee,, = d*? + 24c'? 4 120bc3d® + 12002 d8 + 128063 B d® + 36084 c?

1 16806°c*d® + 26465d° + 768b°¢® + 3606%c! + 4406°d° + 24b'2
+ 384abc®d® + 1440ab’c"d® + 960ab’c>d® + 5760ab’ c®d?

+ 3360ab8c3d? + 120a%c8d* + 1920620 c*d* + 3360a2b°cd
+ 1800a%b*c2d* + 5760a2bctd + 14400207 c*d + 440a3°
+960a°bc’d® + 3840063 d® + 1680a3b%c® + 960a°b5 cd®
+1280a°b%¢ + 120a®b3¢ + 15a%d® + 1800a'b?c*d?
+1920a*b*c®d? 4 120a*65d? + 960a°b33d + 384a°b°cd

+ 32a°d° + 264a%c® + 120a%0% % + 15a%d* + o2,

swee,, = A% +40c12d? + 144bcd” + 64bc'd + 4062 c*d° + 1712621044

+17606°c°d” + 1024b%¢'2d + 5601 c2d™® + 12304b B¢
+2992b°c*d” + 59526°¢1%d + 2246540 + 2403285 54*
+1632b7c*d" 4+ 1203257 Bd + 1463265 Ad? + 27206°d7
+99206°c%d + 36966 °c?d* + 3072 ¢*d + 336024

+ 448b™c*d + 256b'°d 4 136ac’d® + 256act® + 112abc®d®
+1376abct d® + 5024abc”d® + 448ab?c™® + 352ab*c3d°
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+ 22912ab®®d3 + 18640ab* P d® + 3072abc!! + 224ab®cd®

+ 77120ab’c"d® + 14144ab°c3d8 + 9920ab8c® + 82432ab7 > d®

+ 2856ab®cd® + 12032ab%c” + 25952ab°c*d® + 5952ab'0c°
+2688ab' cd® 4 1024ab"*c? + 64abttc + 2a2d™ + 1040%c5d®

+ 336a%c!2d* + 4056a2bcBd® + 1152020 c*d® + 117602620 d?

+ 3520023 P d® + 1392ab"c2d® + 77232020 Bd? + 55536a%b°ctd®
+ 168a%b5d® 4 13699202055 d? + 17952027 c*d® + 772320208 c*d?
+ 952a%b%d° + 11760a%b'c2d? + 3364%b'2d? + 816a°c°d*
+1152a%bc’d” + 2688a*bctld + 26336ab%c7d? + 419203033 d”

+ 2595200 c®d + 87472a3b e d* + 1376a°b°cd” + 82432a36%¢7d
4 62176a®b° P d* + 771200307 P d + 76166368 cd* + 229124°b° 2 d
+ 1376ab' ed + 16a*d™® + 360a*c®d® + 3360a*c'? + 7616a*bc’d®
+ 4984a*b*c*d® 4 3696ab%c'0 + 62176a%b°5d® + 54320442 d°
1 14632a*bc® + 87472005 cAd® + 424a*b8d8 + 2403204858

+ 26336a*b" 2 d® + 12304ab8c* + 816a*0°d” + 17124%5'0 P

+ 40a*b'? + 952a°c®d? + 2640a°bc’d® + 17952a°b%¢7 ¢

+ 8576a°b°c*d® + 55536a°b* c°d® + 2640a°b° cd® + 35200a°65 3 d?
+ 4056a°b%cd? + 62a°d* + 424a8Sd* + 2856abcld

4 5432a%b%ctd* + 14144003 Bd + 4984a8b*?d* + 18640a%b°c*d
+ 360a°6%d* + 5024407 ?d + 136a56°d + 2720a” ¢ + 137647 b d®
+1632a"b%c” + 4192a" b33 d3 + 2992a"b1c® + 1152470 cd®
+1760a"b%¢® + 144a"68¢ + 94a8d® + 16848 P d? + 1392a8h% 1 d?
+ 1152a%b*c2d? 4 104a8°d? + 224a°bc*d + 352a°H° 2 d
+112a°ed + 62a'°d8 + 224a'°¢5 + 5601002t + 40a'0b1c2

+ 16a'?d* + 2aMd? + a'b.

