
SELF-DUAL CONFIGURATIONS AND REGULAR GRAPHS 

H. S. M. COXETER 

1. Introduction. A configuration (mci ni) is a set of m points and 
n lines in a plane, with d of the points on each line and c of the lines 
through each point; thus cm = dn. Those permutations which pre-
serve incidences form a group, "the group of the configuration." If 
m — n, and consequently c = d, the group may include not only sym

metries which permute the points among themselves but also reci

procities which interchange points and lines in accordance with the 
principle of duality. The configuration is then "self-dual," and its 
symbol («<*, n<j) is conveniently abbreviated to na. We shall use the 
same symbol for the analogous concept of a configuration in three 
dimensions, consisting of n points lying by d's in n planes, d through 
each point. 

With any configuration we can associate a diagram called the 
Menger graph [13, p. 28],x in which the points are represented by 
dots or "nodes," two of which are joined by an arc or "branch" when-
ever the corresponding two points are on a line of the configuration. 
Unfortunately, however, it often happens that two different con-
figurations have the same Menger graph. The present address is 
concerned with another kind of diagram, which represents the con-
figuration uniquely. In this Levi graph [32, p. 5] , we represent the 
points and lines (or planes) of the configuration by dots of two 
colors, say "red nodes" and "blue nodes," with the rule that two 

nodes differently colored are joined whenever the corresponding elements 

of the configuration are incident. (Two nodes of the same color are 
never joined.) Thus the Levi graph for (mCl rid) has m red nodes and 
n blue nodes, with each red node joined to c blue nodes and each 
blue node joined to d red nodes, so that there are cm = dn branches 
altogether. 

As simple instances in two dimensions we have the triangle 32, 
whose Levi graph is a hexagon with red and blue vertices occurring 
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alternately; and the complete quadrangle (43, 62), whose Levi 
graph may be regarded as a tetrahedron with a red node at each ver-
tex and a blue node at the midpoint of each edge. 

F I G . 1. The cube 73. F I G . 2. The regular map {6, 3)2,0. 

As instances in three dimensions we have the tetrahedron 43, 
whose Levi graph (Fig. 1 or 3) consists of the vertices and edges of a 
cube (with the vertices colored alternately red and blue); and 
Möbius's configuration 84, whose Levi graph (Fig. 5) consists of the 
vertices and edges of a four-dimensional hypercube 74 [12, p. 123], 
as we shall see in §10. This 84 may be regarded as a pair of tetrahedra 
so placed that each vertex of either lies in a face-plane of the other. 

F I G . 3. A distorted cube. F I G . 4. 74/2. 

The symbols at the vertices in Figs. 1 and 5 represent Cartesian 
coordinates in the following manner: 0 is the origin, and every other 
symbol indicates which of the three or four coordinates have the 
value 1, while the rest are zero. Thus two vertices are joined by an 
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edge whenever their symbols are derived from each other by inserting 
or removing a single digit. (Here 0 does not count as a digit, but 
rather as the absence of digits.) A vertex is red or blue according as 
its symbol contains an even or odd number of digits (thus 0 is red). 
The group of symmetries and reciprocities of Möbius's configuration 
is of order 4! 24 = 384; for it is isomorphic with the symmetry group 
of the hypercube, and this consists of the permutations of the digits 
1, 2, 3, 4, combined with reflections Ri, R2, R3, R4 which act on the 
symbols as follows: R»- adds a digit i whenever that digit is not yet 
present, and removes i whenever it is present; for example, R3 trans-
forms the square 0 113 3 into the same square with its vertices named 
in the reverse order. 

234 1234 

^ ^ J234 234 24 124 1234 

FIG. 5. The hypercube 74. FIG. 6. The regular maps {4, 4}4,o 
and {4, 4} 2,2. 

I t is possible (in three ways) to select 16 of the 24 square faces of 
the hypercube so as to form the regular skew polyhedron {4, 4 |4} 
[ l l , p. 43]. Topologically, this is a regular map on a torus, as in 
Fig. 6 (with peripheral elements identified as marked). Fig. 4 is 
named 74/2 because it can be derived from the hypercube 74 by 
identifying opposite elements, as in the passage from spherical to 
elliptic space. When applied to Fig. 6, this identification yields a map 
of eight (instead of sixteen) squares on a torus, given by identifying 
opposite sides of the square drawn in broken lines. Comparing Fig. 4 
with Fig. 3, we see tha t this graph of 8 nodes and 16 branches may 
be regarded as a cube with opposite vertices joined, though its group 
(of order 2-4!2 = 1152) is much larger than that of the cube itself. 
I t is the Levi graph for a rather trivial configuration consisting of 
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four points on a line and four planes through the same line. 
Fig. 2 shows that the Levi graph for the tetrahedron (Fig. 1) 

forms another regular map on a torus : it decomposes the surface into 
four hexagons [13, p. 25]. If we look for these hexagons (such as 
0 1 12 123 23 3) in the original cube, we find that they are Pétrie 
polygons: regular skew polygons whose various pairs of adjacent 
sides belong to different faces. Conversely, the map has its own Pétrie 
polygons (such as 0 1 13 3), which are the faces of the cube. 

This investigation is justified by the general principle that inter-
esting configurations are represented by interesting graphs. In prac-
tice, either subject is liable to throw light on the other. A known 
property of Rummer's configuration 166 led to the discovery of a new 
regular skew polyhedron in six dimensions, as we shall see in §13. 
On the other hand, a certain graph, described long ago by an elec-
trical engineer, was found to represent a highly symmetrical con-
figuration 123 in the real projective plane (§8). 

2. Regular graphs. To be precise, a graph is a collection of No ob-
jects called nodesy Ni pairs of which satisfy a certain symmetric rela-
tion. Such a pair of nodes is called a branch (or rather, the two nodes 
are said to be joined by a branch). Since we shall never allow two 
branches to join the same two nodes, it is convenient to regard the 
iVo nodes as points and the N± branches as line-segments joining 
pairs of the points. If the number of branches at a node is the same 
for all nodes, say d> the graph is said to be of degree d, and we see that 

2iVi = dNo. 

An ordered sequence of 5 distinct branches, consecutively adjacent 
(forming a continuous path from one node to another in a definite 
direction) is called an s-arc; for example, the 1-arcs are the 2Ni di-
rected branches. A graph is said to be connected if every two nodes 
are joined by some s-arc. We shall be concerned solely with connected 
graphs. A closed sequence of m distinct branches, consecutively ad-
jacent (forming a continuous path from a node to itself in m steps, 
m>2) is called an m-circuit. The smallest value of m for which an 
m-circuit occurs is called the girth of the graph ; for example, the graph 
of vertices and edges of the cube has degree 3 and girth 4. It is often 
possible to find an iV0-circuit that includes all the nodes of the graph 
(and iVo of the N\ branches) ; this is called a Hamiltonian circuit [12, 
p. 8] , and enables us to draw the graph as an iVVgon with Ni — No 

diagonals inserted. (See Figs. 3, 4, 9, 12, 15, 18, 22, 23.) 
A graph of degree d evidently has d — 1 times as many s-arcs as 

(s — l)-arcs, provided Ks<m. Thus the number of s-arcs is 
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(d - ly-VNx = {d - ly^dNo (Ks < m). 

Those permutations of the nodes which leave them joined as before 
form a group, "the group of the graph." A graph is said to be s-regu-

lar if its s-arcs are all alike while its (s+l) -arcs are not all alike, tha t 
is, if the group is transitive on the s-arcs but not on the (s+1)-
arcs. Thus the cube is 2-regular (not 3-regular, since a 3-arc may be-
long either to a face or to a Petrie polygon). For an s-regular graph 
of degree 3, the two ways in which a given 5-arc may be extended to 
an (5+I)-arc are essentially different; so the subgroup leaving the 
s-arc invariant is of order 1, and the order of the whole group is 
equal to the number of s-arcs, namely 

2'Ni. 

But when d>3, the final branch of an (s + l)-arc may sometimes be 
chosen in several equivalent ways ; so we can only say that the order 
is divisible by {d—\y~l2Ni. 

The above definitions differ only very slightly from those proposed 
by Tut te [47], who proved that , for every s-regular graph of girth m, 

s g m/2 + 1. 

He called the graph an m-cage in the case of maximum regularity 

s = [m/2+ l]. 

Restricting consideration to the case when d = 3, he found a cage for 
each value of m up to 8, except 7, and proved that there are no other 
cages (of degree 3). 

The 3-cage is the complete graph with four nodes, that is, the graph 
of vertices and edges of a tetrahedron. The 4-cage is the Thomsen 
graph, which has six nodes 1, 2, 3, 4, 5, 6, and nine branches ij, where 
t is even and j odd [22, p. 403; 5, p. 35]. The 5-cage is the Petersen 
graph, whose ten nodes may be denoted by the unordered pairs of 
digits 1, 2, 3, 4, 5, with the rule tha t two nodes are joined whenever 
their symbols have no common digit [28, p. 194]. The 6 -cage and 
8-cage are more complicated graphs which we shall describe in 
§§4 and 9. 

The Petersen graph may conveniently be drawn as a large penta-
gon surrounding a small pentagram, with corresponding vertices 
joined [19, p. 222]. Accordingly, let us denote it by 

151+{|} 
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and try to generalize this procedure. The symbol {w} + {#/d} will 
denote an n-gon AQAI • • • An-x and a star n-gon BoBdB2dBzd • • • , 
with AiBi joined. The star polygon {n/d} exists whenever n/d is a 
fraction in its lowest terms with n>2d [12, p. 93]. Thus the number 
of different kinds of ^-gon is 0(w)/2, and the values of n for which 
there is just one star n-gon are given by 

*(») = 4, 

namely n = 5, 8, 10, 12. On examining Figs. 11, 17, and 21, we find 
that {8j + {8/3} and {12} + {12/5} are 2-regular, while {l0} 
+ {10/3} is 3-regular. The last is the 3-regular graph described by 
Tut te [47, p. 460 ]. But all three of these graphs were described 
earlier by Foster [18, p. 315]. 

