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Introduction

A gradient flow of a Morse function on a compact Riemannian manifold

is said to be of Morse-Smale type if the stable and unstable manifolds of any

two critical points intersect transversally. For such a Morse-Smale gradient

flow there is a chain complex generated by the critical points and graded by

the Morse index. The boundary operator has as its (x, y)-entry the number

of gradient flow lines running from x to y counted with appropriate signs

whenever the difference of the Morse indices is 1. The homology of this chain

complex agrees with the homology of the underlying manifold M and this

can be used to prove the Morse inequalities (cf. [33], [26]).

Around 1986, Floer generalized this idea to infinite dimensional varia-

tional problems in which every critical point has infinite Morse index but the

moduli spaces of connecting orbits form finite dimensional manifolds for every
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pair of critical points. The dimensions of these spaces give rise to a relative

Morse index and the boundary operator is defined by counting connecting or-

bits when the relative Morse index is 1. The resulting Floer homology groups

have played an inportant role in symplectic geometry (cf. [15]) and in 3 and

4 dimensional topology (cf. [14]).

The Floer homology groups of a compact oriented 3-manifold M are gen-

erated by the irreducible representations of the fundamental group in SO(3).

These can be thought of as flat connections on a principal SO(3)-bundle

bundle Q → M and they appear as the critical points of the Chern-Simons

functional on the infinite dimensional configuration space of connections on

this bundle modulo gauge equivalence. The gradient flow lines of the Chern-

Simons functional are the self-dual Yang-Mills instantons on the 4-manifold

M × R and they determine the boundary operator of the Floer homology

groups HFinst
∗ (M,Q). This construction requires that all flat connections be

nondegenerate. If this is not the case then a suitable perturbation of the

Chern-Simons functional will lead to only nondegenerate critical points. A

more serious restriction is that every flat connection on Q (except for the

0-connection in the case of the trivial bundle) must be a regular point for the

action of the identity component G0(Q) of the group of gauge transformations.

This condition is satisfied if either M is a homology-3-sphere (cf. [14]) or Q

restricts to a nontrivial SO(3)-bundle over some oriented embedded Riemann

surface Σ ⊂M (cf. [16]).

A special case is where the bundle Q = Pf is the mapping cylinder of

a nontrivial SO(3)-bundle P → Σ over a Riemann surface Σ for an auto-

morphism f : P → P . The underlying 3-manifold is the mapping cylinder

M = Σh of Σ for the diffeomorphism h : Σ → Σ induced by f . The flat

connections on Pf correspond naturally to the fixed points of the symplec-

tomorphism φf : M(P ) → M(P ) induced by f on the moduli space M(P )

of flat connections on the bundle P . This moduli space is a compact sym-

plectic manifold (without singularities) of dimension 6k − 6 where k ≥ 2 is

the genus of Σ. It is well known that this manifold is connected and sim-

ply connected and π2(MF (P )) = Z (cf. [2]). For any symplectomorphism

φ : M → M of such a symplectic manifold there are Floer homology groups

HFsymp
∗ (M, φ). In this theory the critical points are the fixed points of φ and

the connecting orbits are pseudoholomorphic curves u : R
2 → M which sat-

isfy u(s+ 1, t) = φ(u(s, t)) and converge to fixed points x± of φ as t tends to

±∞. The Euler characteristic of HFsymp
∗ (M, φ) is the Lefschetz number of φ.

If φ is the time-1-map of a time-dependent Hamiltonian flow then the Floer

homology groups are naturally isomorphic to the homology of the underlying

symplectic manifold M (cf. [15], [27]).
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Hence for every automorphism f : P → P there are two Floer homology

groups HFsymp
∗ (M(P ), φf ) and HFinst

∗ (Σh, Pf ). Both arise from the same

chain complex which is generated by the flat connections on Pf respectively

the fixed points of φf . In [10] it is shown that the relative Morse indices agree

and hence the chain complex carries the same grading in both theories. The

main result of the present paper asserts that there is a natural isomorphism

of Floer homologies

HFinst
∗ (Σh;Pf ) = HFsymp

∗ (M(P ), φf ).

In particular, when f = id,

HFinst
∗ (Σ × S1;P × S1) = H∗(M(P ),Z)

The proof requires a comparison of the boundary operators. Think of the

mapping cylinder Pf = Pf (ε) as the product P × [0, 1/ε] and identify P ×1/ε

with P×0 via the automorphism f . In the limit ε→ 0 the self-dual instantons

on Pf (ε) × R will become holomorphic curves in the moduli space M(P ). In

other words it follows from an implicit function theorem that near every

holomorphic curve u(s, t) in M(P ) there is a self-dual instanton aε(t) on

Pf (ε) × R for ε sufficiently small. Conversely, it follows from Uhlenbeck’s

compactness that every such family of self-dual instantons aε(t) will converge

to a holomorphic curve in M(P ) as ε tends to zero. The details will be carried

out in sections 4-10. In sections 1-3 we discuss the necessary background

about Floer homology and flat connections on P .

We would like to thank the referee for pointing out gaps in some of

the proofs in earlier versions of this paper. The problem treated here was

suggested to us by Andreas Floer during a visit to the ETH Zürich in 1990.

He was a great mathematician and a wonderful human being. We dedicate

this paper to his memory.

1. Floer homology for 3-manifolds

Let Q → M be a principal bundle over a compact oriented 3-manifold with

structure group G = SO(3) which restricts to a nontrivial bundle over some

oriented embedded Riemann surface Σ ⊂ M . Denote by A(Q) the space

of connections and by G0(Q) the identity component of the space of gauge

transformations. Associated to Q is the bundle gQ → M via the adjoint

action of G on its Lie algebra g = so(3). Think of A(Q) as an affine subspace

of the space of 1 forms on Q with values in g whose parallel vector space is

Ω1(gQ).

A gauge transformation g : Q → G is called even if it lifts to a map

g̃ : Q → SU(2). The subgroup of even gauge transformations is denoted

by Gev(Q). The degree of a gauge transformation is the integer deg(g) ∈
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Z determined by the induced map on homology H3(M) = Z → H3(G) =

Z. Every even gauge transformation is of even degree and under the above

assumption there exists a gauge transformation of degree 1 (cf. [16], [9]).

The perturbed Chern-Simons functional CSH : A(Q)/G0(Q) → R is de-

fined by

CSH(a0 + α) = 1
2

∫

M
(〈da0α ∧ α〉 + 1

3
〈[α ∧ α] ∧ α〉) −H(a0 + α)

for α ∈ Ω1(gQ) and a fixed flat connection a0 ∈ Aflat(Q). Here 〈 , 〉 denotes

the invariant inner product on g given by minus the Killing form (in the case

G = SO(3) this is 4 times the trace). The covariant differential da : Ω1(gQ) →
Ω2(gQ) is defined by daα = dα + [a ∧ α] for a ∈ A(Q) and α ∈ Ω1(gQ) The

perturbation H : A(Q) → R is a function of the SU(2)-valued holonomy of

the connection along finitely many thickened loops in M . Thus H is invariant

under the action of Gev(Q). (cf. [14], [30], [9] for a precise definition of H).

The Chern-Simons functional satisfies the identity

(1.1) CSH(a) − CSH(g∗a) = 8π2 deg(g)

(cf. [3]). The differential of CSH is given by

dCSH(a)α =

∫

M
〈(Fa − Y (a)) ∧ α〉,

where Fa is the curvature and Y : A(Q) → Ω2(gQ) represents the differential

of H. The function Y is smooth with respect to the L2-topology on A(Q).

In particular, Y (a) does not depend on the derivatives of a. In other words

the curvature F is a nonlinear first order operator on A(Q) and Y is a zeroth

order (and therefore compact) perturbation. Both operators are equivariant

with respect to the action of Gev(Q) on A(Q) and Ω2(gQ). The critical points

of CSH are called H-flat connections. They satisfy Fa = Y (a) and the set

of such connections is denoted by Aflat(Q,H). The perturbation H can be

chosen such that every H-flat connection a is a nondegenerate critical point

of CSH (cf. [14], [8], [30]).

The gradient flow of CSH takes the form

(1.2) ȧ+ ∗Fa − ∗Y (a) = 0.

With Y = 0 this is the self-duality equation on Q × R. If a satisfies (1.2)

and has finite Yang-Mills energy then a(t) converges to H-flat connections on

Q as t dends to ±∞ (cf. [14], [22], [30]). Fix a± ∈ Aflat(Q,H) and denote

by M(a−, a+) the moduli space of gauge equivalence classes [a] of solutions

of (1.2) which satisfy the limit condition

(1.3) lim
t→±∞

a(t) = g∗±a
± ∈ Aflat(Q,H)
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for some g± ∈ G0(Q). Here [a1] ≡ [a2] if and only if a2(t) = g∗a1(t) for some

g ∈ G0(Q). The solutions of (1.2) minimize the perturbed Yang-Mills action

YH(a) = 1
2

∫ ∞

−∞

(
‖Fa − Y (a)‖2

L2(M) + ‖ȧ‖2
L2(M)

)
dt

= CSH(a−) − CSH(a+)

subject to the limit condition (1.3). The second equality holds only for a ∈
M(a−, a+). For a generic perturbation H the space M(a−, a+) is a smooth

manifold of dimension

dim M(a−, a+) = µ(a+) − µ(a−)

where µ(a) = 1
2
η(Da)−CSH(a)/2π2 (cf. [8], [14], [22], [30]). Here Da denotes

the extended Hessian of CSH . It is a self-adjoint operator on Ω1(gQ)⊕Ω0(gQ)

given by

Da =

(
∗da − ∗dY (a) da

d∗
a 0

)

and η(Da) denotes its eta-invariant (cf. [3]). In particular,

(1.4) µ(g∗a) − µ(a) =
1

2π2
(CSH(a) − CSH(g∗a)) = 4 deg(g)

for g ∈ G(Q) (cf. [3]).

The solutions of (1.2) determine a boundary operator on the chain com-

plex

Ck =
⊕

[a]∈Aflat(Q)/G0(Q)

µH (a)−µH (a0)=k

Z[a].

Choose coherent orientations of the moduli spaces M(a−, a+) as in [14], [18].

Whenever a ∈ M(a−, a+) with µ(a+)−µ(a−) = 1 define ν(a) = ±1 according

to whether the natural flow orientation of a(t) (given by time shift) agrees

with this coherent orientation or not. The (a+, a−)-entry of the boundary

operator

∂ : Ck+1 → Ck

is defined by taking the sum of the numbers ν(a) over all instantons [a] ∈
M(a−, a+)/R whenever µ(a+) − µ(a−) = 1. In [14] Floer proved that this

number is finite and that ∂ is a boundary operator, i.e. ∂2 = 0. The homology

groups of this chain complex are called the Floer homology of the pair

(M,Q) and they are denoted by

HFinst
∗ (M,Q) = ker ∂/im ∂

The Floer homology groups are independent of the metric on M and the

perturbation H used to define them (cf. [14], [16]). This means that different
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choices of metric and perturbation give rise to natural isomorphisms. Since

there exists a gauge transformation of degree 1 it follows from (1.4) that

the Floer homology groups are graded modulo 4. The Euler characteristic is

Casson’s invariant of the pair (M,Q).