Thus the minimum Euclidean weights of both C15 and Ci4 are 12. Ag(C13)
and Ag(Cig) are the odd unimodular lattices with the minimum norm 2.

4.4. A 3-modular Lattice
Recently Gabriele Nebe has found an extremal 3-modular lattice in
dimension 24 from a code N over Zg. N has the following generator matrix:
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/ 0215041545021 1000001131 \
011045013540150005055212
402051511014011450502145
191041050541020015551212
52054011045551 1555555300
511150105450203514055511
333300000000000000000000
000033330000000000000000
000000003333000000000000
000000000000333300000000
000000000000000033330000
\ 000000000000000000003333 /

We have obtained its symmetrized weight enumerator:

swey = d2* + 626b°c'8d% + 5668651 2d0 + 306007 Bd® + 2b8c*d? 4 6b7d*°
+ 59825%¢12d® + 1282660c¥d8 + 1301 c*d® + 26b12d*?
+ 562653 c3d® + 2806 ¢1d® + 178b1%d° + 4201 7c*d® + 154b'8 "
+ 1268133 + 6ab?ct?d? + 1428abPcOd® + 4594abte!d®
+ 670ab’c"d" + 3926ab%c1Pd® + 49150ab”ct d® 4 21474abPc" d°
+ 38ab’Ad! + 23002ab' ¢t d? + 67556ab!c"d® + 428ab' P d®
+10930ab™c"d? + 410ab*® 3 d® + 24ab'83d? 4 190a2bc!*d”
1 472a%6%¢10d10 + 2864263 8d® + 24a%b%c'Bd 4 12546a%b* ! d*
+ 29094a2b°c10d7 + 551842688 d'0 + 18247 c?d® + 8114ab c'd
+ 170184a%b%c'0d* + 73758a26° P d” + T4a?b'0c?d™®
+ 22362420 ¢'0d + 9332242628 d* + 382a%b3c?d” + 4310a%b'°cCd
1 188a2b182d* + 6a2b'°c?d + 134 °d*? + 780a3c?! + 46abc 7 d®
1 2630a382c13d8 + 2748a%B3 P d® + 698a°b* P d'? + 42a%b%c!”
+ 54280a%°c13d® + 124326a305°d5 + 14926a%b" P d® + 18ab8cd?
+ 5754ab% ¢ + 252276a3b° P d® + 100798a%b10cPdb + 42a%b! cd®
+ 58540°b12¢® + 594002613 d® + 102a3bM ed® + 882a%b'0¢°
+ 46630 cd® + 6a2d?° + 4a’c?d® + 56a*bc®d! + 188a*b? 10 d?
+ 2140405312 d® + 17494a*b*Bd® + 2430a%b°c*d*!
1 78730a%8%¢'2d? + 241014a b7 B d® + 21738a* b c*d®
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+ 172104a*6'0c®d? + 70556a*b  ¢*d® + 15490016 ¢ d?

+ 26a*b15d° + 260°c'°d* + 1190a%be d” + 842a°H2 7 d10
+410a°b*c'°d + 57884ab et d* + 39924a°b7¢7d™ + 23906588 3 d10
+ 58340a°b" ¢ d + 247798a°b8cTd* + 16494a°° P dT

+ 46846a°b' ' c’d + 23836a°b12cPd* + 1940a°b"°cPd + 8730a8c!8
+102a%bc*d® + 4650a56%c10d® + 33400883 P d® + 280a8ht el
+90174a5b° 1043 + 51084a%65c8d® + 1956a8b7c2d® + 12570a858 10
+127142a5° 8 d® + 5034a%5'°c2d® + 4260a%612c8 + 2630a8h13 243
+20a"c?d® + 382a"b%c'3d? + 1188607 63c%d® + 5640a7btc5 dB
+62494a"85¢%d? 4 4235607672 d® + 598a"b8cd® + 31910a7B10c3 42
+1062a"b cd® + 318470 ed? + 751a3d*® + 59843bcBd7

+ 428a®b3¢!?d + 17002a3b* 3d* + 5128a8b%c*d” + 190424807 Bd

+ 1672603 ctd* + 20a%0%d7 + 4722680 1t d + 40801244

+ 10290a°c"® + 42a°betld? + 1316a°%c7d8 + 130abc!!
+132620°6°c"d> + 3084a°b5c3d® + 2804a°b8¢7 + 2108420233