The regularity of such a graph is easily computed by writing the 
mark 0 at one node, 1 a t each adjacent node, 2 at any further nodes 
adjacent to these, and so on. Then all the s-arcs emanating from the 
initial node are marked 012 • • • s. 

The complete graph with n + 1 nodes is evidently 2-regular. This 
graph, whose group is symmetric, may be described as the graph of 
vertices and edges of an w-dimensional simplex. More generally, the 
graph of vertices and edges of an ^-dimensional regular polytope 
(n>2) is 2-regular whenever the vertex figure is a simplex [12, p. 128] 
but only 1-regular otherwise. However, the regularity is occasionally 
increased by identifying opposite vertices so as to obtain a regular 
"honeycomb" covering elliptic (n — l)-space. The case of the four-
dimensional hypercube 74 has already been mentioned. The other 
instance is the dodecahedron, which reduces to the Petersen graph 
[30, p. 69; 12, p. 51, Fig. 3.6E with ij=ji]. 

We saw in §1 how every configuration can be represented in a 
unique manner by a "Levi graph." Clearly, the configuration and 
graph are isomorphic: the group of the configuration (including 
reciprocities as well as symmetries) is the same as the group of the 
graph. In particular, if a configuration n$ has an s-regular Levi graph 
(s> 1), the order of its group is 

2'Ni = 2*3n. 

3. Regular maps. I t was proved by Petersen [38, p. 420] that 
every graph can be embedded into a surface so as to cover the surface 
with a map of N2 non-overlapping simply-connected regions (poly-
gons) whose boundaries consist of the Ni branches and N0 nodes of 
the graph. Since a polyhedron is such a map, it is natural to call 
the regions faces, the branches edges, and the nodes vertices. The em-
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bedding is by no means unique, but there must be at least one for 
which the characteristic 

- No + Nx - N2 

in minimum. When the minimum characteristic is —2, the graph is 
said to be planar, since it can be embedded into the ordinary plane 
or sphere. The simplest graphs of characteristic — 1 are the Thomsen 
graph and the complete 5-point (or four-dimensional simplex). The 
corresponding maps are derived from the hexagonal prism and 
pentagonal antiprism by identifying antipodal elements. A famous 
theorem of Kuratowski, elegantly proved by Whitney [SO], states 
that a necessary and sufficient condition for a graph to be planar is 
that it have no part homeomorphic to either of these two special 
graphs. (In the case of a graph of degree 3, only the Thomsen graph 
needs to be mentioned.) 

Those permutations of the elements of a map which preserve the 
incidences form a group g, "the group of the map." I t is interesting 
to compare this with ®, the group of the graph formed by the 
vertices and edges alone. Clearly, g is a subgroup of ©, and any opera-
tion of ® not belonging to g yields another map of the same kind in 
which the same vertices and edges are differently distributed into 
faces. Hence the graph can be embedded into the same kind of sur-
face in a number of ways equal to the index of g in @. In particular, 
if g is the whole of ®, the embedding is unique. 

A map is said to be regular if its group includes the cyclic permuta-
tion of the edges belonging to any one face and also the cyclic per-
mutation of the edges that meet at any one vertex of this face [7]. 
Thus the group must be transitive on the vertices, and on the edges, 
and on the faces. Such a map is "of type {p, q\" if p edges belong 
to a face, and g to a vertex. The dual map, whose edges cross those 
of the original map, is then of type {g, p}. 

The above cyclic permutations or "rotations," R and S, satisfy 
the relations 

R*> = s« = (RS)2 = 1, 

and generate a group of order 4JVi/e, where e = 2 or 1 according as 
the surface is orientable or unorientable ("two-sided" or "one-sided") 
[8, p. 408]. When e = 1 this is the whole group of the map, but when 
€ = 2 it may be either the whole group or a subgroup of index 2. The 
latter case arises when the map is symmetrical by reflection as well 
as by rotation, that is, when there is an operation that interchanges 
two adjacent faces without altering their common vertices. 
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The Pétrie polygon of a regular map is an A-circuit of edges, such 
that every two consecutive edges, but no three, belong to a face 
[12, pp. 24, 61, 90, 108]. A particular specimen of this polygon is 
determined by any two adjacent sides of any face; therefore the vari-
ous specimens are all alike, and we are justified in speaking of the Pétrie 
polygon of the map. The number h is easily seen to be e times the 
period of the "translation" R2S2 [13, Fig. xi]. Since every edge belongs 
to two such circuits, the Pétrie polygons themselves form a regular 
map of type {h, q\ having the same Ni edges, the same N0 vertices, 
and the same group, though covering a different surface. The rela-
tion between the two maps is evidently symmetric: the faces of 
either are the Pétrie polygons of the other. (See Figs. 1 and 2.) 

Every map of type {p, q} can be derived by making suitable 
identifications in a simple-connected "universal covering map" [46, 
p. 8] which we call simply "the map {p, q}." This is, in general, 
infinite, and we naturally think of it as covering the Euclidean or 
hyperbolic plane [43, p. 162]. In fact, since the Euler-Poincaré char-
acteristic 

K = - No + Ni - N2 = ( 1 )Ni 
\ P q/ 

1 # 1 

= [fo-2)(g-2)-4] — 
pq 

cannot be negative unless (p — 2)(q — 2) <4 , the only finite universal 
regular maps (K = — 2) are 
{p,2}, {2,p}, {3,3}, {4 ,3} , {3 ,4} , {5 ,3} , {3 ,5} . 

The first of these is the partition of the sphere into two hemispheres 
by a p-gon along the equator; and the corresponding graph is merely 
the p-gon, {p}. The second, being the partition of the sphere into p 

lunes by p meridians, is irrelevant to our discussion, as we are not 
interested in graphs having two nodes joined by more than one 
branch. (However, Tut te includes {2, 3} in his treatment [47], 
calling it the 2-cage.) 

The remaining spherical {p, g}'s are the five Platonic solids, for 
which 

Nl = 2pq/[4: - (p - 2)(q - 2)], h = (4NX + 1)1/2 - 1 

[12, pp. 5, 13, 19]. Of these, all save the tetrahedron {3, 3} have 
pairs of antipodal elements [12, p. 91 ]. Identifying such pairs, we 
obtain the four regular maps in the elliptic plane (K== — 1): 
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{4, 3}/2, {3,4}/2, {5, 3}/2, {3, S}/2. 

When regarded as graphs, the first is the complete 4-point, like 
{ 3 , 3 } ; the second is merely a triangle with repeated sides; the third 
is the Petersen graph, as we saw in §2 ; and the fourth is the complete 
6-point (or five-dimensional simplex). 

Regular maps on the torus (i£ = 0) are more interesting [13]. 
There is a map {4, 4}&,c for any non-negative integers b and c (with 
b^c to avoid repetition). This is derived from the ordinary plane 
tessellation {4, 4 } , whose vertices have integral Cartesian co-
ordinates, by identifying all points of the lattice generated by the 
vectors (&, c) and ( —c, b). Similarly, {3, 6}&,c is derived from the 
infinite triangular tessellation {3, 6} , whose vertices have integral 
coordinates referred to oblique axes inclined at 7r/3, by identifying 
all points of the lattice generated by the vectors (&, c) and ( —c, b+c). 

Thus {4, 4t}b,c has b2 + c2 vertices, while {3, 6}&,c has b2+bc+c2. 

Finally {6, 3} &(C is the dual of {3, 6} &,c, and has 2(b2+bc+c2) vertices. 
These maps are symmetrical by reflection whenever b = c or bc = 0 

(as in Figs. 2, 6, 14, 20), but only by rotation in other cases (for 
example, Fig. 8). 

I t often happens that the map of minimum characteristic for a 
given graph is not regular, although a regular map is obtained by 
allowing a higher characteristic. For instance, the Thomsen graph 
and the complete S-point, which form irregular maps on the elliptic 
plane, form regular maps on the torus, namely 

{6, 3} 1,1 and {4, 4}2,i 

[13, Figs, iv and ii]. 
Regarded as a graph, {4, 4}&tC is 1-regular if &+c>4, since there 

are two obviously different types of 2-arc, one of which belongs to a 
4-circuit while the other does not. For the same reason, {4, 4}3iois 
1-regular. But the straight 2-arc does belong to a 4-circuit if b+c = 4; 
so it is not surprising to find that {4, 4} 4,0 and {4, 4} 3,1 are 2-regular, 
while {4, 4)2,2 is 3-regular (Fig. 6). Also {4, 4}2,1, being the complete 
5-point, is 2-regular. The girth of {4, 4}b,c is 4 if & + c > 3 , but only 
3 if b + c = 3. 

All the graphs {3, 6}&,c are 1-regular, of girth 3 and degree 6. But 
there are infinitely many 2-regular graphs of degree 3. In fact, {6, 3} &,c 

is 2-regular whenever & + c > 3 ; but {6, 3)2,1 is 4-regular (Fig. 8), 
while {6, 3}i (1 and {6, 3}3,0 are 3-regular (Fig. 14). The girth of 
{6, 3}b,c is 6 if b+c>2, but only 4 if b + c~2 (as in Fig. 2 or the 
Thomsen graph). 
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When b and c are coprime, we obtain a Hamiltonian circuit for 
{4, 4}& ,c by taking a "straight path" along the edges [13, p. 27]. 
When this circuit is drawn as a regular polygon {b2+c2}, the remain-
ing branches of the graph form a star polygon 

b2 + cM 
W + cc') 

having the same b2+c2 vertices. Here b' and c' are given by the con-
gruence 

be' - cV s ± 1 (mod b2 + c2) 

with whichever sign makes bb'+cc' <(b2-\-c2)/2. In particular, 
{4, 4}6,1 can be drawn as a { ô 2 + l } with its inscribed {(b2+l)/b} 

(given by &' = 1, c' = 0). 
Foster has drawn a pentagram {5} with its inscribed pentagram 

{5/2} , and a decagon {lO} with its inscribed decagram {10/3}, as 
instances of "symmetrical geometrical circuits" [18, p. 316, Fig. 10]. 
These 2-regular graphs are now seen to be {4, 4)2,1 and {4, 4} 3,1. 