Remark 1.1. If H can be chosen invariant under all gauge transforma-

tions (not just the even ones) then the group Γ of components of the space

of degree-0 gauge transformations acts on HFinst
k (M,Q) for every k. This re-

quires an equivariant perturbation theory which takes account of the action

of a finite group.

2. Floer homology for symplectic fixed points

Let (M, ω) be a 2n-dimensional symplectic manifold and φ : M → M be a

symplectomorphism. This means that ω is a nondegenerate closed 2 form and

φ∗ω = ω. The tangent bundle of any symplectic manifold admits an almost

complex structure J : TM → TM which is compatible with ω in the sense

that 〈v, w〉 = ω(v, Jw) defines a Riemannian metric. Thus TM is a complex

vector bundle and, since the space J (M, ω) of all almost complex structures

which are compatible with ω is connected, the first Chern class c1 ∈ H2(M,Z)

of TM is uniquely determined by ω (cf. [20], [24]). The symplectic manifold

(M, ω) is called monotone if there exists a positive constant λ > 0 such that
∫

S2
v∗ω = λ

∫

S2
v∗c1

for every smooth map v : S2 → M. We shall assume throughout that (M, ω)

is simply connected and monotone. Under this assumption there are Floer

homology groups HFsymp
∗ (M, φ) whose Euler characteristic is the Lefschetz

number of φ. Since this is an extension of Floer’s original work in [15] (to the

case where φ 6= id), we summarize the main points of the construction.

Let R ×M → R : (s, p) 7→ Hs(p) be a smooth time-dependent Hamilto-

nian function such that Hs = Hs+1 ◦ φ. The symplectomorphisms ψs : M →
M generated by H are defined by

d

ds
ψs = Xs ◦ ψs, ψ0 = id, ι(Xs)ω = dHs.

They satisfy

ψs+1 ◦ φH = φ ◦ ψs,

where φH := ψ1
−1◦φ. For a generic Hamiltonian H the fixed points of φH are

all nondegenerate. (See [21] for the case φ = id. The general case is similar.)
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They can be represented as the critical points of the perturbed symplectic

action functional on the space of smooth paths

Ωφ = {γ : R → M : γ(s+ 1) = φ(γ(s))} .

Since M is simply connected the fundamental group of Ωφ is π1(Ωφ) =

π2(M). The perturbed symplectic action functional aH : Ωφ → R/λZ is

defined as a function whose differential is given by

daH(γ)ξ =

∫ 1

0
ω(γ̇ −Xs(γ), ξ) ds.

So the critical points of aH are the paths of the form x(s) = ψs(x0) such that

x(s + 1) = φ(x(s)). These are in one-to-one correspondence with the fixed

points of φH .

Now choose a smooth map R → J (M, ω) : s 7→ Js such that Js =

φ∗Js+1. Such a structure determines a metric on Ωφ. The gradient flow lines

of aH with respect to this metric are the solutions u : R
2 → M of the partial

differential equation

(2.1) ∂̄J,H(u) = ∂tu+ Js(u) (∂su−Xs(u)) = 0

with boundary condition

(2.2) u(s+ 1, t) = φ(u(s, t)).

In the case where Xs = 0 these are Gromov’s pseudoholomorphic curves

(cf. [20]). If the fixed points of φH are all nondegenerate then it follows from

Gromov’s compactness that any solution of (2.1) and (2.2) with finite energy

E(u) = 1
2

∫ ∞

−∞

∫ 1

0

(
|∂su−Xs(u)|

2 + |∂tu|
2
)

dsdt <∞

has limits

(2.3) lim
t→±∞

u(s, t) = ψs(x
±), x± = φH(x±)

(cf. [15], [20], [24], [26]). Given any two fixed points x± of φH denote by

M(x−, x+) the space of all solutions u of (2.1), (2.2), and (2.3). The lo-

cal structure of the space M(x−, x+) can be examined by linearizing equa-

tion (2.1). This gives rise to the perturbed Cauchy-Riemann operator Du :

W1,p
φ (u∗TM) → Lp

φ(u∗TM) defined by

Duξ = ∇tξ + Js(u)(∇sξ −∇ξXs(u)) + ∇ξJs(u)(∂su−Xs(u)).

Here ∇ denotes the covariant derivative with respect to the s-dependent met-

ric 〈v, w〉s = ω(v, Jsw). Moreover, Lp
φ(u∗TM) (respectively W1,p

φ (u∗TM))

denote the completions of the space of smooth vector fields ξ(s, t) ∈ Tu(s,t)M



588 STAMATIS DOSTOGLOU AND DIETMAR A. SALAMON

along u, which satisfy ξ(s + 1, t) = dφ(u(s, t))ξ(s, t) and have compact sup-

port on S1 × R, with respect to the Lp-norm (respectively W1,p-norm) on

S1 × R. If x± are nondegenerate fixed points of φH and u satisfies satis-

fies (2.2) and (2.3) then Du is a Fredholm operator and its index is given by

the Maslov class of u:

indexDu = µ(u)

(cf. [10] and [27]). The Maslov class µ(u) is invariant under homotopy, addi-

tive for catenations, and satisfies

(2.4) µ(u#v) = µ(u) − 2c1(v)

for any sphere v : S2 → M (cf. [10] and [27]).

If Du is onto then M(x−, x+) is a finite dimensional manifold near u.

This follows from an implicit function theorem. For later reference we shall

state here a version of that theorem. Fix a reference function u0 : R
2 → M

which satisfies (2.2) and u0(s, t) = ψs(x
+) for t ≥ 1 and u0(s, t) = ψs(x

−) for

t ≤ −1.

Theorem 2.1. Let p > 2 and 1/p + 1/q = 1. Then for every constant

c0 > 0 there exist constants δ > 0 and c > 0 such that the following holds. If

ξ0 ∈ W1,p
φ (u∗0TM) such that

‖ξ0‖W1,p ≤ c0,
∥∥∂̄J,H(u)

∥∥
Lp ≤ δ

where u = expu0
(ξ0) and

(2.5) ‖η‖Lq ≤ c0 ‖D
∗
uη‖Lq

for every η ∈ W1,q(u∗TM)1 then there exists a unique section ξ = D∗
uη ∈

W1,p
φ (u∗TM) such that

∂̄J,H(expu(ξ)) = 0, ‖ξ‖W1,p ≤ c
∥∥∂̄J,H(u)

∥∥
Lp .

Proof. The proof is an application of the implicit function theorem for

the map F : W1,p
φ (u∗TM) → Lp

φ(u∗TM) defined by

(2.6) F(ξ) = Φξ(∂̄J,H(expu(ξ)))

where Φξ : Lp
φ(expu(ξ)∗TM) → Lp

φ(u∗TM) denotes parallel transport along

the geodesic τ 7→ expu(τξ). The map F is smooth and its derivatives are

controlled by theW 1,p-norm of ξ0. The differential at zero is given by dF(0) =

Du and the condition (2.5) guarantees that this operator is onto and has a

1The formal adjoint operator D∗
u is obtained from Du by replacing ∇t with −∇t.
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right inverse. In fact, there is a constant c1 > 0 depending only on c0 such

that

‖D∗
uη‖W1,p ≤ c1 ‖DuD

∗
uη‖Lp

for every η ∈ W1,p
φ (u∗TM) such that D∗

uη ∈ W1,p
φ (u∗TM).2 This estimate is

proved by arguments similar to those in the proof of Lemma 4.5 below. It

follows that the operator ζ 7→ D∗
u(DuD

∗
u)−1ζ is the required right inverse of

Du.

A Hamiltonian function H is called regular if the fixed points of φH

are all nondegenerate and the operator Du is onto for every u ∈ M(x−, x+)

and any two fixed points x± of φH . As in Floer’s papers [11] and [15] it

can be proved that the set Hreg = Hreg(J) of regular Hamiltonians is generic

in the sense of Baire with respect to a suitable C∞
ε -topology (see also [27]

and [24]). It follows from Theorem 2.1 that for H ∈ Hreg and x± = φH(x±)

the space M(x−, x+) is a manifold whose local dimension near u is the Maslov

class µ(u). By (2.4) the Maslov class determines a map µ : Fix(φH) → Z2N

(defined up to an additive constant) such that

µ(u) = µ(x−) − µ(x+) (mod 2N)

for every solution u of (2.2) and (2.3). Here the integer N is the minimal

Chern number defined by c1(π2(M)) = NZ. The additive constant can be

chosen such that

(2.7) (−1)µ(x) = sign det(1l − dφH(x))

for x ∈ Fix(φH).

As in Floer’s original work (cf. [15] for the case φ = id) the moduli spaces

M(x−, x+) of connecting orbits can be used to construct a chain complex.

Ck =
⊕

x=φH (x)

µ(x)=k(mod 2N)

Zx.

The boundary operator ∂ : Ck+1 → Ck is defined by taking the sum of

the numbers ν(u) over all 1-dimensional components of M(x−, x+). These

numbers are defined by comparing the flow orientation of u with the coherent

orientation of M(x−, x+) as in [18]. In [15] Floer proved in the case φ = id

that ∂ is well defined and satisfies ∂2 = 0. His arguments carry over to

the case φ 6= id. The Floer homology groups of φ are are defined as the

homology of this chain complex

HFsymp
∗ (M, φ,H, J) = ker ∂/im ∂.

2Warning: This need not be the space W2,p
φ

(u∗TM) since u is only assumed to be of class

W1,p.
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It can be proved as in [15] and [27] that the Floer homology groups are

independent of the almost complex structures Js and and the perurbation H

used to define them. They depend on φ only up to Hamiltonian isotopy. In

other words, there is a natural isomorphism

HFsymp
∗ (M, φα,Hα, Jα) → HFsymp

∗ (M, φβ ,Hβ, Jβ)

whenever φα and φβ are related by a Hamiltonian isotopy (cf. [9]). By (2.4)

the Floer homology groups are graded modulo 2N . By (2.7) the Euler char-

acteristic is the Lefschetz number of φ

χ(HFsymp
∗ (M, φ)) =

∑

x=φH(x)

sign det(1l − dφH(x)) = L(φ).

Remark 2.2. A similar construction works for some classes of compact

symplectic manifolds M which are neither monotone nor simply connected.

In this case there are Floer homology groups for every component of Ωφ and

they are modules over a suitable Novikov ring as in [21].

Remark 2.3. If φ = id then the Floer homology groups are naturally

isomorphic to the homology of the underlying symplectic manifold M:

HFsymp
∗ (M, id) ' H∗(M,Z).

If M is not simply connected then this continues to hold for the component

of contractible loops on M and this implies the Arnold conjecture (cf. [15]).