+ 74a'%6%¢0d? + 1622a°63c5d® + 4366096884 + 45841057 20
+216a'%6'%c2d? + 38a''63c%d + 140601 b5 d* + 6706577 d

+ 56aM b cd* 4 2452a2d? + 297002c12 + 18a2bc8d® + 201248
+442a"2b°cAd® + 6a120°d® + 180 3b2cTd? + 3001308342

+ 134a'%c” 4 879a%d%2 + 6a%0d* + a4,

5. Self-Dual Codes over Rings formed from Projective Planes

Let 1I be a projective plane of order n = []i_, p; where the p; are
distinct primes with either:
Case 1: Each p; =2 or p; =1 (mod 4) or
Case 2: Each p; = 3 (mod 4).

Let Cp, be the self-code over F,, of length n? + n+ 2 or n?2 +n + 4
depending on the case formed as given in [9].

Theorem 5.1 Let II be a projective plane of order n = [[ p; where the p;
are distinct primes with the above cases, then CRT(Cyp,,Cp,,...,Cp,) is a
self-dual code over the ring Ly, p, . of lengthn®? +n+2 or n? +n+4 for
Case 1 and Case 2 respectively.
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Proof.  Since each (Y, is a self-dual code over Fy, of the same length then
the Chinese product gives that the code CRT(C,,, Cp,, ..., Cp,) is self-dual.
U

Note for Case 2, 7 must be odd. If r = 2k thenn =[[pi= 3% =1
(mod 4). Hence n? + n+ 1 =3 (mod 4) and then n2 +n + 4 = 2 (mod 4)
giving that there are no self-dual codes over F,, .

Corollary 5.2 If n = 2p where p is a prime and p = 1 (mod 4) then a
Type 11 self-dual code of length N = n? +n+341 can be constructed from a
projective plane of order n over Zy,. The N-dimensional even unimodular
lattice obtained by Construction A has minimum norm 2.

Of course, there are no known non-trivial examples of either Case 1
or Case 2 since all known planes have orders a power of a prime. Had a
projective plane of order 10 existed its attached lattice in dimension 112 =
8.14 would have had by [6, Chap. 17, Theorem 7]. A theta series of the
shape:

4
b1o(q) = E{* + ) a: By AT

i=1
where letting t = g2, we denote by
E;s= 14240t + 2160¢° + 6720¢> + 17520¢* + 30240¢° + - - -,

the theta series of the Eg lattice, and by A the cusp form of weight 12 for
the full modular group

A=t]J-t)*,
r>1

or up to order 5

A=1t—24¢t2 + 2523 — 1472+¢* + 483045,

6. Weighing Matrices and Type II Codes

In this section, we deal with weighing matrices corresponding to Type II
codes.

A weighing matrix W{(m, k) of order m and weight k is an m by m
(0,1,—1)-matrix such that W - W7 = kI,,, k < m. A weighing matrix
W(m,m) is just a Hadamard matrix. Weighing matrices are a generalization
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of Hadamard matrices. We say that two weighing matrices Wy and W5 of
order m and weight k are equivalent if there exist monomial matrices of 0’s,
I's and —1’s P and ) such that Wy = P - Wy - Q.

We give a method for constructing self-dual codes over Zs,,.

Theorem 6.1 Let x an element of Zy, satisfying 1 + 2%k = 0 (mod 2n).
Let Wy, i be a weighing matriz of order m and weight k. Then the matriz
G = (Im , W) generates a self-dual code C' over Zs, of length 2m.
Moreover if z satisfies 1 + 2%k = 0 (mod 4n) then C is Type II.

Proof. G -GT = (1+ 2?k)I,,. Thus if 1 + 2%k = 0 (mod 2n) then C is
self-dual. Moreover if 1 + 22k = 0 (mod 4n) then C is Type IL. O

Remark. For n = 2, this method was given in [12].

Since the matrix S, in the generator matrix of the lifted senary sym-
metry codes is a weighing matrix of order g + 1 and weight ¢, this method

is a generalization of [[heorem 3.1.