Similarly, the graph {3, 6}&,c can be drawn, when b and c are co-
prime, as a {b2-\-bc+c2} with two inscribed star polygons of different 
densities. 

The Pétrie polygon of {4, 4}&,c is an ^-circuit, where h is twice 
the period of R2S2 in the group 

R4 = s4 = (RS)2 = (RS-^CR-^S)* = 1 

[13, p. 25]. Since ( R S - ^ C R ^ S ) * - (RS~1R-1S)6 = (R2S2)&, we have 
h = 2bilb = c; but whenever b 5̂  c, 

h = 2(62 + c2)/(b, c). 

(The denominator is the greatest common divisor.) Similarly, for 
{3, 6} b,c or {6, 3} &,c, h is twice the period of R2S2 in 

R3 = S6 = (RS)2 = ( R S - ^ R - ^ S 2 ) * = 1, 

namely 
h = 2(ô2 + bc + c2)/(b, c) 

for all values of b and c [8, p. 418]. In particular, when (&, c) = l , 
{4, 4}6,c and {3, 6}&,c have the peculiarity that the number of sides 
of the Pétrie polygon is twice the number of vertices of the whole 
map, which means that the Pétrie polygon is singular (as Pétrie 
himself noticed in 1931); for example, the Pétrie polygon of {4, 4}2,i 
is a singular decagon such as 0213243041 [13, Fig. i ] . 
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The Pétrie polygon of {6, 3}&,c has the same number of sides as 
that of the dual {3,6} &,c, but is never singular. In fact, since {6, 3} &,«* 
has 2(b2+bc+c2) vertices, its Pétrie polygon is Hamiltonian when 
(&, c) = l . In this case the graph can be drawn as a regular 
2(b2+bc+c2)-gon with certain pairs of vertices joined; for example, 
the Thomsen graph {6, 3} i,i can be drawn as a hexagon with opposite 
vertices joined, and {6, 3 }2,i can be drawn as in Fig. 9. 

On the other hand, {4, 4 },$,<. and {3, 6}&,«have Hamiltonian Pétrie 
polygons when (&, c) = 2, except in the single case of {4, 4}2,2 (Fig. 6). 
The "red" vertices of Fig. 20 (that is, those marked with capital 
letters) form a {3, 6} 2,2 whose Pétrie polygons are dodecagons such as 

A iBjO^A^B^Ç^A %BJZ\A 2.B3C4. 

Thus the graph of vertices and edges of {3, 6)2,2 can be drawn as a 
dodecagon {12}, a dodecagram {12/5}, and a pair of hexagons, all 
having the same twelve vertices. (This is the Menger graph for Fig. 
19.) 

The three maps {4, 4}2,2, {6, 3)3,0, and {6, 3} 1,1 have h — p; so it is 
not surprising to find that in each case the derived map formed by 
the Pétrie polygons is isomorphic to the original map. For instance, 
the Thomsen graph forms a map {6, 3} 1,1 having faces 

123456, 143652, 163254 

and Pétrie polygons 

123654, 143256, 163452, 

or vice versa. 
Two regular maps of positive characteristic will be considered in 

§§5 and 7. 

FIG. 7. Fano's 7t. 

4. Fano's 7 3. The regular map {6, 3}2,i first arose in the work of 
Heawood on generalizations of the four-color problem [21, p. 333]. 
Since it consists of seven hexagons, each contiguous to all the others, 
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it demonstrates the fact that as many as seven colors may be needed 
for coloring a map on a torus. But Heawood proved also that seven 
colors will suffice for every map on a torus; so the "seven-color prob-
lem" was completely solved. 

FIG. 8. The regular map {6, 3} 2,1. FIG. 9. Another view of the 6-cage. 

Let alternate vertices of {6, 3} 2,1 be numbered 1, 2, 3, 4, 5, 6, 7, 
as in Fig. 8. Each of the remaining seven vertices is then determined 
by the three to which it is joined; so we have a system of seven 
triples 

124, 235, 346, 457, 561, 672, 713, 

derived from one another by cyclic permutation of the digits. If the 
two types of vertices are the red and blue nodes of a Levi graph, 
representing the points and lines of a configuration 73, the seven 
triples show which sets of points are collinear. Every three collinear 
points are the diagonal points of the complete quadrangle formed by 
the remaining four points. This state of affairs is indicated in Fig. 7, 
where the circle is to be regarded as a seventh line. Its impossibility 
in the usual systems of geometry is often taken as an axiom [17, p. 
115; 49, p. 45]. 

But such a configuration occurs in many finite geometries; for 
example, in PG(2, 2) where it is the whole plane [17, p. 114; 49, p. 
202]. This means that each point has three coordinates (not all zero) 
belonging to the field of residue-classes modulo 2, namely 0 and 1 
with the rule 

1 + 1 = 0, 

and three points are collinear whenever their coordinates in each 
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position have sum zero. Such a coordinate symbol may be regarded 
as a mark in the Galois field Gi7[23], and the simple rule is that 
three points are collinear whenever their marks have sum zero. Let 
the modulus of the Galois field be the irreducible cubic 

X3 + X + 1 

or 1011. Then the successive powers of the primitive root X or 10 are 

X = 010, X2 = 100, X3 = 011, X4 = 110, X6 = 111, X6 = 101, X7 = 001. 

These are the proper coordinate symbols for the points previously 
named 1, 2, 3, 4, 5, 6, 7; and the rule for collinearity is a consequence 
of the identity X r(l+X+X3) = 0 . 

The Levi graph for PG(2, 2) may be drawn as in Fig. 9 by placing 
the numbers 1, 2, • • • , 7 at alternate vertices of a regular 14-gon, 
joining the vertex between 1 and 2 to 4, that between 2 and 3 to 5, 
and so on. The peripheral 14-gon appears in {6, 3}2,i as a Petrie 
polygon, which is Hamiltonian since 2 and 1 are coprime. 

The blue node 124 belongs to six 2-arcs (as defined in §2): two 
through each of the red nodes 1 ,2 ,4 . The only nodes not used up in 
this manner are the four red nodes 3, 5, 6, 7. This remark suggests a 
third construction for the graph. Regard these four red nodes as 
forming a tetrahedron. Take a blue node on each of the six edges; 
for example, a blue node 137 on the edge 37. Join the two blue nodes 
on each pair of opposite edges, and take a red node on each join; for 
example, a red node 1 on the join of 137 and 156. Finally, join these 
three red nodes 1, 2, 4 to a seventh blue node 124. 

The relation between the finite projective geometry and its Levi 
graph shows at once that the graph is a 6-cage (that is, 4-regular, of 
girth 6). For, each 6-circuit of the graph represents a triangle of the 
geometry, and each 4-arc represents a sequence 

point-line-point-line-point or line-point-line-point-line, 

consecutively incident. Since every such sequence is part of a tri-
angle, all the 4-arcs are alike, and the graph is 4-regular. The group 
of the graph, being the group of collineations and correlations of 
PG(2, 2), is of order 336 with a simple subgroup of index 2. The 
order may also be computed by setting 5 = 4 and n = 7 in the expres-
sion 2*3n a t the end of §2. 

Most of these ideas can be generalized at once to PG(2, pn) for 
any prime-power pn. Singer [42, p. 378] observed that the 

q = p*» + p»+l 
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points in this finite plane may be so ordered that the ith point is 
represented by the mark X% where X is a primitive root of GF[pZn] 

while \q is a primitive root of the subfield GF[pn] to which the co-
ordinates of the points belong. The condition for three points 
Xa, X6, Xe to be collinear is 

a\a + j3X6 + y\c = 0, 

where a, /3, y belong to the GF[pn]] therefore multiplication by X 
represents a collineation. 

For the same reason as before, the Levi graph for this configura-
tion qp

n+i is 4-regular, of grith 6 ; so we may call it a 6-cage of degree 
£ n + l . Singer's cyclic rule provides a Hamiltonian circuit, enabling 
us to draw the graph as a {2q} with certain diagonals inserted. 

Since there are No = 2q nodes, the number of 4-arcs is 

(d - 1) W o = 2p*«(p* + l)q, 

whereas the order of the group of collineations and correlations of 
PG(2, pn) is known to be 

2npZn(p2n - l){pZn - 1) = 2n(pn - l)2pZn(pn + l)q 

[48, p. 368]. Since a 4-arc represents the three sides and two vertices 
(or vice versa) of a triangle, it follows that the collineations leaving 
a triangle entirely invariant form a subgroup of order n(pn—l)2. The 
factor 

(pn _ 1)2 = q _ 3pn 

is simply the number of points not lying on any side of a given tri-
angle, tha t is, the number of ways in which the triangle can be com-
pleted into a quadrangle. This leaves just n for the order of the sub-
group leaving a quadrangle entirely invariant, namely, the group of 
automorphisms of the Galois field, which is the cyclic group of order 
n generated by the transformation 

x-> xp. 

Generalizing 7$ in another direction, we construct a graph of n red 
and n blue nodes, such that the red nodes are numbered 0, 1, • • • , 
n — 1 while the blue nodes are joined to the triples 

0 1 r, 1 2 r + 1, • - (mod n) 

with 2<r<n/2. This inequality ensures that no two triples shall 
contain more than one common member. The case n = 8 (r = 3) will 
be considered in §5. 
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When n = 9 or 10, it is immaterial whether we take r = 3 or 4; for 
the transformation x—»5x+4 changes the triple 013 (mod 9) into 401, 
while x—>3x+l changes 013 (mod 10) into 140. These systems form 
configurations 93 and 103 in the real projective plane: in the notation 
of Kantor [26; 27] they are the 93 of type (C) and the 103 of type (A). 
The Levi graphs can be drawn in a manner analogous to Figs. 9 and 
12. But these cases, where the graphs are not even 1-regular, seem less 
interesting than the configurations of Pappus and Desargues (Kan-
tor's 93 of type (A) and 103 of type (B)) which we shall discuss in 
§§6 and 7. 