Remark 2.4. For every symplectomorphism ψ there is a natural iso-

morphism of Floer homologies HFsymp
∗ (M, φ) = HFsymp

∗ (M, ψ−1 ◦φ ◦ψ). (To

see this consider the function v(s, t) = ψ−1(u(s, t)) where u(s, t) is a solution

of (2.1) and (2.2).) Donaldson has suggested the construction of a homomor-

phism

HFsymp
∗ (M, ψ) ⊗ HFsymp

∗ (M, φ) → HFsymp
∗ (M, ψ ◦ φ)

using moduli spaces of J -holomorphic curves with three cylindrical ends (the

pair-of-pants construction). If ψ = id then this determines an action of the

homology of M on the Floer homology groups of φ. If φ = ψ = id then this

should agree with the deformed cup-product of Witten.

We close this section with an existence theorem for solutions of (2.1)

which is based on Theorem 2.1.

Theorem 2.5. Assume H ∈ Hreg. Let x± be fixed points of φH and let

A denote a homotopy class of maps u : R
2 → M which satisfy (2.2) and (2.3)

with µ(u) = 1. Then for every c0 > 0 and p > 2 there exist constants δ > 0

and c > 0 such that the following holds. If u : R
2 → M satisfies (2.2)
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and (2.3) and represents the class A such that

|∂tu(s, t)| ≤
c0

1 + t2
,

∥∥∂̄J,H(u)
∥∥
Lp ≤ δ,

then there exists a unique section ξ = D∗
uη ∈ W1,p

φ (u∗TM) such that

∂̄J,H(expu(ξ)) = 0, ‖ξ‖W1,p ≤ c
∥∥∂̄J,H(u)

∥∥
Lp .

Remark 2.6. The function f(t) = c0/(1 + t2) has been chosen because

it is integrable, p-integrable, and is the derivative of functions F ± which are

p-integrable on R
±, respectively. Any function with these properties will do.

Lemma 2.7. Assume H ∈ Hreg and let u0 ∈ M(x−, x+) and p > 2.

Then for every constant c0 > 0 there exists a constant c > 0 such that if

ξ0 ∈ W1,p
φ (u∗TM) with ‖ξ0‖W1,p ≤ c0 then

‖ξ0‖W1,p ≤ c
(∥∥∂̄J,H(expu0

(ξ0))
∥∥
Lp + ‖ξ0‖Lp + ‖ξ0‖L∞

)
.

Proof. Consider the map F : W1,p
φ (u∗0TM) → Lp

φ(u∗0TM) defined by (2.6)

with u replaced by u0. Since F(0) = 0 and dF(0) = Du0 there is a quadratic

estimate

‖F(ξ0) −Du0ξ0‖Lp ≤ c1 ‖ξ0‖W1,p ‖ξ0‖L∞ .

Here the constant c1 depends only on u0 and c0. Now the statement follows

from the elliptic estimate ‖ξ0‖W1,p ≤ c2 (‖Du0ξ0‖Lp + ‖ξ0‖Lp) .

Proof of Theorem 2.5. If the assertion of the theorem were false then

there would exist a sequence uν representing the class A such that

|∂tuν(s, t)| ≤
c0

1 + t2
, lim

ν→∞

∥∥∂̄J,H(uν)
∥∥
Lp = 0,

but the conclusion of the theorem is not satisfied with u = uν and c = ν. Now

the derivatives of uν are uniformly bounded in the L∞-norm and E(uν) ≤ c1.

Hence, passing to a subsequence, we may assume without loss of generality

that uν converges uniformly on compact sets to a solution u0 of (2.1) with

finite energy. Since µ(uν) = 1 it follows as in the usual compactness argument

for Morse-Smale gradient flows that u0 ∈ M(x−, x+) (cf. [26]). By the uni-

form decay estimate uν converges uniformly on R
2. Moreover, uν = expu0

(ξν)

where

sup
ν

‖ξν‖W1,p <∞, ‖ξν‖Lp → 0, ‖ξν‖L∞ → 0.

Hence, by Lemma 2.7, ξν converges to zero in the W1,p-norm. This implies

that the operators Duν satisfy (2.5) for ν sufficiently large with a uniform

constant c. Hence it follows from Theorem 2.1 that for ν sufficiently large the
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functions uν do satisfy the conclusion of the theorem with a uniform constant

c. This contradicts our assumption. Hence the theorem is proved.

3. Flat connections over a Riemann surface

Let π : P → Σ be a nontrivial SO(3)-bundle over a compact oriented Riemann

surface of genus k ≥ 2. Denote by G0(P ) the component of 1l in the space of

gauge transformations and by

M(P ) = Aflat(P )/G0(P )

the moduli space of flat connections. This space is a compact manifold of

dimension 6k − 6. Its tangent space at an equivalence class [A] of a con-

nection A ∈ Aflat(P ) can be identified with the twisted deRham cohomology

T[A]M(P ) = H1
A = ker dA/im dA. Here dA : Ωk(gP ) → Ωk+1(gP ) denotes the

covariant derivative defined by dAα = dα+[A∧α]. Given a conformal struc-

ture on Σ we may identify H1
A with the space ker dA ∩ ker dA

∗ of harmonic

forms. Here dA
∗ = − ∗ dA∗ denotes the L2-adjoint of dA. The moduli space

M(P ) carries a natural symplectic structure

ω(α, β) =

∫

Σ
〈α ∧ β〉

for α, β ∈ H1
A. Every conformal structure on Σ determines a complex struc-

ture on M(P ) (cf. [2]). The corresponding almost complex structure on

TM(P ) is given by the the Hodge-∗-operators on the spaces H1
A of harmonic

forms and is compatible with ω.

The second homotopy group of M(P ) is given by

π2(M(P )) = π1(G0(P )) = Z.

More precisely, a sphere in M(P ) can be represented by a smooth map A :

D → Aflat(P ) such that A(e2πiθ) = g(θ)∗A0 where D = {z ∈ C : |z| ≤ 1}
is the unit disc, A0 ∈ Aflat(P ) is a flat connection on P , and g(θ) = g(θ +

1) ∈ G0(P ) is a loop of gauge transformations. Any such loop has a degree

deg(g) ∈ Z and the integrals of ω and c1 = c1(TM(P )) over A are given by

〈c1, A〉 =
1

4π2
〈[ω], A〉 = 2deg(g)

(cf. [10]). In particular, M(P ) is monotone in the sense of section 2 with

λ = 4π2.

Every orientation preserving automorphism f : P → P determines a

symplectomorphism φf : M(P ) → M(P ) defined by [A] 7→ [f ∗A]. If f0

and f1 are isotopic then φf0 = φf1 and hence the correspondence f 7→ φf

determines a symplectic action Aut+(P )/Aut0(P ) → Diff(M(P ), ω) where
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Aut0(P ) denoptes the component of the identity in the group Aut+(P ) of ori-

entation preserving automorphisms. Note that the quotient Aut+(P )/Aut0(P )

is a finite extension of the mapping class group Diff+(Σ)/Diff0(Σ) by π0(G(P )) ∼=
Z

2k.

The automorphism f also determines a principal bundle Pf → Σh where

h : Σ → Σ is the diffeomorphism induced by f and Pf and Σh denote the

mapping cylinders. A connection a ∈ A(Pf ) is a 1-form a = A+ Φds where

A(s) ∈ A(P ), Φ(s) ∈ Ω0(gP ) and

A(s+ 1) = f ∗A(s), Φ(s+ 1) = Φ(s) ◦ f.

The group G(Pf ) of gauge transformations of Pf consists of smooth maps

g : R → G(P ) such that g(s+ 1) = g(s) ◦ f . It acts on A(Pf ) by

g∗a = g∗A+
(
g−1ġ + g−1Φg

)
ds.

Here the notation g∗ is used ambiguously: g∗a denotes the action of g ∈ G(Pf )

on a ∈ A(Pf ) whereas g∗A denotes the pointwise action of g(s) ∈ G(P ) on

A(s) ∈ A(P ).

The space of paths

Fix a 1-parameter family of conformal structures on Σ such that the

associated Hodge-∗-operators satisfy ∗s+1 ◦ f
∗ = f∗ ◦ ∗s. Denote by AΣ(Pf )

the subspace of those connections a = A(s)+Φ(s) ds which satisfy FA = 0 and

dA ∗s (Ȧ−dAΦ) = 0. For any such connection and every s the section Φ(s) ∈
Ω0(gP ) is uniquely determined by A since dA ∗s dAΦ = dA ∗s Ȧ. The 1-form

Ȧ−dAΦ is the projection of Ȧ onto the space of harmonic forms with respect

to the s-metric. Also denote by GΣ(Pf ) the subgroup of those g ∈ G(Pf ) such

that g(s) ∈ G0(P ) for all s. It follows from results in [2] and [5] that the

space Aflat(P ) is simply connected and hence AΣ(Pf ) is connected. There is

a natural bijection Ωφf
= AΣ(Pf )/GΣ(Pf ) and the quotient AΣ(Pf )/G0(Pf )

is the universal cover of Ωφf
. The second homotopy group of M(P ) is the

fundamental group of Ωφf
and can be identified with the second homotopy

group of M(P ) (cf. [10]):

π1(Ωφf
) = π2(M(P )) = GΣ(Pf )/G0(Pf ) = Z.

The Chern-Simons functional

The Chern-Simons functional CS : A(Pf ) → R is given by

CS(a) =

∫ 1

0

∫

Σ

(
1
2
〈Ȧ ∧ (A−A0)〉 + 〈FA ∧ Φ〉

)
ds

for a = A+ Φds where A0 = f∗A0 is a fixed flat connection. The restriction

of the Chern-Simons functional to AΣ(Pf ) agrees with the symplectic action
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on Ωφf
. The critical points are the flat connections on Pf and they satisfy

FA = 0, Ȧ− dAΦ = 0.

Gauge equivalence classes of such connections are in one-to-one correspon-

dence with the fixed points of φf . If φf has degenerate fixed points choose a

gauge invariant holonomy perturbation Hs : A(P ) → R as in [10] such that

Hs+1(f
∗A) = Hs(A).

Think ofHs as a Hamiltonian function with corresponding Hamiltonian vector

field Xs : A(P ) → Ω1(gP ) defined by

dHs(A)α =

∫

Σ
〈Xs(A) ∧ α〉.

Since Hs : A(P ) → R is invariant under G0(P ) the vector field Xs satisfies

(3.1) Xs(g
∗A) = g−1Xs(A)g, dAXs(A) = 0

for g ∈ G0(P ) and A ∈ A(P ). The corresponding Hamiltonian symplecto-

morphisms ψs : A(P ) → A(P ) are equivariant under the action of G0(P ) and

the curvature is constant along the flow. Moreover, ψs+1 ◦ φf,H = φf ◦ ψs

where φf,H = ψ−1
1 ◦ φf .

The perturbed Chern-Simons functional CSH : A(Pf ) → R is defined by

CSH(A+ Φds) = CS(A+ Φds) −
∫ 1

0
Hs(A(s)) ds.

A connection A+ Φds on Pf is a critical point of CSH iff

FA = 0, Ȧ− dAΦ −Xs(A) = 0.

Denote the space of such critical points by Aflat(Pf ,H).

Remark 3.1. There is a bijection Aflat(Pf ,H)/GΣ(Pf ) ' Fix(φf,H).