FEzample 2. All weighing matrices have been classified for order 12
(cf. [19]). There are weighing matrices Wio . of order 12 for every weight
1 <k <12. For n = 3, the matrix (I , Wiy 11) generates a Type II code of
length 24 with the minimum Euclidean weight 12, that is, this code is not
extremal. Since there is a unique weighing matrix of weight 11, this is the
same code given previously.

Ezample 3. For n = 4, the matrix (I , 3W147) generates a Type II code
of length 24. There are exactly three inequivalent weighing matrices of
weight 7. The three inequivalent matrices are denoted by A;, A3z and Ag
in [19]. Since the matrix A; has the intersection pattern pg > 1 (for the
definition see [19]), the Type II code with generator matrix of the form
(I , 3A;1) contains a codeword of Euclidean weight 16, that is the code
is not extremal. Moreover we have verified by computer that the codes
constructed from the remaining two weighing matrices are not extremal.

It was shown in [1] that a Type II code of length n exists if and only if
n = 0 (mod 8). Thus we have the following restriction on the existence of
weighing matrices.

Corollary 6.2 Suppose that there is a weighing matriz of order m and
weight k. If there is an element x of Za, satisfying 1+ 2k = 0 (mod 4n)
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for certain n, then m = 0 (mod 4).

Remark. For n = 1, the above corollary was shown in [13].

As a corollary to [Theorem 6.1, we have the following:

Corollary 6.3 Let o and 3 be elements of Zo, satisfying 1+ 5%k =0
(mod 2n). If either Wy, is a skew-symmetric weighing matriz (that is,
Wik = —ng) or Wi 18 a symmetric weighing matriz with a8 = 0
(mod n), then the matrizx G = (I , (al + BWy, i) generates a self-dual
code C over Zan of length 2m. Moreover if 1 + o 4+ 32k = 0 (mod 4n) then
C s Type 11.

Proof.  We have G-GT = (14 a? +k82)I + afW,, 4 —i—aﬁWﬂTL,k. It follows
from the assumptions that G - GT = 0. L]

Remark. We can regard MacKay codes over Zg described in Section 3 as
a special case of the above corollary.

A similar argument to Corollary 6.2 gives the following:

Corollary 6.4 Suppose that there are two elements a and 3 of Zo, sat-

isfying 1+ a® + 4%k = 0 (mod 4n) for certain n where 3 # 0.

(1) If there is a skew-symmetric weighing matriz of order m and weight
k, then m = 0 (mod 4).

(2) If there is a symmetric weighing matriz of order m and weight k and
af =0 {mod n), then m = 0 (mod 4).

7. The Complete Combined Weight Enumerator

In this section all rings will assumed to be commutative, finite and
Frobenius.

Let C1,C9, ...,y be codes of length n, where C; is a code over the ring
Ri.Let C=C1 xCyx---xCsgand R =Ry x Ry x--- x R,

Definition 1 The complete combined weight enumerator is given by:

P(Cl,Cg,...,CS)(Xa) = Z H X;Ia(cl,cz,...,cs),

(Cl uCZ)"'7c3)€C aGR

where na(c1,ca, ..., ¢5) = [{ila = (¢}, ¢}, ..., i)} and ¢} is the i-th coordi-
nate of ¢;.
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7.1. The MacWilliams Relations
We will prove the MacWilliams relations for this new weight enumerator
by generalizing the technique in [1], which itself is a generalization of [23].
Let G; be a group with f : G1 x Gy X+ xGs — A where A is a complex
algebra. Denote by G; the character group of G;, that is G; = {m|r is a
character of G;} where a character of a group is a group homomorphism
from G to the Complex numbers under multiplication.
Deﬁnef:é\ixé\?x---xé\seAby

o~

flm,mo, ..., ms) = Z Z Z m1(z)ma (@) - - -

r1€GT 226G, TGS

Ts(zs) f(21, 22, ..., Ts).