On the other hand, an infinite family of 2-regular graphs of this 
cyclic nature can be obtained by considering the maps {6, 3}&|C, 
where b and c are coprime. When the vertices of any map {6, 3}&,c 

are colored alternately red and blue, those of either color evidently 
form a map {3, 6}&,c. (When the {6, 3}&,c arises as the Levi graph 
for a configuration, the {3, 6} &,c is the corresponding Menger graph.) 
The two colors occur alternately along any Pétrie polygon of the 
{6, 3} 6,c, and the red vertices of the Pétrie polygon form a "straight 
path" in the red {3, 6}&,c. When b and c are coprime, the Pétrie 
polygon of {6, 3} 6,c is Hamiltonian; so also is the straight path in 
{3, 6}b,c, as we remarked in §3. Assigning consecutive numbers to 
the vertices of this straight path, we obtain a triple system of the 
above kind with 

n = b2 + be + c2 

[13, p. 27]. In terms of b' and d\ given by the congruence 

be' — cb' s= 1 (mod n), 

we find r = bb'+be'+cc' or n + 1 — (bb'+be' + cc'), whichever is smaller. 
Thus, in the case of {6, 3} 6,1 we have simply 

n = b2 + b + 1, V = b - 1, c' = 1, r = * + 1 - (b2 + 1) = b + 1; 

so the triples are 

0 1 b + 1, 1 2 b + 2, • • • (mod b2 + b + 1). 

5. The Möbius-Kantor 83. The triple system 

0 1 3 , 1 2 4, 2 3 5, • • • (mod 2p) 

provides a combinatorial solution for Möbius's problem of finding a 
pair of simple £-gons, each inscribed in the other [36, p. 446]. In 
fact, the vertices of the £-gon 0 2 4 • • • would lie on the respective 
sides 13, 35, • • • of the £-gon 1 3 5 • • • , and the vertices of the latter 
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would lie on the sides 24, 46, • • • of the former. For a realization of 
this combinatorial scheme in the projective plane, Kantor considered 
an arbitrary p-gon 0 2 4 • • • and a tentative position for the point 
1 on the side 24. This determines further points on the remaining 
sides, connected by a chain of perspectivities 

QL ?_ 

which leads eventually to a point 1' on the original side 24. The 
problem is solved if this 1' coincides with 1; so the given p-gon 

0 2 4 • • • provides two solutions whenever the projectivity 1 A 1' is 
hyperbolic [26, pp. 916-917; 27, pp. 1291-1291]. Thus a solution is 
always possible in the complex plane, though not necessarily in the 
real plane. 

In the case of quadrangles (£ = 4), writing 8 instead of 0, we have 
the triple system 

1 2 4, 2 3 5, 3 4 6, 4 5 7, 5 6 8, 6 7 1, 7 8 2, 8 1 3 

and the perspectivities 

Möbius proved that in this simplest case the projectivity 1 A 1' is 
necessarily elliptic; hence the configuration 83 cannot be constructed 
in the real plane. However, in the complex plane, in terms of the cube 
roots of unity 

co = ( - 1 + 31>2*)/2 and co2 = ( - 1 - 31 '2i)/2, 

the eight points may be taken to be 

1 (1, 0, 0), 2 (0, 0, 1), 3 (co, - 1 , 1), 4 ( - 1 , 0, 1), 

5 ( - 1 , co2, 1), 6 (1, co, 0), 7 (0, 1, 0), 8 (0, - 1 , 1), 

so that the eight lines are their polars with respect to the conic 

x2 + y2 = z2, 

namely 

782 [1, 0, 0], 671 [0, 0, l ] , 568 [-co, 1, l ] , 457 [l, 0, l ] , 

346 [1, -co2, 1], 235 [1, co, 0], 124 [0, 1, 0], 813 [0, 1, l ] . 

The configuration 83 cannot constitute the whole of a finite geom-
etry as 73 does ; for the eight points occur in pairs of opposites (such 
as 1 and 5) which do not belong to lines, and the eight lines occur in 
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pairs of opposites (such as 124 and 568) which have no common 
point. Nevertheless, eight points and eight lines having the desired 
incidences can be found in some finite geometries such as PG(2, 3) 
or, more conveniently, JEG(2, 3). This is the affine geometry in which 
the two coordinates of a point belong to the field of residue-classes 
modulo 3, namely 0, 1, 2 with the rules 

1 + 2 = 0, 2 + 2 = 1 , 2 X 2 = 1 , 

and three points are collinear whenever their coordinates in both 
positions have sum zero. Such a coordinate symbol may be regarded 

T^X6 

F I G . 10. T h e Möbius -Kantor 83. 

as a mark in the Galois field GF[32], and the simple rule is that three 
points are collinear whenever their marks have sum zero.2 Let the 
modulus of the Galois field be the irreducible quadratic 

X2 + X + 2 

or 112. Then the successive powers of the primitive root X or 10 are 

X = IQ, x2 = 21, X3 = 22, X4 = 02, X5 = 20, X6 = 12, X7 = 11, X8 = 01. 

These are the proper coordinate symbols for the points previously 
named 1, 2, 3, 4, 5, 6, 7, 8; and the rule for collinearity is a conse-
quence of the identity X r(l+X+X3) = 0 , which holds since 

X3 + X + 1 = (X + 2)(X2 + X + 2). 

The only point of the geometry not present in the configuration is the 
origin 00. (See Fig. 10, where the points are represented in the 
Euclidean plane as if the coordinate residue 2 were the ordinary 
number — 1 . This representation naturally obscures the collinearity 
of such points as X4, X5, X7.) 

The corresponding Levi graph, of 16 nodes and 24 branches, has 
a Hamiltonian circuit whose alternate vertices are 1 2 3 4 5 6 7 8, 
enabling us to draw it as in Fig. 12 and to see at a glance that it is 
2-regular. 

2 The generalization to EG (2, pn) has been worked out by Bose [6, pp. 3 -5 ] . 
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Each node of either color is joined by 2-arcs to six of the remaining 
seven nodes of that color; for example, the red node 1 is joined to 
2, 4, 6, 7, 8, 3, but not to S. Thus the nodes (and consequently also 
the branches) occur in pairs of opposites, such as 1 and 5. The opera-
tion of interchanging opposites is indicated in the notation by adding 
or subtracting 4, or multiplying by X4 = 2, or making a half-turn 
about the origin of the finite affine geometry. In the complex projec-
tive plane, with the above choice of coordinates, it is the harmonic 
homology with center (co, co2, 1) and axis [co, co2, — l ] . 

FIG. 11. The 2-regular graph FIG. 12. Another view of {8} + {8/3}. 
{8} + {8/3}. 

The same graph has already been mentioned in §2 qua {8} 
+ {8 /3} . In Fig. 11, the central {8/3} has been twisted to exhibit 
the fact that the branches of such a graph can be found among the 
edges of the four-dimensional hypercube (Fig. 5). This {8/3} and 
the peripheral {8} are projections of two Pétrie polygons of the 
hypercube [12, p. 223], and it is easy to pick out four further Pétrie 
polygons, one of which has been drawn in heavy lines. Naming their 
alternate vertices, we thus find six 8-circuits: 

13 5 7, 1256, 1458, 

2 4 6 8, 347 8, 236 7. 

They correspond to the three ways in which the 83 can be regarded as 
a pair of simple quadrangles, each inscribed in the other. They form 
a regular map of six octagons, each sharing two opposite sides with 
another. The characteristic is 

- No + Ni - N2 = - 16 + 24 - 6 = 2. 

Referring to Threlfall's catalogue of such maps [46, p. 44] we find 
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this listed as "Nr. 2." Since it is symmetrical by reflection, its group 
is of order 2 • 6 • 8 = 96. But the group of the graph (which is also the 
group of symmetries and reciprocities of the configuration) has 
order 2*3w = 96. So in this case the configuration and the map are 
isomorphic: no symmetry is lost by embedding the graph into a sur-
face. In other words, the embedding is unique, unlike the embedding 
of the 6-cage into the torus (which can be done in eight different 
ways). 

Returning to the complex projective plane, we see that the conic 

X2 -f y2 = z2 

determines a polarity which appears in the map as a half-turn about 
the mid-point of either of the two opposite edges 4 457, 8 813. (The 
conic touches line 457 at point 4, and line 813 at point 8.) Since 
there are altogether twelve pairs of opposite edges, we can immedi-
ately infer the existence of twelve such conies, each touching two 
opposite lines of the configuration at two opposite points, while the 
remaining six points and six lines form two self-polar triangles. 

At C% B2 

FIG. 13. Pappus's 9|. 

6. Pappus's 93. In the analytic foundations of general projective 
geometry of two dimensions we define a point as a triple of numbers 
(x, y, z), not all zero, with the understanding that (#X, y\, zX) is the 
same point for any X^O [24, p. 176]. Similarly we define a line 

[X, F, Z] which is the same as [XX, \Y,\Z]; and we say tha t the 
point (x, y, z) and line [X, Y, Z] are incident if 

Xx + Y y + Zz = 0. 

These "numbers" may be elements of any division ring. I t follows 
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from the above definition that the general point collinear with (x, y, z) 

and (#', y', z') may be expressed as (xX+#', y^+y', sX+s') . One of 
the most striking passages in the development is Hubert 's observa-
tion that the commutativity of multiplication is equivalent to 
Pappus's Theorem, which may be stated as follows: 

If two triangles are doubly perspective they are triply perspective. 

We say that two triangles A\A2Az and B\B%B% are perspective if the 
lines AtBi, A2Bz, AzB2 all pass through one point, say &. We say 
that they are doubly perspective if the same kind of relation holds 
after the vertices of one triangle have been cyclically permuted, 
namely if either 

A\B%, A2B2f AzBi all pass through one point C2 

or 

AiB%, A2Bi, AzBz all pass through one point C3 

[49, p. 100]. Finally, they are triply perspective if all three of these 
relations hold, as in Fig. 13. 

Clearly, we can choose a coordinate system so that the points 

Aif A 2, Az, Ci, JSi, Bz, B2 

are 

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (*, 1, 1), (1, y, 1), (1, 1, z). 