Moreover, an H-flat connection A+ Φds is nondegenerate as a critical point

of CSH if and only if A(0) represents a nondegenerate fixed point of φf,H

(cf. [10]). The perturbation H can be chosen such that the symplectomor-

phism φf,H : M(P ) → M(P ) has only nondegenerate fixed points (cf. [21]).

Instantons and holomorphic curves

Fix two nondegenerateH-flat connections a± = A±+Φ± ds ∈ Aflat(Pf ,H)

and choose smooth functions A : R
2 → Aflat(P ) and Φ,Ψ : R

2 → Ω0(gP )

which satisfy

(3.2)
A(s+ 1, t) = f ∗A(s, t),

Φ(s+ 1, t) = Φ(s, t) ◦ f, Ψ(s+ 1, t) = Φ(s, t) ◦ f.
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(3.3) lim
t→±∞

A(s, t) = A±(s), lim
t→±∞

Φ(s, t) = Φ±(s), lim
t→±∞

Ψ(s, t) = 0.

Now choose a smooth family of conformal structures on Σ depending on a

real parameter s such that ∗s+1 ◦ f
∗ = f∗ ◦ ∗s. Then the perturbed Cauchy-

Riemann equations (2.1) take the form

(3.4) ∂tA− dAΨ + ∗s (∂sA−Xs(A) − dAΦ) = 0.

For solutions of (3.4) the functions Φ and Ψ are uniquely determined by A.

In other words the function A : R
2 → Aflat(s, t) is an anti-holomorphic curve

if and only if the harmonic part of ∂tA+ ∗s(∂sA−Xs(A)) vanishes. If this is

the case then there exist unique functions Φ,Ψ : R
2 → Ω0(gP ) such that (3.4)

is satisfied.

Now think of Ξ = A + Φds + Ψdt as a connection on Pf × R. Here

the connections A(s, t) are no longer required to be flat. The perturbed self-

duality equations on Pf × R take the form

(3.5)
∂tA− dAΨ + ∗s(∂sA−Xs(A) − dAΦ) = 0,

∂tΦ − ∂sΨ − [Φ,Ψ] + ε−2 ∗s FA = 0.

The first equation in (3.5) agrees with (3.4) while the second equation replaces

the condition on A(s, t) to be flat. The factor 1/ε2 arises from conformally

rescaling the metric on Σ by the factor ε2. The Hodge-∗-operator on 1-

forms (the middle dimension) is invariant under conformal rescaling while the

Hodge-∗-operator on 2-forms rescales by 1/ε2. Alternatively, equation (3.5)

can be obtained by considering a solution Ξ̃ = Ã+Φ̃ds+Ψ̃dt of the self-duality

equation with ε = 1 and ∗s replaced by ∗εs on the domain 0 ≤ s ≤ 1/ε. Then

A(s, t) = Ã(s/ε, t/ε), Φ(s, t) = Φ̃(s/ε, t/ε)/ε, and Ψ(s, t) = Ψ̃(s/ε, t/ε)/ε

satisfy (3.5). This is a modification of Atiyah’s idea to stretch the neck for

Heegard splittings (cf. [1]).

If Ξ satisfies (3.5) then the perturbed Yang-Mills action of Ξ with respect

to the rescaled metric on Σ is given by

(3.6) Yε
H(Ξ) =

∫ ∞

−∞

∫ 1

0

(
‖∂tA− dAΨ‖2

L2(Σ,∗s) + ε−2 ‖FA‖
2
L2(Σ,∗s)

)
dsdt.

If Ξ satisfies (3.2), (3.3), and (3.5) then

Yε
H(Ξ) = CSH(a−) − CSH(a+).

If instead Ξ satisfies (3.2), (3.3), and (3.4) with FA = 0 then the the right

hand side of (3.6) is not the Yang-Mills action but the energy of the anti-

holomorphic curve represented by A.
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Index theorem

The Sobolev space Wk,p
f (R2×T ∗Σ⊗gP ) is the completion of the space of

compactly supported smooth maps α : R
2 → Ω1(gP ) which satisfy α(s+1, t) =

f∗α(s, t) with respect to the Wk,p-norm on R
2 × Σh. The space Wk,p

f (R2 ×

gP ) is defined similarly. For any smooth map A : R
2 → Aflat(P ) which

satisfies (3.2) the closed linear subspace Wk,p
f (HA) ⊂ Wk,p

f (R2 × T ∗Σ ⊗ gP )

consists of those α0 such that α0(s, t) is a harmonic 1-forms on gP with respect

to the s-metric and the connection A(s, t).

Linearizing (3.4) gives rise to the Fredholm operator

D0 = D0(Ξ) : W1,p
f (HA) → Lp

f (HA)

defined by

D0α0 = πA (∇tα0 + ∗s∇sα0 − ∗sdXs(A)α0) .

Here ∇s = ∂s + Φ, ∇t = ∂t + Ψ and πA(s,t)(α) denotes the harmonic part

of the 1-form α with respect to the connection A(s, t) and the s-metric on

Σ. Note that HA is the pullback tangent bundle of M(P ) under the map

[A] : R
2 → M(P ). In view of the periodicity condition (3.2) this is a complex

vector bundle over S1 × R and D0 is a perturbed Cauchy-Riemann operator

on this bundle. (See [10] for more details.)

Abbreviate

ξ = (α, φ, ψ) ∈ Wk,p
f = Wk,p

f (R2 × T ∗Σ ⊗ gP ⊕ gP ⊕ gP ).

Linearizing (3.5) gives rise to the Fredholm operator

Dε = Dε(Ξ) : W1,p
f → Lp

f

defined by

Dε = ∇t +




∗s∇s 0 0

0 0 −∇s

0 ∗s∇s∗s 0


−




∗sdXs(A) ∗sdA dA

−ε−2 ∗s dA 0 0

−ε−2 ∗s dA∗s 0 0


 .

The notation Dε(Ξ) indicates the dependence of the operator Dε on the con-

nection Ξ = A+ Φds+ Ψdt. The following theorem was proved in [10].

Theorem 3.2. For any pair a± of nondegenerate H-flat connections on

Pf and any connection Ξ = A+ Φ ds+ Ψ dt on Pf × R which satisfies (3.2),

(3.3), and FA = 0 we have

indexD0 = indexDε = µH(a−, a+).
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The index formula of section 1 shows that for any connection Ξ = A +

Φ ds+ Ψ dt which satisfies (3.2) and (3.3)

µH(a−, a+) =
1

2
η(a+) −

1

2
η(a−)

−
1

2π2

∞∫

−∞

1∫

0

∫

Σ

〈FA ∧ (∂tΦ − ∂sΨ − [Φ,Ψ])〉dsdt

−
1

2π2

∞∫

−∞

1∫

0

∫

Σ

〈(∂sA−Xs(A) − dAΦ) ∧ (∂tA− dAΨ)〉dsdt

where η(a) = η(Da) is the eta-invariant of the extended Hessian Da as in

section 1. In particular, if Ξ is a solution of (3.2), (3.3), and (3.4) with

FA = 0 then

(3.7) µH(a−, a+) =
1

2
η(a+)−

1

2
η(a−)+

1

2π2

∫ ∞

−∞

∫ 1

0
‖∂tA− dAΨ‖2

L2(Σ) dsdt.

Moduli spaces

Given a± = A± + Φ± ds ∈ AΣ(Pf ,H) choose a smooth connection Ξ0 =

A0 + Φ0 ds+ Ψ0 dt which satisfies (3.2) and (3.3) and is locally independent

of t for |t| ≥ 1. For p > 2 denote A1,p(a−, a+) = {Ξ0 + ξ : ξ ∈ W1,p
f }. The

associated space of gauge transformations G2,p is the completion of the space

of all smooth gauge transformations g : Pf × R → G such that g(s, t) = 1l for

|t| sufficiently large with respect to the W1,p
f -norm of ξ = g−1dg+g−1∂sg ds+

g−1∂tg dt. This space acts on A1,p(a−, a+) via

g∗Ξ = g∗A+
(
g−1∂sg + g−1Φg

)
ds+

(
g−1∂tg + g−1Ψg

)
dt.

Consider the space

A1,p
0 (a−, a+,H) =

{
Ξ ∈ A1,p(a−, a+) : FA = 0, (3.4)

}

of holomorphic curves in Aflat(P ) connecting a− to a+ and the space

A1,p
ε (a−, a+,H) =

{
a ∈ A1,p(a−, a+) : (3.5)

}

of self-dual instantons on Pf × R connecting a− to a+. The corresponding

moduli spaces

M0(a
−, a+,H) = A1,p

0 (a−, a+,H)/G2,p

Mε(a
−, a+,H) = A1,p

ε (a−, a+,H)/G2,p

are finite dimensional manifolds of the same dimension µH(a−, a+) provided

that the operators D0 and Dε are onto for all relevant connections Ξ. Thus

denote by Hreg
0 the set of all perturbationsH such that the fixed points of φf,H
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are nondegenerate and the operator D0 is onto for all a± ∈ AΣ(Pf ,H) and all

Ξ ∈ A1,p
0 (a−, a+,H). Likewise, denote by Hreg

ε the set of all perturbations H

such that the H-flat connections on Pf are nondegenerate and the operator

Dε is onto for all a± ∈ AΣ(Pf ,H) and all Ξ ∈ A1,p
ε (a−, a+,H). Both sets

Hreg
0 and Hreg

ε are of the second category in the sense of Baire (countable

intersections of open and dense sets) in a suitable Banach space of smooth

perturbations. (See [15], [24], [27] for the symplectic case and [8], [14], [16]

for the instanton case.)

4. Elliptic estimates

Fix two nondegenerate H-flat connections a± = A± + Φ± ds ∈ AΣ(Pf ,H),

let p > 4, and assume throughout that Ξ = A + Φds+ Ψdt ∈ A1,p(a−, a+)

with FA(s,t) = 0 for all s and t. Write D0 = D0(Ξ) and Dε = Dε(Ξ).

It is convenient to use the ε-dependent Banach space norms

‖ξ‖p
0,p,ε =

∫ ∞

−∞

∫ 1

0

(
‖α‖p

Lp(Σ) + εp ‖φ‖p
Lp(Σ) + εp ‖ψ‖p

Lp(Σ)

)
dsdt

on Lp
f ,

‖ξ‖∞,ε = ‖α‖L∞ + ε ‖φ‖L∞ + ε ‖ψ‖L∞

on L∞
f , and

‖ξ‖p
1,p,ε =

∫ ∞

−∞

∫ 1

0

(
‖α‖p

W1,p(Σ) + εp ‖∇sα‖
p
Lp(Σ) + εp ‖∇tα‖

p
Lp(Σ)

)
dsdt

+

∫ ∞

−∞

∫ 1

0

(
εp ‖φ‖p

W1,p(Σ) + ε2p ‖∇sφ‖
p
Lp(Σ) + ε2p ‖∇tφ‖

p
Lp(Σ)

)
dsdt

+

∫ ∞

−∞

∫ 1

0

(
εp ‖ψ‖p

W1,p(Σ) + ε2p ‖∂sψ‖
p
Lp(Σ) + ε2p ‖∂tψ‖

p
Lp(Σ)

)
dsdt

on W1,p
f . Here ∇s = ∂s +Φ, ∇t = ∂t +Ψ, ‖φ‖p

W1,p(Σ) = ‖φ‖p
Lp(Σ) +‖dAφ‖

p
Lp(Σ) ,

and

‖α‖p
W1,p(Σ) = ‖α‖p

Lp(Σ) + ‖dAα‖
p
Lp(Σ) + ‖dA ∗s α‖

p
Lp(Σ) .