Lemma 7.1 The function

f(.’l?l, g, ... :Es)

|G’1||GQ| T2 X X mmm(-a)

7r1€G1 1T1€G2 mEGs

o~

Ts(—xs) f(m1, T2, ..., Ts).
Proof.  We have that

|01J|Gzl Z 2, 2 mlmm)m(om)

1r1€G1 1T2€G2 ‘ITSEGS

o~

ﬁs(‘_ws)f(ﬂla T2y 00 ,7rs)
1

= TeATEARS Z Z T1(—z1)ma(—x2) ... ms(—zs)

7T1€G1 7TSEG

Z Z mi(a1) - mslas) f(a1,ag,. .., as)

a] EGl as eGs

:|G1HG2\- N > Y mi(-zitai)-

m1eGy G “1€G1

Z Z Ts(—zs +as) f(ar,as, ..., a)

ﬂ,sea (13€G1

= G1||Ga| - - - |G| f(x1, 22, . .., Ts
|G1|1G21"'|Gs|| 1|Gal - - |Gs| f (21, 22 )
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= f(ml)‘z'Qa . "ams)a

since

ZW(Q):{ LGl 9="

nea g % 0

[]

This is a generalization of the Fourier inversion formula. Next we gen-
eralize the Poisson summation formula.

Before stating the next lemma we shall define (G : H) = {r € G |
7|p = 1} and note that

[ |H| me(G:H)
;,()_{o ré¢ (G H)

Lemma 7.2 Let H; be a subgroup of G;. For every a; in G; we have

Yoo > Y flar a3, .06+ )

x1€H, zocHy zs€H
1 1 1

B G Hy)|  |(G, : H) Lo 2

. H = =N
H1)‘ |(G2 me(Gl;Hl)mE(Gsz)

z Flri ma, ..., 7).

nse(a:HS)

Proof. We have that

Z Z f(a1+.’131,...,(13+33s)

$1€H1 :I:SEHS

R DR VR A e |G| 2

r1€H, rs€H; 1

S m(—m) cooms(—2) flmy, ., )

7sEGa

Sienmnc i S S

xi1€H rs€H, 7T1€G1

Y mi(—z) o m(—xg) fm, )

s €Gs
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|G1| Z Z fﬂ'l,‘.- )

71'16G TI'SGG
Z m1(—x1) Z Ts(—xs)
:L‘}_Effl TsCHg

e neren S DR DR RS AR A

———

me(é\l:Hl) ws€(GsHy)
1 -
= ——= — Z Z (71'1,... )
(G Hy)| -+ [(Gs : Hs)

ﬂle(a:Hl) wsE(Gg:H,)

[

Lemma 7.3 Suppose f: Gy x - x Gy = A, with A a complez algebra,
are functions with ¢ = 1,2,...,m. Let ' : GT' x G x --- x G7* — A be
given by

m
F(zi,...,zl xy, ...z, ., zh . 2™) = Hfl(:c’i,:pg,,a;_lg)
i=1
Then F = [ fZ e, F(mi,. . & @d, .« . xk o am) =
it .(”Tl’ﬂ'Qa'" Ws)-
Proof.  Straightforward. O
Let Y] = (ai,...,a}) € (R)", YTZ = (ad,...,a}) € (R)" and Y, =
(aé,...,a?)E(Rs) Let fr Ry X Ry x -+ xRy —>Abyf(a1,a2,.. ):
Xo where a = (ai1,as,...,as), then for 1 < i; < n define fiiz ’“(al,

Qiy, - -+, 05,) and set
F(Y1,Ys,...,Ys) = H Flasizenis,
1<i; <|R;|

—

All that remains is for find fivizris(my,, ... ma,) where mo(z) =
x([z,y]) and a; runs over the elements of R;.

f“»“’ 5 (Mg v vy Mg )

Z Z HWaj(wi)fil’iz’""?;s(wl,...,’ws)

w1€ER wsERs =1
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= > > Txlew) X, w,)

w1€ER wseR; 1=1

Let a,b € R, and define the matrix T by:

i—=s5

azb;

Ta,b = H X'e b)
=1

where a;, b; denote the i-th coordinate of a and b respectively and y; is the
generating character of the ring I; (such a character exists because the ring
is Frobenius).

Theorem 7.4 Let C1,Cy,...,Cs be codes over the finite Frobenius Tings
R1, Ry, ..., Rs respectively. Then

P(CL,Cf ., CH (X,
1
= P
[C1]|Ca] -+ |Cs

(C1,Ca,...,C)(T(X,)),

where T'(X,) denotes the natural action of the matriz T.

As a corollary to this theorem we get the MacWilliams relations for the
joint, complete and Hamming weight enumerators.