Then the lines AxBZt A2B2l AZBU AxB2y A2BU AdBz are 

[0, - 1 , y], [*, 0, - 1 ] , [ - 1 , x, 0], [0, s, - 1 ] , [ - 1 , 0, 4 [y, - 1 , 0] . 

Thus 

AzBi passes through the point C2 = AiBz-A2B2= (1, yz, z) if xyz=* 1, 

and 

AzBz passes through the point Cz = AiB2-A2Bx= (xz, 1, z) if yxz~ 1. 

This shows that Pappus's Theorem holds if and only if 

xy = yx. 

The two triply perspective triangles and their centers of perspec-
tive form the Pappus configuration 93, whose incidences are sum-
marized in the statement that the points Ai, Bj, Ck are collinear 
whenever 

i + j + k s 0 (mod 3) 
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[31, p. 106; 29, p. 17]. 
In its more orthodox form, Pappus's Theorem asserts the col-

linearity of the cross joins 

Az — B1C2' B2C1, Bz = CiAï'CïAi, Cz = AiBz'AzBi 

of three points A\, Bi, C\ on one line with three points ^42, B2f C2 on 
another. In Mobius's configuration 83, which we discussed in §5, we 
find three points 2, 8, 7 on one line, and three points 3, 4, 6 on 
another, while two of the intersections of cross joins are 1 and 5. 
According to Pappus's Theorem, the three lines IS, 26, 37 must be 
concurrent. Since the two triads may be rearranged as 8, 7, 2 and 
6, 3, 4, the three lines 15, 26, 48 are likewise concurrent. Hence: 

In any geometry satisfying Pappus's Theorem, the four pairs of op

posite points of 83 are joined by four concurrent lines. 

The result is a special Pappus configuration in which the two 
"triply perspective triangles" have collapsed to form sets of collinear 

points: 235 and 671. The centers of perspective form a third de-
generate triangle: 480, So altogether we have a configuration 

(94, 12a) 

of nine points lying by threes on twelve lines, four through each 
point. Collinear points are indicated by the rows, columns, diagonals, 
and "broken diagonals" of the square matrix 

2 8 7 

5 0 1 

3 4 6 

[35, p. 335]. 
Returning to the general case, we find that the Pappus configura-

tion 93 may be regarded in six ways as a cycle of three "Hessenberg" 
triangles, each inscribed in the next. Three of the ways are 

AzBxd I AiBzd I AxBxCz 

A1B2C2 A2B1C2 A2B2C1 

A2BzCz I AzB2Cz I AzBzC2 

and the other three can be derived from these by the consistent inter-
change of two of the suffix numbers, say 1 and 2. The corresponding 
Levi graph, of 18 nodes and 27 branches, turns out to be 3-regular. 
Each of the eighteen Hessenberg triangles appears as a 6-circuit, 
and the nine of them displayed above form a map of nine hexagons 
on a torus, as in Fig. 14, which we recognize as {6, 3} 3 , 0 . Thus the 
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graph can be embedded into the torus in two distinct ways, in agree-
ment with the fact that the group of the graph has order 23 3 • 9 = 216, 
while that of the map has order 2-6-9 = 108. 

F I G . 14. The regular map {6, 3}j,0 . F I G . 15. Another view of the 
Pappus graph. 

Kommerell [29, p. 19] observed that each Hessenberg triangle 
determines an involutory reciprocity for which that triangle is "self-
polar" while the other two triangles in the same cycle are inter-
changed. The reciprocity is not, in general, a polarity; but it will be 
if these other two triangles are in perspective [14, p. 66]. In one of 
the two maps {6, 3 }3,o, the Hessenberg triangle appears as a hexagon 
and the reciprocity appears as a half-turn about the center of that 
hexagon; in the other map the same triangle appears as a Petrie 
polygon (zig-zag) and the reciprocity appears as a reflection. 

After locating the Hamiltonian circuit 

Az Bz A i C\ A 2 C2 B\ Cz Bi, 

we can draw the graph as in Fig. 15. 

7. Desargues' 103. As long ago as 1846, Cayley remarked that the 
ten lines and ten planes determined by five points of general position 
in projective 3-space meet an arbitrary plane in a Desargues con

figuration (Fig. 16) consisting of ten points 

12 23 34 45 15 13 24 35 14 25 
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and ten lines 

345 145 125 123 234 245 135 124 235 134 

with the rule that the point ij is incident with the line ijk [9, p. 318]. 

25 23 3* 

FIG. 16. Desargues' 10». 

This configuration can be regarded in ten ways as a pair of triangles 
in perspective; for example, the triangles 

14 24 34 and 15 25 35 
124 14 

are in perspective from the point 45 and from the line 123, and are 
interchanged by a homology which appears in this notation as the 
transposition (4 5). Since the symmetric group of order 120 is gen-
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erated by four transpositions, the collineation group of the configura-
tion is generated by four such homolgies. G. K. C. von Staudt [44, 
p. 134] proved that the ten points and ten lines are interchanged by a 
certain polarity. Adjoining this to the collineation group of order 120, 
we obtain a group of collineations and correlations of order 240, which 
is abstractly the direct product of the symmetric group with the 
group of order 2. 

We see in Fig. 17 that the Levi graph, of twenty nodes and thirty 
lines, is 

(»»+®. 
in the notation of §2. Since this is 3-regular, its group has order 

23 30 = 240. 

The 103 can be regarded in six ways as consisting of a pair of simple 
pentagons, consecutive vertices of either lying on alternate sides of 
the other ; for example 

12 23 34 45 51 

14 42 25 53 31 

[49, p. 51]. This instance may be associated with the cycles (12345), 
(14253), and we can use in a similar fashion five other pairs of cycles. 
Corresponding to these twelve pentagons, the graph contains twelve 
10-circuits; for example, the cycle (12345) provides the 10-circuit 

12 123 23 234 34 345 45 451 51 512. 

From the cycle (12345) we derive five others by shifting each digit 
in turn two places on (or back). This systematic rule gives us one 
cycle from each of the six pairs, namely 

(12345), (23145), (13425), (12453), (14235), (12534). 

The six corresponding 10-circuits form a regular map of six decagons, 
each sharing two opposite sides with another; for example, the 10-
circuits arising from (12345) and (23145) share the sides 

123 23 and 145 45. 

This map has characteristic —20 + 30 — 6 = 4; but the surface is un-
orientable. The remaining six 10-circuits form another such map, 
and the faces of either map are the Pétrie polygons of the other. 

In either map, the cyclic permutations of three digits, which gen-
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erate the icosahedral (alternating) group, appear as trigonal rotations 
about vertices, while von Staudt 's polarity appears as a half-turn 
about the center of any face (or rather, about the centers of all faces 
simultaneously). 

I t is interesting to compare this with another regular map of six 
decagons on the same surface, namely the map formed by the six 
Pétrie polygons of the regular dodecahedron {5, 3 } . Again each 
decagon shares two opposite sides with another, and again the group 
is the direct product of the icosahedral group with the group of order 
2. We have here a remarkably perfect instance of maps that are not 
isomorphic but "allomorphic" [43, p. 101 ]. The difference is seen by 
considering the girth of the graph of vertices and edges. In the last 
case, where the vertices and edges are simply those of the dodeca-
hedron itself, the girth is 5 ; but the girth of {10} + {10/3} is 6. 

FIG. 19. A regular 123. FIG. 20. The regular map {6, 3} 2,2* 

8. A regular 123. After proving the impossibility of a pair of real 
quadrangles, each inscribed in the other, Möbius remarked: "Auf 
Vielecke von mehreren Seiten habe ich die Untersuchung nicht 
ausgedehnt" [36, p. 446]. As we observed in §5, the problem of find-
ing a pair of mutually inscribed p-gons was solved for the complex 
projective plane by Kantor in 1881, using the invariant points of a 
certain projectivity 1 A 1' on the side 24 of a given p-gon 024 • • • . 
Möbius had shown, in 1828, that this projectivity has no real in-
variant points when p = 4. Since all quadrangles are projectively 
equivalent, we cannot remedy this state of affairs by modifying the 
initial quadrangle. But two p-gons with £ > 4 are not, in general, pro-
jectively equivalent; so it is natural to expect a suitable choice of the 
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initial p-gon to render the above projectivity hyperbolic. When £ = 5 
this expectation is realized by the "non-Desarguesian" 103: the (A) 
of Kantor [27, pp. 1292, 1314] which is the VII of Martinetti [33a, 
p. 17]. I t can hardly be doubted that greater values of p will serve 
just as well. However, the corresponding Levi graphs are only 
0-regular. The higher regularity of the graph for 83 is a consequence 
of the fact tha t this special configuration can be regarded in three 

different ways as a pair of mutually inscribed quadrangles. To achieve 
this refinement when p>4 we must abandon the cyclic scheme. 

Fig. 19 shows a 128 which can be regarded in three ways as a pair 
of hexagons, each inscribed in the other: 

Ax B2 Cx A2 Bx C2 and Az B4 C8 A4 Bz C4, 

Ax Bz Cx Az Bx Cz and A2 BA C2 A* B2 C4, 

Ax BA Cx A4 Bx C4 and A2 Bz C2 Az B2 C3. 

The configuration is self-dual ; for, if the twelve lines are denoted 
by 

ax = AAB2Cz, 

a2 — AzBxCi, 

az = A2B4Px, 

#4 == AxBzC2t 

then the twelve points are 

Ax = at'b2*Cz) Bx = a2*bZ'C^ Cx = az*bfC2l 

A2 = az'bx'C*, B2 = ai* b4-Cz, C2 = &4'bz'Cx, 

Az = a2' bfCx, Bz = a^bx'C2, Cz = Q>vb2'C4, 

A4 = ax'bz'C2, B4 = az'b2-Cx, C4 = a2-bx-Cz. 