Thus the 1, p, ε-norm depends on the connection Ξ and the 1, p, ε-norm of

g−1ξg with respect to g∗Ξ agrees with the 1, p, ε-norm of ξ with respect to Ξ.

Lemma 4.1. For p > 4 there exists a constant c = c(p) > 0 such that

‖ξ‖∞,ε ≤ cε−2/p ‖ξ‖1,p,ε

for ξ ∈ W1,p
f and 0 < ε ≤ 1.
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Proof. Denote ξ̃ = α̃ + φ̃ ds + ψ̃ dt where α̃(s, t) = α(εs, εt), φ̃(s, t) =

εφ(εs, εt), and ψ̃(s, t) = εψ(εs, εt) for 0 ≤ s ≤ ε−1 and t ∈ R. Then ‖ξ‖1,p,ε =

ε2/p‖ξ̃‖W 1,p . Hence the statement follows from the usual Sobolev estimate for

ξ̃.

Lemma 4.2. There exist constants ε0 > 0 and c > 0 such that

‖ξ‖1,p,ε ≤ c
(
ε ‖Dεξ‖0,p,ε + ‖πA(ξ)‖Lp

)
,

‖ξ − πA(ξ)‖1,p,ε ≤ cε
(
‖Dεξ‖0,p,ε + ‖πA(ξ)‖Lp

)

for ξ ∈ W1,p
f and 0 < ε ≤ ε0. The constants ε0 and c depend continuously on

Ξ (with respect to the C∞-topology) and they are independent of ε.

Proof. We prove the statement only for p = 2. Moreover, it suffices to

consider the case Xs = 0. Throughout all the norms are L2-norms on Σh×R.

Let ξ = (α, φ, ψ) ∈ W 1,2
f and denote ξ̃ = (α̃, φ̃, ψ̃) = Dεξ. We shall prove the

estimate

‖dAα‖
2 + ‖dA ∗s α‖

2 + ε2 ‖∇sα‖
2 + ε2 ‖∇tα‖

2

+ε2 ‖dAφ‖
2 + ε4 ‖∇sφ‖

2 + ε4 ‖∇tφ‖
2

+ε2 ‖dAψ‖
2 + ε4 ‖∇sψ‖

2 + ε4 ‖∇tψ‖
2(4.1)

≤ cε2
(
‖ξ̃‖2

0,2,ε + ‖α‖2
)
.

To see this assume that ξ is smooth (C∞) and consider the identity

(4.2) D∗
ε ξ̃ = D∗

εDεξ.

Here the operator D∗
ε is obtained from Dε by replacing ∇t with −∇t. It is

the formal adjoint operator of Dε with respect to the Hilbert space structure

induced by the L2
ε-norm. The first component of (4.2) can be written as

−∇tα̃− dAψ̃ + ∗s∇sα̃− ∗sdAφ̃

= −∇t∇tα+ ∗s∇s ∗s ∇sα+ ε−2dA
∗dAα+ ε−2dAdA

∗α

− ∗s [C ∧ α] + [(Bt − ∗sBs) ∧ ψ] + [(∗sBt +Bs) ∧ φ]

−dA ∗s ∗̇sφ− ∗s∗̇sdAφ

where ∗̇s denotes the derivative of the Hodge-∗-operator ∗s with respect to s

and

Bs = ∂sA− dAΦ, Bt = ∂tA− dAΨ, C = ∂tΦ − ∂sΨ − [Φ,Ψ].
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Take the inner product with α to obtain

‖∇sα‖
2 + ‖∇tα‖

2 + ε−2 ‖dAα‖
2 + ε−2 ‖dA ∗s α‖

2

= 〈∇tα+ ∗s∇sα, α̃〉 + 〈∗sdAα, φ̃〉 − 〈dA
∗α, ψ̃〉

+〈α, ∗s[C ∧ α]〉 − 〈α, [(Bt − ∗sBs) ∧ ψ]〉 − 〈α, [(∗sBt +Bs) ∧ φ]〉(4.3)

+〈α,dA ∗s ∗̇sφ〉 + 〈∗s∗̇sα,dAφ〉.

Similarly, the second component of (4.2) can be written in the form

−∇tφ̃−∇sψ̃ + ε−2 ∗s dAα̃

= −∇t∇tφ−∇s ∗s ∇s ∗s φ+ ε−2dA
∗dAφ

+[(C − ε−2 ∗s FA) ∧ ψ] − ε−2 ∗s [Bs ∧ ∗sα] − ε−2 ∗s [Bt ∧ α]

−ε−2∗̇sdA ∗s α− ε−2 ∗s dA∗̇sα.

Take the inner product with φ and use FA = 0 and

〈φ,∇s ∗s ∇s ∗s φ〉 = −‖∇sφ+ ∗s∗̇sφ‖
2

to obtain

‖∇sφ‖
2 + ‖∇tφ‖

2 + ε−2 ‖dAφ‖
2

= 〈∇tφ, φ̃〉 + 〈∇sφ+ ∗s∗̇sφ, ψ̃〉 − ε−2〈∗sdAφ, α̃〉

−2〈∇sφ, ∗s∗̇sφ〉 − ‖ ∗s ∗̇sφ‖
2 − 〈φ, [C ∧ ψ]〉(4.4)

+ε−2〈φ, ∗s[Bs ∧ ∗sα]〉 + ε−2〈φ, ∗s[Bt ∧ α]〉

+ε−2〈α,dA ∗s ∗̇sφ〉 + ε−2〈∗s∗̇sα,dAφ〉.

The third component of (4.2) can be written in the form

−∇tψ̃ + ∗s∇s ∗s φ̃+ ε−2 ∗s dA ∗s α̃

= −∇t∇tψ − ∗s∇s ∗s ∇sψ + ε−2dA
∗dAψ

−[(C − ε−2 ∗s FA) ∧ φ] + ε−2 ∗s [Bs ∧ α] − ε−2 ∗s [Bt ∧ ∗sα].

Take the inner product with ψ and use FA = 0 to obtain

‖∇sψ‖
2 + ‖∇tψ‖

2 + ε−2 ‖dAψ‖
2

= 〈∇tψ, ψ̃〉 − 〈∇sψ, φ̃〉 − ε−2〈dAψ, α̃〉(4.5)

+〈ψ, [C ∧ φ]〉 − ε−2〈ψ, ∗s[Bs ∧ α]〉 + ε−2〈ψ, ∗s[Bt ∧ ∗sα]〉.

The estimate (4.1) follows from (4.3), (4.4), and (4.5). This proves the lemma

for p = 2. For general p the estimate can be reduced to the Lp-estimate for

Laplace’s equation via the rescaling argument of Lemma 4.1.



SELF-DUAL INSTANTONS AND HOLOMORPHIC CURVES 601

Lemma 4.3. There exists a constant c = c(Ξ, p) > 0 such that

‖πA(Dεξ) −D0πA(ξ)‖Lp ≤ c ‖ξ − πA(ξ)‖0,p,ε

for ξ ∈ W1,p
f .

Proof. Let ξ = (α, φ, ψ) ∈ W1,p
f and write α = πA(α) + dAζ + ∗sdAη.

Then a simple calculation shows that

(4.6) πA(Dεξ) = D0πA(ξ) + πA(θ)

where θ = [B ∧ ζ] + ∗s[B ∧ η] + ∗s∗̇sdAη−∗sdXs(A) ∗s dAη− [Xs(A)∧ η] and

B = Bt + ∗s(Bs −Xs(A)). Hence ‖θ‖Lp ≤ c ‖ξ − πA(ξ)‖0,p,ε as required.

If Ξ satisfies (3.4), the Hodge-∗-operator ∗s = ∗ is independent of s,

and the perturbation Xs vanishes then πA ◦ Dε = D0 ◦ πA. So in this case

the projection onto the harmonic part determines an isomorphism of the

kernel of Dε with the kernel of D0 provided that both operators are onto (see

Lemma 4.5 below).

Lemma 4.4. Assume

‖α0‖Lp ≤ c0 ‖D0α0‖Lp

for all α0 ∈ W1,p
f (HA) and some constant c0 > 0. Then there exist constants

ε0 > 0 and c > 0 such that

‖ξ‖1,p,ε ≤ c
(
ε ‖Dεξ‖0,p,ε + ‖πA(Dεξ)‖Lp

)
,

‖ξ − πA(ξ)‖1,p,ε ≤ cε ‖Dεξ‖0,p,ε

for 0 < ε ≤ ε0 and ξ ∈ W1,p
f .

Proof. For every ξ ∈ W1,p
f

‖πA(ξ)‖Lp ≤ c0 ‖D0πA(ξ)‖Lp

≤ c0 ‖πA(Dεξ)‖Lp + c1 ‖ξ − πA(ξ)‖0,p,ε

≤ c0 ‖πA(Dεξ)‖Lp + c2ε
(
‖Dεξ‖0,p,ε + ‖πA(ξ)‖Lp

)

The first inequality follows from the assumption of the lemma, the second

from Lemma 4.3, and the last from Lemma 4.2. For c2ε0 < 1 this implies

‖πA(ξ)‖Lp ≤ c3
(
ε ‖Dεξ‖0,p,ε + ‖πA(Dεξ)‖Lp

)
.

Hence the statement follows from Lemma 4.2.
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Lemma 4.5. Assume D0 is onto. Then there exist constants ε0 > 0 and

c > 0 such that Dε is onto for 0 < ε < ε0 and

‖D∗
εξ‖1,p,ε ≤ c

(
ε ‖DεD

∗
εξ‖0,p,ε + ‖πA(DεD

∗
εξ)‖Lp

)
,

‖D∗
εξ − πA(D∗

εξ)‖1,p,ε ≤ cε ‖DεD
∗
εξ‖0,p,ε

for ξ ∈ W2,p
f .

Proof. The proof is in four steps.

Step 1. Choose q > 1 such that 1/p + 1/q = 1. Then, since D0 is onto,

there is a constant c0 > 0 such that for α0 ∈ W1,p
f (HA)

‖α0‖Lq ≤ c0 ‖D
∗
0α0‖Lq .

Step 2. There is a constant c1 > 0 such that for α0 ∈ W1,p
f (HA)

‖D∗
0α0‖Lp ≤ c1 sup

β0

〈D∗
0α0,D

∗
0β0〉

‖D∗
0β0‖Lq

Choose an L2-orthonormal basis α1, . . . , αm of ker D0. Now choose β ∈
Lq

f (HA) such that

〈β,D∗
0α0〉 = ‖D∗

0α0‖Lp , ‖β‖Lq = 1.