7.2. The Weight Enumerator and the Chinese Remainder
Theorem

Let C = CRT(C1,Cy,...,C;), assuming of course that the rings are

such the Chinese Remainder Theorem applies. Then we have the following:

Wc(m(),ﬁ'?l, e ,iL‘k) = P(Cl,CQ, N ,Os)(ﬂjcrt(a)),

where a € R and crt(a) is the unique element given by the Chinese remain-
der theorem that is equivalent to a; in R;.

Notice that the matrix of Zs x Z3 is not exactly the same as the matrix
giving the MacWilliams relations for Zg. However they are equivalent, in
that it simply replaces one generating character with another.

Note the generating character for Zg is w = e3. Hence the matrix,
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indexed by 0,1, 2, 3,4, 5, giving the MacWilliamns relations are:

1 1 1 1 1 1

1 w w? -1 ! W

1 I w? w1 w2 oW

Vel 1 -1 1 -1 1 -1

1 w? w1 W W?

1 o Wt -1 W w
For the complete combined weight enumerator we have xyp, = —1 and
Xpy = e5 = w? then XF,XFy = —w? = w5, Then the matrix, indexed by

00,11,02,10,01, 12, giving the MacWilliams relations is:

1 1 1 1 1 1

1 w® W -1 W w

1 1wl w? 1 wt W?
Vel 1 -1 1 -1 1 -1
1 w? w1 W oWt

1 w w? -1 ! W

This amounts to replacing the generating character x(1) = w with the

generating character x(1) = w®.

7.3. Symmetrized Weight Enumerators
Let U; be a group of units of the ring R;. We say two elements of R;
are equivalent, (denoted z = y), if £ = uy for some v € R;. Let H; denote

the set of equivalence classes in R generated by this equivalence relation
and let H = Hy x Hy x --- x H,.

Definition 2 The symmetrized combined weight enumerator is given by
Mg (C € ---;Cs)
SUl,Uz,...,US(Cl-,,CQ,--.,CS)(Xia]) - Z H X[a[] JAE1,t2 ?
(c1,€2,.-,cs)EC [aleH

where njg = [{i | for j = 1...s [¢}] = [a']}| and ¢} is the i-th coordinate of

¢; and a' is the i-th coordinate of a.

Note that this is a generalization of the definition given in [23].
Let [a], [b] € H, and define the matrix M by

Ma,b - H Z Z X(z'lba

i=1acla;] bElb;]
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where a;, b; denote the i-th coordinate of a and b respectively and y; is the
generating character of the ring R; (such a character exists because the ring
is Frobenius).

By specializing the variables in the previous lemmas we have the fol-
lowing.

Theorem 7.5 The MacWilliams relations for the symmetrized weight
enumerator are given by

SU1 U2,V (C11 C s -, O3 ) (X))
1
- S
|Cl||02"--|Cs| UUs,...,Us

where M (X,) denotes the natural action of the matriz M.

For the symmetrized weight enumerator as given in [23], the matrix
giving the MacWilliams relations, indexed by 0,1,2, 3, is given by:

1 2 2 1

1 1 wH+w w4owr -1
% 1 w?4w! wit+w? 1 ’

1 -2 2 -1

which is identical to the matrix M as given above if U; = {1} and U, =

{1,2}, except that the matrix is indexed by [0][0], [Z][T], [0][T], [L][0].
The symmetrized weight enumerator of a self-dual code over Zg is held
invariant by this matrix as well as the matrix:

1 0 0 0
0O w 0 0
0 0 wt 0
0 0 0 o3

The group of matrices holding the weight enumerator of a Type I code
over Zg is generated by these matrices. A Magma computation gives that
the group has order 384 and the Molien series is given by

t40 +2t36 + 2t32 +4t28 ‘+‘3t24 +3t20 +4t16 +3t12 + tS +1
T+t (B~ + 1) (2t + 12 (24t + D (¢ — 2+ D2 - D e+ 1) 2 + )Y
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where the denominator is also

(1—tH(1 — )1 —12)(1 — ¢24).

The Taylor series is

14+ t4 4+ 368 + 7412 1361 + 21420 4 35424 ...

Hence by inspection of the denominator there are 4 primary invariants and

by inspection of the numerator 24 nontrivial secondary invariants.
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