The triads of collinear points comprise twelve of the twenty-four 
possible arrangements AiBjCk with i, j , k all different. The remaining 
twelve triads form triangles; for instance A2B4CZ is a triangle with 
sides &2, C4, a3. Hence the Levi graph (consisting of twelve red nodes 
Ax, • • • , twelve blue nodes alf • • • , and thirty-six branches 
Axb2, • • • ) contains twelve 6-circuits such as 

A2azBJb2CzC4, 

and can be embedded into the torus to make a map of twelve hexagons 
which we recognize as {6, 3}2,2 (Fig. 20). 

The symmetries and reciprocities of the configuration form a group 

bx - ^2^3C4, 

b2 = AxB4Cz, 

bz = A4BxC2l 

64 « AZB2Cly 

Cx sss AzB4C2i 

c2 = AtB&x, 

Cz ~ AxB2C4i 

C4 = A2BxCz, 
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of order 144. We can obtain this number by considering either the 
graph or the map. Since the graph is 2-regular, its group has order 

2236 = 144; 

and since the map is symmetrical by reflection, its group has order 
four times the number of edges. 

The Pétrie polygons of {6, 3 {2,2 are dodecagons such as 

AibdCzCiBiazAzbiC^BaCH and a\B^CzCJ>\A^azB^c^Z^)zA^ 

which can be put together to form {12} + ( 1 2 / 5 } , as in Fig. 21. 

a2 Az 

FIG. 21. The 2-regular graph {12} + {12 /5} . 

When Tut te was told about this graph, he discovered a Hamil-
tonian circuit, enabling us to draw it as a regular 24-gon with ap-
propriate diagonals inserted (Fig. 22). 

The configuration 123 may be regarded as a set of three triangles 

A \A 2^3, B%BzBiy C3C1C2 

in perspective by pairs from centers A^ J34, C4, while the vertices lie 
on three lines 

A1B2P2J AzB^Piy A^BxCz» 

A special case was described by Hesse, Salmon, and Zacharias [51, p. 
149], namely the case when the vertices also lie on the three lines 

AiBiCit A%B£2, AzBzCz, 
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while the centers of perspective lie on a line A^B^C^ We now have 
a configuration (124, 163) of twelve points lying by threes on sixteen 
lines, four through each point. Calling the four new lines 

di, ^2, dz, d±t 

we see that the twelve points are expressible in the form 

di'byCk'di, 

where the suffixes ijkl run over the twelve odd permutations of 1234. 

'» A, 

FIG. 22. Another view of {12} + {12 /5} . 

For comparison with Zacharias's notation, we observe that he num-
bered the lines from 1 to 16 in the order 

d\ 62 63 #4 £4 #3 di h\ &2 C\ &4 dz bz d± a\ C2. 

Hesse constructed this (124, I63) by taking the points of contact 
of the twelve tangents to an elliptic cubic curve that can be drawn 
from three collinear points of the curve. To make it real we must use 
a bipartite cubic with the three collinear points all on the odd branch. 
This is most easily seen by regarding the cubic as the locus of the 
point 

(&u, $>'u, 1) 

where the elliptic function has the real period 2co and the imaginary 



i95o] SELF-DUAL CONFIGURATIONS AND REGULAR GRAPHS 441 

period 2a/, so that points on the odd branch are given by real values 
of the parameter u while points on the oval are given by real values 
plus the imaginary half-period a>'. Three collinear points on the odd 
branch may be taken to have real parameters —2a, — 2/8, —27, 
where 

a + p + y s 0 (mod 2o>), 

and then the parameters of the twelve points of contact are as fol-
lows : 

Ai a 

Bx p 

Ci y 

A% a + o) 

B2 p + co' 

Ci y + o> + a/ 

Az a + a/ 

Bz ff + a) + a>' 

Cz y + « 

-44 a + a> + a>' 

£4 0 + CO 

C4 7 + <*>' 

The sets of collinear points are now evident. (In one way of drawing 
the figure, we find the points AiBiCiAJB^Cz in that order on the odd 
branch, and A^BzC^AzBiC^ on the oval.) Feld [l7a, p. 553] con-
sidered the case when a, /3, y are 0 and ± 2o>/3, so that Au Bu Ci are 
the three real inflexions while the rest are the nine real sextactic 
points. 

Zacharias discovered that a Euclidean specialization of this (124, 
I63) is provided by Morley^ celebrated figure of a triangle A1A2A3 
with its angle trisectors and their intersections. Morley^ theorem 
states tha t the trisectors 

AiBiCu A^BiCz, A2B2C2} AzB2Cu AzBzCzt AiBzC2 

form an equilateral triangle B2BzBi by their first intersections and 
another equilateral triangle C3C1C2 by their second intersections. 
Zacharias observed tha t these two equilateral triangles are in per-
spective with AiA2A3 and with each other, from collinear centers 
C4, Biy A\. 

9. The Cremona-Richmond 153. Six points of general position in 
real projective 4-space—say 1, 2, 3, 4, 5, 6—determine fifteen 
further points such as P 1 2 : the intersection of the line 12 with the 
hyperplane 3456. These lie by threes on fifteen lines such as P12P34P56' 
the common line of the three hyperplanes 

3456, 1256, 1234 

[39, p. 131]. This configuration 153 in four dimensions was chosen by 
Baker as a frontispiece for both volumes II and IV of his Principles 

of geometry. A 153 in two or three dimensions can be derived by pro-
jection. Dualizing the three-dimensional version, we obtain a set of 
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15 lines and 15 planes which can be identified with the configura-
tion formed by the tri tangent planes of a nodal cubic surface [15], 

The 153 in two dimensions is self-dual. For, instead of associating 
the points with the fifteen pairs of six symbols 1, 2, 3, 4, 5, 6 and the 
lines with the fifteen synthemes such as (12, 34, 56) we can just as 
well associate the lines with the fifteen pairs of six other symbols 

FIG. 23. Tutte's 8-cage (the most regular of all graphs). 

a, b, c, d, e, ƒ and the points with fifteen synthemes such as (ab, cd, ef). 

Richmond's way of doing this is indicated on the Levi graph in Fig. 
23. Thus the group of the configuration is the group of automorphisms 
of the symmetric group of degree six [8, p. 210] and its order is 

2-6! = 1440. 

Martinetti cited this 153 as the simplest instance of a configuration 
containing no triangles [33, p. 174; cf. 41, p. 44]. The corresponding 
property of the Levi graph is that its girth is not 6 but 8. Since the 
order of the group is 

1440^ 2* 3 15, 
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the regularity is 5 = 5. Hence this graph is Tut te 's 8-cage, the most 
regular of all graphs [47, p. 460]. Tut te 's own description of it can be 
reconciled with ours as follows. Regard the eight red nodes 

15 36 25 46 

26 45 16 35 

as forming a cube (or two interpenetrating tetrahedra: 15 25 35 45 
and 16 26 36 46). Take a blue node on each of the twelve edges; for 
instance, a blue node cf on the edge 15 26, and a blue node de on 
the opposite edge 25 16. Join the blue nodes on each pair of opposite 
edges, and take a red node on each join; for instance, a red node 34 
on the join of cf and de, and a red node 12 on the join of cd and ef. 

Join the two red nodes thus associated with each set of four parallel 
edges, and take a blue node on each join; for instance, a blue node 
ab on the join of 12 and 34. Finally, join the three blue nodes thus 
associated with the three dimensions, namely ab, ce, dfy to a fifteenth 
red node 56. 

There is apparently no regular embedding for this graph. We must 
be content with a map of one decagon and ten octagons. Naming 
alternate vertices, we find a decagon 

13 24 35 14 25 

surrounded by octagons 16 24 36 45, 12 35 16 34, and others de-
rived from these two by cyclic permutation of the digits 1, 2, 3, 4, 5 
(leaving 6 unchanged). The surface is easily seen to be unorientable, 
of characteristic 

- 30 + 45 - (1 + 10) = 4. 

The decagon represents, in the configuration, a pentagon that is 
self-polar for the reciprocity (1 d)(2 &)(3 a ) ( 4 / ) ( 5 c)(6 e). Thus 
Richmond's notation could be improved by writing 

a, b} c, d, e, ƒ in place of his d, b, a, ƒ, c, e. 

On the other hand, the configuration contains another pentagon that 
is self-polar for the a natural " reciprocity 

(1 a){2 6)(3 *)(4 d)(S e)(6 f) 

without any change of notation. 
The 8-cage is not only the Levi graph for the 15a, but also repre-

sents, in a different way, the 60i6 known as Klein's configuration [45, 
p. 447; 25, p. 42]. Klein's sixty points and sixty planes are the 
vertices and faces of fifteen tetrahedra whose pairs of opposite edges 
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are the directrices of the fifteen linear congruences determined by 
pairs of six mutually apolar linear complexes (or six mutually com-
mutative null polarities) in complex projective 3-space. The fifteen 
red nodes of the 8-cage represent the pairs of directrices (or the fifteen 
congruences) while the fifteen blue nodes represent the tetrahedra. 

10. Möbius's 84. Before resuming the discussion of Möbius's mu-
tually inscribed tetrahedra (§1), let us mention a few other self-dual 
configurations of points and planes in real projective 3-space. The 
simplest kind is the nn consisting of n points on a line and n planes 
through the same line. Since each point is incident with every plane, 
the Levi graph consists of n red nodes all joined to each of n blue 
nodes. Since this is 3-regular, of girth 4, we call it a 4-cage of degree 
n. When n = 2 it is the square {4}. When n = 3 it is the Thomsen 
graph {6, 3} 1,1. When n = 4 it is 74/2 (Fig. 4) or {4, 4}2,2 (Fig. 6). 

_ J 
34 134 

14 

13 

234 

24 

23 

1234 

124 

123 

0 | II 2| 121 
FIG. 24. Gallucci's version of Möbius's 84. 

Let 1, 2, 3 denote three planes forming a trihedron with vertex 0, 
and let 23, 31, 12 be arbitrary points on the three edges, forming a 
fourth plane 123. We now have a tetrahedron 43, whose Levi graph 
is the cube 73 (Fig. 1). Continuing in the same manner, let 4 denote a 
fourth plane through 0, meeting planes 1, 2, 3 in three lines on which 
we take further arbitrary points 14, 24, 34. In this way we obtain 
three new planes 234, 341, 412, which intersect in an eighth point 
1234. By a theorem of Möbius [36, p. 443], this point 1234 lies on the 
plane 123, so that we have altogether a configuration 84, whose Levi 
graph is the four-dimensional hypercube 74 (Fig. 5). 