Since D0 is onto there exists a (unique) β0 ∈ W1,q(HA) such that

β = D∗
0β0 +

m∑

j=1

〈β, αj〉αj .

It follows that

‖D∗
0α0‖Lp = 〈β,D∗

0α0〉

= 〈D∗
0β0,D

∗
0α0〉

=

∥∥∥∥∥∥
β −

m∑

j=1

〈β, αj〉αj

∥∥∥∥∥∥
Lq

〈D∗
0β0,D

∗
0α0〉

‖D∗
0β0‖Lq

≤


1 +

m∑

j=1

‖αj‖Lp ‖αj‖Lq


 〈D∗

0β0,D
∗
0α0〉

‖D∗
0β0‖Lq

.

Step 3. For every ε > 0 and every ξ ∈ W1,p
f

‖πA(D∗
εξ)‖Lp ≤ (1 + c1) ‖πA(D∗

εξ) −D∗
0πA(ξ)‖Lp + c0c1 ‖D0πA(D∗

εξ)‖Lp .
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For all ξ, ζ ∈ W1,p
f we have

〈D∗
0πA(ζ),D∗

0πA(ξ)〉

‖D∗
0πA(ζ)‖Lq

=
〈D∗

0πA(ζ),D∗
0πA(ξ) − πA(D∗

εξ)〉

‖D∗
0πA(ζ)‖Lq

+
〈πA(ζ),D0πA(D∗

εξ)〉

‖D∗
0πA(ζ)‖Lq

≤ ‖D∗
0πA(ξ) − πA(D∗

εξ)‖Lp

+ ‖D0πA(D∗
εξ)‖Lp

‖πA(ζ)‖Lq

‖D∗
0πA(ζ)‖Lq

≤ ‖D∗
0πA(ξ) − πA(D∗

εξ)‖Lp + c0 ‖D0πA(D∗
εξ)‖Lp .

The last inequality follows from step 1. Now it follows from step 2 that

‖D∗
0πA(ξ)‖Lp ≤ c1 ‖D

∗
0πA(ξ) − πA(D∗

εξ)‖Lp + c0c1 ‖D0πA(D∗
εξ)‖Lp .

Step 4. We prove the lemma.

By step 3 and Lemma 4.3 we have

‖πA(D∗
εξ)‖Lp ≤ c2 ‖πA(D∗

εξ) −D∗
0πA(ξ)‖Lp + c2 ‖D0πA(D∗

εξ)‖Lp

≤ c3 ‖ξ − πA(ξ)‖0,p,ε

+c3 ‖D
∗
εξ − πA(D∗

εξ)‖0,p,ε + c2 ‖πA(DεD
∗
εξ)‖Lp

≤ c4ε ‖D
∗
εξ‖0,p,ε

+c4ε ‖DεD
∗
εξ‖0,p,ε + c2 ‖πA(DεD

∗
εξ)‖Lp .

The first inequality follows from step 3. The second inequality follows from

Lemma 4.3 applied to both Dε and D∗
ε . The last inequality follows from

Lemma 4.4 for the operator D∗
ε and from Lemma 4.2 for Dε. By Lemma 4.2,

‖D∗
εξ‖0,p,ε ≤ c5ε ‖DεD

∗
εξ‖0,p,ε + c5 ‖πA(D∗

εξ)‖Lp

≤ c6ε ‖D
∗
εξ‖0,p,ε + c6ε ‖DεD

∗
εξ‖0,p,ε + c6 ‖πA(DεD

∗
εξ)‖Lp .

With c6ε < 1 this proves the required estimate.

5. Approximation of holomorphic curves by self-dual instantons

Let p > 4, H ∈ Hreg
0 be a regular perturbation and fix two H-flat connections

a± = A±+Φ± ds ∈ AΣ(Pf ,H). We shall prove that every holomorphic curve

Ξ0 ∈ A1,p
0 (a−, a+,H) can be approximated by a family of self-dual instantons

Ξε ∈ A1,p
ε (a−, a+,H). This requires a refinement of the implicit function

theorem with constants independent of ε.

Theorem 5.1. Assume µH(a−, a+) < 4. Then for ε sufficiently small

there is a smooth map Tε : A1,p
0 (a−, a+,H) → A1,p

ε (a−, a+,H) such that

Ξε = Tε(Ξ0) satisfies

(5.1) d∗ε
Ξ0

(Ξε − Ξ0) = 0, Ξε − Ξ0 ∈ rangeDε(Ξ0)
∗.
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for every Ξ0 ∈ A1,p
0 (a−, a+,H). Moreover, Ξε satisfies an estimates

(5.2) ‖Ξε − Ξ0‖1,p,ε ≤ cε2.

Here the 1, p, ε-norm is the one determined by Ξ0 and the constant c > 0 can

be chosen independent of Ξ0 and ε.

Theorem 5.2. Assume µH(a−, a+) < 4 and let Ξ0 ∈ A1,p
0 (a−, a+,H).

Then there exist constants δ > 0 and ε0 > 0 such that if Ξ ∈ A1,p
ε (a−, a+,H)

satisfies (5.1) and

(5.3) ‖Ξ − Ξ0‖0,p,ε + ε2/p ‖Ξ − Ξ0‖∞,ε ≤ δε2/p+1/2

with 0 < ε ≤ ε0 then Ξ = Tε(Ξ0).

Remark 5.3. Here d∗ε
Ξ denotes the formal adjoint operator of dΞ with

respect to the ε inner product. The operator dΞ represents the infinitesimal

action of G2,p on A1,p(a−, a+) and is given by

dΞη = dAη + ∇sηds+ ∇tηdt

for η ∈W 2,p
f (R2 × gP ). Its formal adjoint is

d∗ε
Ξ ξ = − ∗s dA ∗s α− ε2 ∗s ∇s ∗s φ− ε2∇tψ

for ξ = (α, φ, ψ) ∈ W 1,p
f . This operator agrees with the third component of

Dε up to a scalar factor.

Remark 5.4. The estimate (5.2) shows that Aε, ∂Aε/∂s, ∂Aε/∂t, Φε,

and Ψε converge in the Lp-norm as ε tends to zero while ∂Φε/∂s, ∂Φε/∂t,

∂Ψε/∂s, and ∂Ψε/∂t remain bounded, uniformly in ε. In particular, the

curvature FAε converges to zero in the Lp-norm like ε2.

Remark 5.5. The map Tε is equivariant under the action of G2,p

Tε(g
∗Ξ0) = g∗Tε(Ξ0).

The induced map of the moduli spaces will also be denoted by Tε.

Remark 5.6. In the case µH(a−, a+) ≥ 4 the proof shows that for

sufficiently small ε the map Tε can be defined on any compact subset of

M0(a
−, a+,H). It does not show whether there is a uniform ε > 0 which

works simultaneously for all Ξ0.
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Proof of Theorem 5.1. We prove that with a suitable constant c and

ε > 0 sufficiently small there exists a unique solution Ξε ∈ A1,p
ε (a−, a+,H)

of (5.1) and (5.2) for every Ξ0 ∈ A1,p
0 (a−, a+,H).

Throughout let c0, c1, c2, . . . denote constants which are independent of

Ξ0 and ε. Since H ∈ Hreg
0 the operator D0 = D0(Ξ0) is onto for every

Ξ0 ∈ A1,p
0 (a−, a+,H). Since µH(a−, a+) < 4 there is no bubbling and it

follows from Floer’s glueing construction [12] that the operators D0 satisfy

the estimate of Lemma 4.5 with a constant which is independent of Ξ0. This is

obvious in the case µ = 1 since there are only finitely many connecting orbits

and the estimate is invariant under gauge transformations. In the case µ = 2

Floer’s glueing construction shows that the estimate holds with a uniform

constant for all orbits near a catenation of two connecting orbits with index

difference 1. This takes care of the ends of the moduli space M(a−, a+) and

the complement of the ends is compact. A similar argument works for µ = 3.

But for µ ≥ 4 bubbling may occur.

Now it follows from Lemma 4.5 that there exist constants c1 > 0 and

ε1 > 0 such that for every Ξ0 ∈ A1,p
0 (a−, a+) and for 0 < ε ≤ ε1 the operator

Dε = Dε(Ξ0) satisfies

(5.4) ‖D∗
εη‖1,p,ε + ε2/p ‖D∗

εη‖∞,ε ≤ c1
(
ε ‖DεD

∗
εη‖0,p,ε + ‖πA(DεD

∗
εη)‖Lp

)
.

Here the L∞ estimate follows from Lemma 4.1. The above argument shows

that c1 can be chosen independent of Ξ0.

The left hand side of (3.5) defines a smooth map Fε : A1,p → Lp
f given

by 

A

Φ

Ψ


 7→



∂tA− dAΨ + ∗s(∂sA−Xs(A) − dAΦ)

∂tΦ − ∂sΨ − [Φ,Ψ] + ε−2 ∗s FA

0


 .

Now Ξ0 is an approximate zero of Fε in the sense that

(5.5) ‖Fε(Ξ0)‖0,p,ε ≤ c0ε

We shall construct the solution Ξε of Fε(Ξε) = 0 by Newton’s iteration. The

first step is to define

(5.6) Ξ1 = Ξ0 + ξ0, ξ0 = D∗
εη0, DεD

∗
εη0 = −Fε(Ξ0).

In particular, this means that the third component of Dεξ0 vanishes. The last

equation in (5.6) has a unique solution η0 ∈ W 2,p
f (R2 × gP ). Since the first

component of Fε(Ξ0) vanishes it follows from (5.4) that

(5.7) ‖ξ0‖1,p,ε + ε2/p ‖ξ0‖∞,ε ≤ c1ε ‖Fε(Ξ0)‖0,p,ε ≤ c0c1ε
2
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Since the first two components of the operator Dε are the linearization of Fε

the last equation in (5.6) can be written as dFε(Ξ0)ξ0 = −Fε(Ξ0). Hence

Fε(Ξ1) = Fε(Ξ0 + ξ0) −Fε(Ξ0) − dFε(Ξ0)ξ0

=




−[α0 ∧ ψ0] − ∗s[α0 ∧ φ0] − ∗sα̃0

−[φ0 ∧ ψ0] + 2−1ε−2 ∗s [α0 ∧ α0]

0




where ξ0 = (α0, φ0, ψ0) and α̃0 = Xs(A0 +α0)−Xs(A0)−dXs(A0)α0. Hence

‖Fε(Ξ1)‖0,p,ε ≤ c2ε
−1 ‖ξ0‖0,p,ε ‖ξ0‖∞,ε ≤ c0c1c2ε

1−2/p ‖ξ0‖0,p,ε .

The last inequality follows from (5.7).

Now assume Ξν ∈ A1,p has been constructed for ν ≥ 1 and define Ξν+1

by

Ξν+1 = Ξν + ξν , ξν = D∗
εην , DεD

∗
εην = −Fε(Ξν).