Möbius deduced his theorem from the observation that the quad-
rangular relation Q(A'B'C', F'G'H') for six collinear points implies 
Q(F'G'H', A'B'C). This is a corollary of Pappus's Theorem, which 
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Baker showed to be equivalent to the theorem that if three skew 
lines all intersect three other skew lines, any transversal to the first 
set of three intersects any transversal to the second set [l, pp. 47-
51]. The following argument relates Möbius's theorem to the trans-
versal theorem directly [cf. 20, p. 76; 4, p. 144]. 

The line joining points 13 and 14 is the line of intersection of 
planes 1 and 134; likewise the join of 23 and 24 is the intersection 
of 2 and 234 (see Fig. 24). Hence the transversal from 0 to these two 
lines is the intersection of planes 1 and 2, and the transversal from 
34 is the intersection of 134 and 234. Similarly, the transversal from 
0 to the two lines 13 23 and 14 24 is 3-4, and the transversal from 12 
is 123-124. The "transversal theorem" asserts that the two lines 
134-234 and 123-124 intersect, while Möbius's theorem asserts that 
the four planes 234, 134, 124, 123 are concurrent; these two state-
ments are clearly equivalent. 

The following analytic proof of Möbius's theorem indicates its 
dependence on the commutative law. Choose the tetrahedron of 
reference so that the four points and four planes 

23, 31, 12, 0, 

1, 2, 3, 123, 

are 

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), 

[ 1 , 0 , 0 , 0 ] , [ 0 , 1 , 0 , 0 ] , [ 0 , 0 , 1 , 0 ] , [ 0 , 0 , 0 , 1 ] . 

Take the unit plane [l , 1, 1, l ] to pass through the line 123-4, so 
that the plane 4 is [l , 1, 1, 0] . Then the points 14, 24, 34 are of the 
form 

(0 ,1 , - 1 , a), ( - 1 , 0 , 1 , 6 ) , (1, - 1 , 0 , c), 

and the planes 234, 314, 124 are 

[0, *, - 6 , 1 ] , [-<;, 0, a, l ] , [b, - a , 0, l ] . 

These and 123 all pass through the point (a, 6, c, 0), which is the 
desired point of concurrence 1234. (The incidence of 124 and 1234 
requires ba~ab.) 

Benneton [3, p. 30 ] makes a different choice of unit plane so as to 
exhibit the four planes and four points 

234, 314, 124, 4, 

14, 24, 34, 1234 
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in the form 

[0, c, -b, a], [~c, 0, a, b]y [b, -a, 0, c], [a, 6, c, 0], 

(0, c, -&, a), ( - c , 0, a, b), (ô, - a , 0, c), (a, b, c, 0). 

Representing both the point (x, y> z, t) and the plane [x, y, z, /] by 
the quaternion t+xi+yj+zk, he neatly expresses all the points and 
planes of the configuration in the form 

1, i, j , k, V, iV, jV, kV, 

where V denotes the pure quaternion ai+bj+ck. 

In §1 we described the reflections Ri, R2, R3, R4 of the hypercube, 
which add a digit to every symbol lacking it, and remove the same 
digit from every symbol containing it. We now see that the cor-
responding reciprocities of Möbius's 84 may be described as follows: 
Ri, R2, R3 have the effect of multiplying every quaternion on the left 
by i, j , k, respectively, while R4 has the effect of multiplying on the 
right by V. I t follows tha t these four mutually commutative reci-
procities can be extended to the whole space as null polarities [25, 
p. 38]. 

When the 84 is represented by its Levi graph, 74, the two mutually 
inscribed tetrahedra appear as two opposite cells 73, transformed into 
each other by the reflection R4. Since 74 has four pairs of opposite 
cells, we see clearly tha t the 84 can be regarded in four different ways 

as a pair of mutually inscribed tetrahedra, transformed into each 
other by a null polarity. 

11. Cox's (2d"1)d. After constructing Möbius's 84 as above, let 5 
be a fifth plane through 0, meeting planes 1, 2, 3, 4 in four lines on 
which we take further arbitrary points 15, 25, 35, 45. Leaving out 
the five planes, one by one, we obtain five points 

2345, 3451, 4512, 5123, 1234. 

By a theorem of Homersham Cox [10, p. 67], these five points lie 
in one plane 12345, so tha t we have altogether a configuration I65, 
whose Levi graph is the five-dimensional hypercube 75 [12, p. 244]. 
By symmetry, we merely have to prove that the first four of the five 
points are coplanar; and this follows from the dual of Möbius's 
theorem as applied to the four points 15, 25, 35, 45 in the plane 5. 
(We simply add the digit 5 to all the symbols occurring in Möbius's 
theorem; that is, we apply the reciprocity R5. Cf. Richmond [39a].) 

Continuing in this manner we obtain Cox^ general theorem, to 
the effect that d concurrent planes 1,2, • • • , d, with arbitrary points 
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on their lines of intersection, determine a configuration of 2d~l 

points and 2d~l planes, with d points on each plane and d planes 
through each point, so that the Levi graph is the ^-dimensional hyper-
cube 7<j. Thus the group of symmetries and reciprocities is of order 

2d dl 

Instead of arbitrary points (12, 13, and so on) on the lines of inter-
section of pairs of the d given planes, we may take the points de-
termined on these lines by an arbitrary sphere through the point of 
concurrence 0. The 2d~l planes intersect the sphere in 2d~1 circles 
[37, p. 271]. By stereographic projection we obtain Clifford's con-
figuration of 2d~l points and 2d~l circles, with d points on each circle 
and d circles through each point. These again are represented by the 
2d vertices of 7<*. 

12. Kummer's 166. Let the five initial planes of Cox's 165 be repre-
sented by the quaternions 

it j , k, V = ai + bj + ck, V' = a'i + b'j + c'k. 

If the reciprocity Ri were a null polarity, it would transform the plane 
V' into iV' or (0, c'', —b'> a'), which is a definite point on the line of 
intersection of planes 1 and 5, whereas Cox would take his point 15 
to be arbitrary on that line, say (0, c', —6', a ) . Hence, for the general 
I65 the reciprocities Ri, • • • , R5 are not null polarities; and the same 
remark holds for any greater value of d. 

On the other hand, the special case when Rif • • • , R6 are null 
polarities is interesting in a different way. Ri, R2, R3 are the opera-
tions of multiplying on the left by i, j , k, while R4 and Rg are the 
operations of multiplying on the right by two anticommutative pure 
quaternions (or orthogonal vectors) V and V\ Writing 

V = qiq-\ V' = qjq~\ 

we can use a coordinate transformation to change the symbols of 
the planes 

1, 2, 3, 4, S 

from 

i, h k> Qir1* ti<Tl 

to 
iq, jq, kq, qi, qj. 

Then the initial point 0 is not 1 but g, and the reciprocities Ri, R2, R3 
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have the same effect as before, while R4 and R5 are the operations of 
multiplying on the right by i and j . Applying the product R1R2R3R4R5, 
we find that the plane 12345 is kjiqij^qk, which passes through the 
initial point q. (This is in marked contrast with the general 16s, 
where the point 0 and plane 12345 are not incident.) 

Applying the null polarities Ri, • • • , R5 in turn, we find that the 
incidence of 0 and 12345 implies the incidence of 1 and 2345, of 12 
and 345, and so on. Thus the special configuration is really not a I65 
but a 166; and it is natural to use the symbol 6 for 12345,16 for 2345, 
126 as an alternative for 345, and so on, in agreement with the classi-
cal notation for the sixteen nodes and sixteen tropes of Rummer's 
quartic surface [25, p. 16]. We now have six mutually commutative 
null polarities Ri, • • • , R6: the first three are left-multiplications 
by i, j , k, and the last three are right-multiplications by i, j , k [see 
la, p. 138; 3, p. 38]. The essential difference between this 16e and 
Cox's 32e is that now R1R2R3R4R6R6 is the identity. 

We have seen tha t the Levi graph for Cox's I65 is the five-dimen-
sional hypercube 75. The effect of the new incidences is to insert new 
branches joining the pairs of opposite vertices (as in the derivation 
of Fig. 4 from Fig. 3). More symmetrically, we can take the six-di-
mensional hypercube Ye (which represents 32e) and identify pairs of 
opposite elements. Thus 

The Levi graph for Rummer's 16e is Ye/2. 
In other words, after coloring the sixty-four vertices of Ye al-

ternately red and blue, we can say that the sixteen pairs of opposite 
red vertices represent the sixteen nodes of Rummer's surface, while 
the sixteen pairs of opposite blue vertices represent the sixteen tropes. 
The thirty-two red vertices by themselves belong to the semi-regu-
lar polytope hYe [12, p. 158] ,whose connection with Kummer's 16e 
has already been pointed out by Du Val [l6, p. 65]. 

The most convenient coordinates for the vertices of Ye (of edge 2) 
are 

( ± 1 , ± 1 , ± 1 , ± 1 , ± 1 , ±1) , 

with an even number of minus signs for a red vertex and an odd 
number of minus signs for a blue vertex. The 240 squares such as 

( ± 1 , ± 1 , 1 , 1 , 1 , 1 ) 

represent the 120 Kummer lines [25, p. 77]; the 160 cubes such as 

( ± 1 , ± 1 , ± 1 , 1 , 1 , 1 ) 

represent the 80 Rosenhain tetrads [25, p. 78]; the sixty Y^S such as 
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( ± 1 , ± 1 , ± 1 , ± 1 , 1 , 1 ) 

represent thirty8 Möbius configurations 84; and the twelve cells 75 
represent the six null polarities. 

Each of the 160 cubes is obtained by fixing the signs of three of 
the six coordinates and leaving the remaining three ambiguous. Since 
the fixing of signs can be done in 8 ways (for the same choice of three 
coordinates), we thus obtain 8 cubes which together exhaust the 64 
vertices of Ye, and which occur in four pairs of opposites. Any two 
of these four pairs of opposite 73^ belong to a pair of opposite 74

,s. 
Finally, the three coordinates whose signs were fixed can be chosen in 

ways. We thus verify the well known fact that there are twenty 
ways of regarding the 16e as a set of four Rosenhain tetrahedra any 
two of which form a Möbius configuration 84 [see 34 or 2] . 

Besides these peripheral elements of 7e, there are also 120 large 
inscribed cubes (of edge 28/2 instead of 2) such as 

(1, 1, 1, 1, 1, 1)(1, 1, 1, 1, - 1 , - 1 ) 

( - 1 , - 1 , 1,1, 1, 1 ) ( - 1 , - 1 , 1 , 1 , - 1 , - 1 ) 

(1, 1 , - 1 , - 1 , 1 , 1)(1,1, - 1 , - 1 , - 1 , - 1 ) 

( - 1 , - 1 , - 1 , - 1 , 1, 1 ) ( - 1 , - 1 , - 1 , - 1 , - 1 , - 1 ) , 

which represent the 60 Göpel tetrads of points and the 60 Göpel 
tetrads of planes [25, p. 79]. 

13. The skew icosahedron. In the above list of significant subsets 
of Rummer's 16e, we have not mentioned the Weber hexads [25, p. 80] 
such as 0, 12, 23, 34, 45, 51. The corresponding vertices of y$ are 

0, 

12, 23, 34, 45, 51, 

1236, 2346, 3456, 4516, 5126, 

123456; 

or, in terms of coordinates, 

8 Blaschke [4, p. 151] found only fifteen Möbius configurations; but that was 
surely a mistake. After the removal of any one 84, the remaining points and planes of 
the 1Ó6 form another 84. 
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(1, 1, 1, 1, 1, 1), 
( - 1 , - 1 , 1, 1, 1, 1), (1, - 1 , - 1 , 1, 1, 1), • • • , ( - 1 , 1, 1, 1, - 1 , 1), 

( - 1 , - 1 , - 1 , 1, 1, - 1 ) , (1, - 1 , - 1 , - 1 , 1, - 1 ) , 

( - 1 , - 1 , 1 , 1 , - 1 , - 1 ) , 

( - 1 , - 1 , - 1 , - 1 , - 1 , - 1 ) . 

These twelve points in Euclidean 6-space form twenty equilateral 
triangles of side 23'2, such as 

0 12 23, 12 23 1236, 23 1236 2346, and 1236 2346 123456, 

which are the faces of a regular skew icosahedron (Fig. 25). This re-

FIG. 25. yt and the skew icosahedron. 

markable surface is just as symmetrical as the Platonic icosahedron 
[12, p. 52], but its angles are different. In fact, the "vertex figure" 

12 23 34 45 51, 



i95o] SELF-DUAL CONFIGURATIONS AND REGULAR GRAPHS 451 

instead of being a regular plane pentagon of angle 108°, is a regular 
skew pentagon of angle 90° (since 12 23 34 41 is a square). Similarly, 
the dihedral angle is reduced from about 138° 12' to 109° 28', since 
the two adjacent faces 

0 12 23 and 0 23 34 

belong to the octahedron 0 12 23 34 41 1234. 
From the fifteen points 12,13, • • • , 56 we can pick out a rectangu-

lar skew pentagon such as 12 23 34 45 51 in seventy-two ways; hence 
there are seventy-two skew icosahedra for each vertex of Ye, and 

72-64/12 - 384 

of them altogether, representing the 192 Weber hexads of nodes and 
the 192 Weber hexads of tropes. 

14. Self-reciprocal polytopes in the Euclidean 4-space. Although 
the Levi graph has been defined only for configurations of points and 
lines, or of points and planes, the idea can evidently be extended, 
for example, to configurations of points and hyperplanes in more 
than three dimensions. We shall be content to describe two instances: 
the configurations 5 4 and 24e formed by the vertices and cells of the 
four-dimensional polytopes {3, 3, 3} and {3, 4, 3} [12, pp. 120, 148]. 

The former is the four-dimensional simplex au. In the Levi graph 
its five vertices are represented by five red nodes -4 ,5 , C, D, £, and 
the respectively opposite cells by five blue nodes a, 6, c, d, e. Red and 
blue nodes are joined whenever their letters disagree. Thus the 
group is of order 240 : the direct product of the symmetric group of 
degree 5 and the group of order 2. 

The five letters can be arranged as a cycle in twelve ways, cor-
responding to the twelve Pétrie polygons of the simplex [12, p. 225]. 
Every four consecutive vertices of the Pétrie polygon belong to a 
cell ; and by placing the symbol for the cell between the middle two 
of the four vertices, we obtain a symmetrical Hamiltonian circuit of 
the graph. In this manner the Pétrie polygon ABCDE yields the 
circuit 

AdBeCaDbEc, 

which we may rewrite as 

0 1 2 3 4 5 6 7 8 9, 

so that the even and odd digits represent the red and blue nodes, or 
the vertices and cells of the simplex, and the symbols for a vertex 
and its opposite cell differ by 5. Thus the graph can be drawn as a 
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regular decagon 0123456789 with its inscribed decagram 0369258147 
[see 18, p. 315, Fig. 10, IV- l l -A] . This 2-regular graph of degree 4 
and girth 4 can be embedded into the torus to form the map {4, 4} 3,i 
(see §3), which has ten square faces 

0143, 1254, 2365, • • • , 9032. 

The embedding can be done in 6 ways, since the group of the map is 
of order 40. This order arises as 

10-2-2, 

since the ten symbols can be cyclically permuted or reversed, or multi-
plied by 3 (mod 10) so as to interchange the decagon and decagram. 

A more symmetrical way of drawing the graph is in Euclidean 
4-space, where we may take two equal regular simplexes in reciprocal 
positions and join each vertex of either to the four nearest vertices 
of the other. (This is analogous to the two tetrahedra of Kepler's 
stella octangula which can be joined by the edges of a cube.) Since 
the regular four-dimensional simplex has the Schlâfli symbol {3, 3, 3} r 

an appropriate notation for this aspect of the graph is 

2(3,3,3}. 

Similarly, 2 {3, 4, 3} denotes the 1-regular graph of degree 6 and 
girth 4 whose 48 nodes are the vertices of two reciprocal 24-cells 
{3, 4, 3 } , each vertex of either being joined to the six vertices of an 
octahedral cell of the other. This is the Levi graph for the polytope 
{3, 4, 3} qua configuration 246. Robinson [40, p. 44] called it 
Ô4+S4, and remarked that its 144 branches are the sides of 18 con-
centric octagons in different planes. By identifying opposite elements 
we derive 

2{3,4,3}/2: 

the Levi graph for Stephanos's configuration 12e consisting of three 
"desmic" tetrahedra in real projective 3-space [45; 25]. In fact, the 
Cartesian coordinates for the 24 vertices of {3, 4, 3 } , being the con-
stituents of Hurwitz's 24 quaternion units 

±i, ±j, ±k and (±l±i±j±k)/2, 

are the same as the homogeneous coordinates for the 12 points of the 
126 [see 23, p. 170; 3, p. 35]. 

By Pappus's Theorem as stated in §6, if a triangle AiA2Az is in 
perspective with BiBzBz and with BzBJ3i, it is also in perspective 
with BzBiBz. Stephanos's desmic tetrahedra come from the analo-
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gous theorem that if a tetrahedron A\A<LA%A± is in perspective with 
BJBiBiBz and B%BJ$\B<i and BiBzB%Biy it is also in perspective 
with BiBiBzBt. However, the resemblance is superficial, as the per-
mutations of the B's are no longer cyclic. In one respect this three-
dimensional theorem is simpler: instead of depending on Pappus's 
Theorem, it can be deduced from the "propositions of incidence" 
alone. In fact, the given per spec tivities imply that the line AiB§ 
intersects A3Bi, whence AiBi intersects AjBj. Thus the four lines 
AiBi all intersect one another, and since they are not all coplanar 
they must be concurrent. 

By a simple change of notation, from BiB^Bz to BJBzBi, we obtain 
a rule for sets of collinear points that is identical with the rule for 
Hesse's (12e, I63) which we considered in §8. Hence, as Zacharias 
observed [51, p. 152], this plane configuration can be derived from 
Stephanos's 126 by projection from an arbitrary point in the 3-space. 

SUMMARY 

Configuration n* \ 

Fano's 
Möbius-

Kantor 
Pappus's 
Desargues' 
The new 

Cremona-

73 

83 
93 

103 

12, 

Richmond 153 

Tetrahedron 
Möbius's 
Cox's (2d 

Kummer's 
Stephanos's 
Simplex 

33 

44 

43 
84 

-v 1Ó6 
126 

54 

Space 

PG(2, 2) 
Complex 

plane 
Real plane 
Real plane 
Real plane 

Real plane 
Real 3-space 
Real 3-space 
Real 3-space 
Real 3-space 
Real 3-space 
Real 3-space 
Real 3-space 
Real 4-space 

Group 
order 

336 

96 
216 
240 
144 

1440 
72 

1152 
48 

384 
2dd\ 

23040 
1152 
240 

Graph or map 

{6, 3}2.i 

{8}+{8/3} 
{6, 3}3.o 

{lO) + {lO/3} 
{l2} + {l2/5} 

or {6,3)2,2 
Tutte's 

8-cage 
{6f3}i.i 
{4,4}2>2 

{6,3)2,0 
{4,4}4.o 

Yd 
7«/2 

2{3, 4, 3}/2 
{4,4},,! 

Girth 
m 

6 

6 
6 
6 
6 

8 
4 
4 
4 
4 
4 
4 
4 
4 

Regu-
larity 

s 

4 

2 
3 
3 
2 

5 
3 
3 
2 
2 
2 
2 
1 
2 

Number 
of s-arcs 

2(d-\)*~ldn 

336 

96 
216 
240 
144 

1440 
72 

288 
48 

192 
2dd(d-l) 

960 
144 
120 
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