We shall prove by induction that

‖ξν‖1,p,ε + ε2/p ‖ξν‖∞,ε ≤ 2c1 ‖Fε(Ξν)‖0,p,ε

‖ξν‖1,p,ε + ε2/p ‖ξν‖∞,ε ≤ 2−νc0c1ε
2,(5.8)

‖Fε(Ξν+1)‖0,p,ε ≤ c3ε
1−2/p ‖ξν‖0,p,ε

for 0 < ε < ε0 provided that ε0 > 0 is sufficiently small. The first inequality

in (5.8) follows from (5.4). (The first component of Fε(Ξν) no longer van-

ishes.) The second inequality in (5.8) follows from the first and from the

previous induction steps:

‖ξν‖1,p,ε + ε2/p ‖ξν‖∞,ε ≤ 2c1 ‖Fε(Ξν)‖0,p,ε

≤ 2c1c3ε
1−2/p ‖ξν−1‖0,p,ε

≤ 2−1 ‖ξν−1‖0,p,ε

≤ 2−ν ‖ξ0‖0,p,ε

≤ 2−νc0c1ε
2.

Here we have used (5.7) and chosen ε0 such that 2c1c3ε
1−2/p
0 ≤ 1/2. This

implies

(5.9) ‖Ξν − Ξ0‖1,p,ε ≤
ν−1∑

j=0

‖ξj‖1,p,ε ≤ 2c0c1ε
2.

A similar argument shows that

(5.10) ‖Ξν − Ξ0‖∞,ε ≤ 2c0c1ε
2−2/p.
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To prove the third inequality in (5.8) note that

Fε(Ξν+1) = Fε(Ξν + ξν) −Fε(Ξν) − dFε(Ξ0)ξν

= Fε(Ξν + ξν) −Fε(Ξν) − dFε(Ξν)ξν

+(dFε(Ξν) − dFε(Ξ0))ξν

and hence

‖Fε(Ξν+1)‖0,p,ε ≤ ‖Fε(Ξν + ξν) −Fε(Ξν) − dFε(Ξν)ξν‖0,p,ε

+ ‖(dFε(Ξν) − dFε(Ξ0))ξν‖0,p,ε

≤ c4ε
−1
(
‖ξν‖∞,ε + ‖Ξν − Ξ0‖∞,ε

)
‖ξν‖0,p,ε

≤ 3c0c1c4ε
1−2/p ‖ξν‖0,p,ε .

The last inequality follows from (5.10) and finishes the induction.

By (5.8) the sequence Ξν converges in A1,p(a−, a+) and by (5.9) the limit

Ξε = limν→∞ Ξν satisfies ‖Ξε − Ξ0‖1,p,ε ≤ 2c0c1ε
2. The second inequality

in (5.8) shows that Fε(Ξε) = 0 and this proves the theorem.

Proof of Theorem 5.2. Assume Ξ ∈ A1,p
ε (a−, a+,H) satisfies (5.1) and

(5.3). We shall first prove that if δ and ε are sufficiently small then

(5.11) ‖Ξ − Ξ0‖1,p,ε ≤ cε2.

for some constant c > 0 which is independent of Ξ and ε. To see this note

that, by (5.1), the last component of Dε(Ξ − Ξ0) = (α, φ, 0) vanishes. The

first two are given by

α = [A−A0 ∧ Ψ − Ψ0] + ∗s[A−A0 ∧ Φ − Φ0]

+ ∗s (Xs(A) −Xs(A0) − dXs(A0)(A−A0)) ,

φ = [Φ − Φ0 ∧ Ψ − Ψ0] − 1
2
ε−2 ∗s [A−A0 ∧A−A0] −C0

where C0 = ∂tΦ0 − ∂sΨ0 − [Φ0,Ψ0]. Moreover, again by (5.1), Ξ − Ξ0 ∈
rangeD∗

ε . Hence, by Lemma 4.5,

‖Φ − Φ0‖Lp + ‖Ψ − Ψ0‖Lp ≤ c1 ‖Dε(Ξ − Ξ0)‖0,p,ε

≤ c2 (‖α‖Lp + ε ‖φ‖Lp)

≤ c3 ‖Ξ − Ξ0‖∞,ε (‖Φ − Φ0‖Lp + ‖Ψ − Ψ0‖Lp)

+c3
(
ε+ ε−1 ‖A−A0‖L∞ ‖A−A0‖Lp

)

≤ c3δε
1/2 (‖Φ − Φ0‖Lp + ‖Ψ − Ψ0‖Lp)

+c3(ε+ δ2ε2/p).

The last inequality follows from (5.3). With c3δε
1/2 ≤ 1/2 we obtain

‖Φ − Φ0‖Lp + ‖Ψ − Ψ0‖Lp ≤ 2c3(ε+ δ2ε2/p).
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Since ‖A−A0‖Lp ≤ δε2/p+1/2 it follows that

‖Ξ − Ξ0‖Lp ≤ δε2/p

provided that ε and δ are sufficiently small. Now use Lemma 4.5 again to

obtain

‖Ξ − Ξ0‖1,p,ε ≤ c4
(
ε ‖Dε(Ξ − Ξε)‖0,p,ε + ‖πA0(Dε(Ξ − Ξε))‖Lp

)

≤ c5
(
‖α‖Lp + ε2 ‖φ‖Lp

)

≤ c6
(
‖Ξ − Ξ0‖Lp ‖Ξ − Ξ0‖∞,ε + ε2

)

≤ c6δε
2/p ‖Ξ − Ξ0‖∞,ε + c6ε

2

≤ c7δ ‖Ξ − Ξ0‖1,p,ε + c6ε
2.

With c7δ < 1 we obtain (5.11).

Now denote Ξε = Tε(Ξ0). Then both Ξ and Ξε satisfy the estimate (5.11)

and (5.1). By (5.1) the third component of Dε(Ξ − Ξε) = (α, φ, 0) vanishes.

The first two are given by

α = [A−Aε ∧ Ψ − Ψ0] + [Aε −A0 ∧ Ψ − Ψε]

+ ∗s [A−Aε ∧ Φ − Φ0] + ∗s[Aε −A0 ∧ Φ − Φε]

+ ∗s (Xs(A) −Xs(Aε) − dXs(A0)(A−Aε)) ,

φ = [Φ − Φε ∧ Ψ − Ψ0] + [Φε − Φ0 ∧ Ψ − Ψε]

−ε−2 ∗s [ 1
2
(A+Aε) −A0 ∧A−Aε].

Moreover, again by (5.1), Ξ − Ξε ∈ rangeD∗
ε . Hence, by Lemma 4.5,

‖Ξ − Ξε‖0,p,ε ≤ c8
(
ε ‖Dε(Ξ − Ξε)‖0,p,ε + ‖πA0(Dε(Ξ − Ξε))‖Lp

)

≤ c9
(
‖α‖Lp + ε2‖φ‖Lp

)

≤ c10ε
−1
(
‖Ξ − Ξ0‖∞,ε + ‖Ξε − Ξ0‖∞,ε

)
‖Ξ − Ξε‖0,p,ε

≤ c11ε
1−2/p ‖Ξ − Ξε‖0,p,ε .

The third inequality follows by examining α and φ term by term. With

c11ε
1−2/p < 1 this implies Ξ = Ξε.

Proposition 5.7. If µH(a−, a+) = 1 then the map Tε : M0(a
−, a+,H) →

Mε(a
−, a+,H) of Theorem 5.1 is injective for ε > 0 sufficiently small.

Proof. Suppose not. Then, since M0(a
−, a+,H)/R is a finite set, there

exist connections Ξ0,Ξ
′
0 ∈ A1,p

0 (a−, a+,H) which are not gauge equivalent

and a sequence εν → 0 such that Ξν = Tεν (Ξ0) and Ξ′
ν = Tεν (Ξ′

0) are gauge

equivalent: Ξ′
ν = g∗νΞν . The usual compactness argument as in [7, pp.64,65]
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shows that the sequence gν has a weakly converging subsequence and hence

Ξ0 and Ξ′
0 must be gauge equivalent.

The statement of the previous proposition should remain valid without

the assumption of index difference 1 but this is not needed for the proof of

our main theorem. It remains to show that Tε is onto for small ε when the

index difference is 1. The proof will occupy the next four sections.

6. Relative Coulomb gauge

The uniqueness theorem 5.2 requires that Ξ − Ξ0 be in the kernel of

the operator d∗ε
Ξ0

and in the range of the operator D∗
ε = Dε(Ξ0)

∗. The first

condition can be achieved by a suitable gauge transformation and the second

by a suitable time shift provided that the relative Morse index is 1. Given

τ ∈ R denote

Ξ ◦ στ (s, t) = Ξ(s, t+ τ).

We shall prove the following

Theorem 6.1. Let Ξ0 ∈ A1,p
0 (a−, a+,H) with µ(a−, a+) = 1. Then

there exist constants ε0 > 0 and δ > 0 such that the following holds. If

0 < ε ≤ ε0 and Ξ ∈ A1,p
ε (a−, a+,H) such that

‖Ξ − Ξ0‖1,p,ε ≤ δε2/p+1/2

then there exist τ ∈ R and g ∈ G2,p such that g∗(Ξ ◦ στ ) = Tε(Ξ0).

This result is an immediate consequence of Theorem 5.2 and the next

two propositions.

Proposition 6.2. Assume q ≥ p > 2, q > 4, and qp/(q − p) > 4.

Let Ξ0 ∈ A1,p(a−, a+) such that FA(s,t) = 0 for all s and t. Then for every

constant c0 > 0 there exist constants δ > 0 and c > 0 such that the following

holds for 0 < ε ≤ 1. If Ξ ∈ A1,p(a−, a+) satisfies
∥∥∥d∗ε

Ξ0
(Ξ − Ξ0)

∥∥∥
Lp

≤ c0ε
2/p, ‖Ξ − Ξ0‖0,q,ε ≤ δε2/q,

then there exists a gauge transformation g ∈ G2,p such that d∗ε
Ξ0

(g∗Ξ−Ξ0) = 0

and

‖g∗Ξ − Ξ‖1,p,ε ≤ c
(
1 + ε−2/p ‖Ξ − Ξ0‖1,p,ε

)∥∥∥d∗ε
Ξ0

(Ξ − Ξ0)
∥∥∥
Lp
.
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Proposition 6.3. Let Ξ0 ∈ A1,p
0 (a−, a+,H) with µ(a−, a+) = 1. Then

there exist constants ε0 > 0, δ > 0, and c > 0 such that the following holds.

If 0 < ε < ε0 and Ξ ∈ A1,p(a−, a+) such that

(6.1) ‖Ξ − Ξ0‖1,p,ε ≤ δε1/p+1/2

then there exist τ ∈ R and g ∈ G2,p such that Ξε = g∗(Ξ ◦ στ ) satisfies (5.1)

and ‖Ξε − Ξ0‖1,p,ε ≤ c ‖Ξ − Ξ0‖1,p,ε .

Note that the assumptions of Proposition 6.2 are satisfied whenever

‖Ξ − Ξ0‖1,p,ε ≤ δε2/p with δ > 0 sufficiently small. The proof of both propo-

sitions relies on the following three lemmata.

Lemma 6.4. Let ξ ∈ W1,p
f and 0 < ε ≤ 1. Then there exists a unique

η ∈ W2,p
f (R2 × gP ) such that

d∗ε
Ξ0

dΞ0η = d∗ε
Ξ0
ξ.

This solution satisfies estimates

‖η‖2,p,ε ≤ c
∥∥d∗

Ξ0
ξ
∥∥
Lp , ‖η‖1,q,ε ≤ c ‖ξ‖0,q,ε

for 0 < ε ≤ 1 where the constant c = c(p) > 0 is independent of ε.

Proof. For p = 2 the second estimate follows from ‖dΞ0η‖
2
0,2,ε = 〈dΞ0η, ξ〉ε.

For general p both estimates follow by rescaling as in Lemma 4.1. The first es-

timate shows that the operator d∗ε
Ξ0

dΞ0 : W2,p
f (R2×gP ) → Lp

f (R2×gP ) is injec-

tive and has a closed range. Its cokernel is the kernel of dΞ0 : W1,r
f (R2×gP ) →

Lr
f with 1/p+1/r = 0.3 Hence the aforementioned operator d∗ε

Ξ0
dΞ0 is bijective

and this proves the existence statement.

Given η ∈ W1,q
f (R2 × gP ) and ξ ∈ W1,p

f denote ad(η)ξ = [η ∧ ξ].

Lemma 6.5. Assume q ≥ p > 2, q > 4, and qp/(q− p) > 4. Then there

exists a constant c > 0 such that
∥∥∥ad(η)kξ

∥∥∥
1,p,ε

≤ ckε−2/q ‖η‖k−1
L∞

(
‖ξ‖0,q,ε ‖η‖2,p,ε + ‖ξ‖1,p,ε ‖η‖1,q,ε

)
,

∥∥∥d∗ε
Ξ0

ad(η)kξ
∥∥∥
Lp

≤ ckε−2/q ‖η‖k−1
L∞

(
‖ξ‖0,q,ε ‖η‖2,p,ε +

∥∥∥d∗ε
Ξ0
ξ
∥∥∥
Lp

‖η‖1,q,ε

)

for ξ ∈ W1,p
f , η ∈ W2,p

f (R2 × gP ), 0 < ε ≤ 1, and k = 1, 2, 3, . . ..

Proof. To prove the first estimate for k = 1 note that

‖[η ∧ ξ]‖1,p,ε ≤ c1
(
‖ξ‖0,q,ε ‖η‖1,r,ε + ‖ξ‖1,p,ε ‖η‖L∞

)

3Since the kernel consists of smooth sections the choice of the Sobolev norm is not important.
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where 1/q + 1/r = 1/p. Since q > 4 we have r = qp/(q − p) < 4p/(4 − p).

Hence there are inclusions W1,q ↪→ L∞ and W 2,p ↪→ W1,r and the estimate

follows from Lemma 4.1. To prove the second estimate for k = 1 note that

d∗ε
Ξ0

[η ∧ ξ] = [η,d∗ε
Ξ0
ξ] − ∗s[dA0η ∧ ∗sα] − ε2[∇sη, φ] − ε2[∇tη, ψ]

for ξ = α+ φds+ ψ dt. Hence
∥∥∥d∗ε

Ξ0
[η ∧ ξ]

∥∥∥
Lp

≤ c2
(
‖ξ‖0,q,ε ‖η‖1,r,ε +

∥∥∥d∗ε
Ξ0
ξ
∥∥∥
Lp

‖η‖L∞

)
.

Now for general k both estimates follow by induction.

Lemma 6.6. Assume q ≥ p > 2, q > 4, and pq/(q−p) > 4. Given c0 > 0

there exists a constant c > 0 a such that, if ‖η‖L∞ ≤ c0 and g = exp(η), then
∥∥∥d∗ε

Ξ0
(g∗Ξ − Ξ − dΞη)

∥∥∥
Lp

≤ cε−2/q
(
‖η‖1,q,ε + ‖Ξ − Ξ0‖0,q,ε

)
‖η‖2,p,ε

+cε−2/q
∥∥∥d∗ε

Ξ0
(Ξ − Ξ0)

∥∥∥
Lp

‖η‖1,q,ε ,

and if ‖η‖1,q,ε + ‖Ξ − Ξ0‖0,q,ε ≤ c0ε
2/q, then

‖g∗Ξ − Ξ‖0,q,ε ≤ c ‖η‖1,q,ε ,

‖g∗Ξ − Ξ‖1,p,ε ≤ c
(
‖η‖2,p,ε + ε−2/q ‖Ξ − Ξ0‖1,p,ε ‖η‖1,q,ε

)
.

Proof. Use Lemma 6.5 and the identity

g∗Ξ − Ξ =
∞∑

k=0

(−1)k

(k + 1)!
ad(η)kdΞη

for g = exp(η).

Proof of Proposition 6.2. The proof is based on a Newton type iteration.

Denote Ξ1 = Ξ and for ν ≥ 2 define Ξν inductively by

Ξν+1 = g∗νΞν , gν = exp(ην), d∗ε
Ξ0

(dΞ0ην + Ξν − Ξ0) = 0.

By Lemma 6.4 ην ∈ W2,p
f (R2 × gP ) satisfies estimates

(6.2)
‖ην‖2,p,ε + ε2/p−2/q ‖ην‖1,q,ε ≤ c1

∥∥∥d∗
Ξ0

(Ξν − Ξ0)
∥∥∥
Lp
,

‖ην‖1,q,ε ≤ c1 ‖Ξν − Ξ0‖0,q,ε .

We shall prove by induction that there exist constants c2, c3, and c4 such that

(6.3) ‖Ξν − Ξ0‖0,q,ε ≤ c2 ‖Ξ − Ξ0‖0,q,ε ,

(6.4)
∥∥∥d∗ε

Ξ0
(Ξν − Ξ0)

∥∥∥
Lp

≤ c3ε
−2/q ‖Ξν−1 − Ξ0‖0,q,ε

∥∥∥d∗ε
Ξ0

(Ξν−1 − Ξ0)
∥∥∥
Lp
,

(6.5)
∥∥∥d∗ε

Ξ0
(Ξν − Ξ0)

∥∥∥
Lp

≤ 21−ν
∥∥∥d∗ε

Ξ0
(Ξ − Ξ0)

∥∥∥
Lp
,
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(6.6) ‖ην‖1,q,ε ≤ c42
−ν ‖Ξ − Ξ0‖0,q,ε .

For ν = 1 the inequalities (6.3) and (6.5) are obvious, (6.6) follows from (6.2),

and (6.4) is empty. For ν ≥ 2 it follows from the previous induction steps with

δ sufficiently small that ‖ηj‖1,q,ε + ‖Ξj − Ξ0‖0,q,ε ≤ ε2/q for j = 1, · · · , ν − 1.

Hence, by Lemma 6.6, with a suitable constant c5 > 0

‖Ξj+1 − Ξj‖0,q,ε ≤ c5 ‖ηj‖1,q,ε ≤ c4c52
−j ‖Ξ − Ξ0‖0,q,ε .

Here we have used c2δ ≤ 1. Now use this inequality for j = 1, . . . , ν − 1 to

obtain (6.3) with c2 = 1+ c4c5. To prove the estimate (6.4) note that, by the

previous induction step, ‖ην−1‖L∞ ≤ 1 provided that δ is sufficiently small.

Moreover,

d∗ε
Ξ0

(Ξν+1 − Ξ0) = d∗ε
Ξ0

(g∗νΞν − Ξν − dΞνην) + d∗ε
Ξ0

[Ξν − Ξ0 ∧ ην ]

and hence (6.4) follows from the Lemmata 6.5 and 6.6. Now (6.5) follows

immediately from (6.4) and (6.3) with c2c3δ ≤ 1/2. Finally, we prove (6.6).

For ν = 2 it follows from (6.2) and (6.4) that

‖η2‖1,q,ε ≤ c0c1c3 ‖Ξ − Ξ0‖0,q,ε .

Hence in this case (6.6) holds with c4 = 4c0c1c3. For ν ≥ 3 we can use (6.4)

twice and one checks easily that

‖ην‖1,q,ε ≤ 8c0c1c
2
2c

2
3δ2

−ν ‖Ξ − Ξ0‖0,q,ε .

So in this case (6.6) holds with c4 = 1 provided that δ is sufficiently small.

This completes the induction. Note that the conditions c4 ≥ 4c0c1c3 and

c2 = 1 + c4c5 are compatible.

Now it follows from Lemma 6.6 that

‖Ξν+1 − Ξν‖1,p,ε ≤ c6
(
1 + ε−2/p ‖Ξν − Ξ0‖1,p,ε

) ∥∥∥d∗ε
Ξ0

(Ξν − Ξ0)
∥∥∥
Lp

and, by induction,

‖Ξν − Ξ0‖1,p,ε ≤ ε2/p + 2 ‖Ξ − Ξ0‖1,p,ε

provided that δ is sufficiently small. Hence, by (6.5) the sequence Ξν converges

in A1,p(a−, a+) and the limit connection Ξε = limν→∞ satisfies d∗ε
Ξ0

(Ξε−Ξ0) =

0 and the required estimate. Moreover Ξν = h∗νΞ where hν = g1g2 · · · gν

converges in G2,p. This proves the proposition.

Proof of Proposition 6.3. Let Ξ ∈ A1,p(a−, a+) satisfy (6.1) with ε and

δ sufficiently small. For every τ we have

‖Ξ ◦ στ − Ξ0‖1,p,ε ≤ ‖Ξ − Ξ0‖1,p,ε + ‖Ξ0 ◦ στ − Ξ0‖1,p,ε

≤ ‖Ξ − Ξ0‖1,p,ε + |τ | ‖∂tΞ0‖1,p,ε .
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Hence it follows from Proposition 6.2 that for |τ | ≤ δε2/p there exists a gauge

transformation gτ ∈ G2,p such that Ξτ = g∗τ (Ξ ◦ στ ) satisfies

d∗ε
Ξ0

(Ξτ − Ξ0) = 0.

Moreover, we have

(6.7) ‖Ξτ − Ξ0‖1,p,ε ≤ c1
(
|τ | + ‖Ξ − Ξ0‖1,p,ε

)

with a suitable constant c1 > 0. Assume without loss of generality that

g0 = 1l.

We shall prove that there exists a number τ such that

(6.8) g∗τ (Ξ ◦ στ ) − Ξ0 ∈ rangeD∗
ε , |τ | ≤ c2 ‖Ξ − Ξ0‖1,p,ε .

To see this note that the operator D0 = D0(Ξ0) is onto and of index 1. Hence

its kernel is spanned by

ξ0 = ∂tΞ0 ∈ W1,p
f .

By Theorem 3.2 the operator Dε has also index 1 and by Lemma 4.5 it is

onto. Its kernel is spanned by the vector

ξε = ξ0 −D∗
ε(DεD

∗
ε)

−1Dεξ0.

The harmonic part of Dεξ0 vanishes and hence, by Lemma 4.5,

‖ξε − ξ0‖1,p,ε ≤ c1ε ‖Dεξ0‖0,p,ε

= c1ε
2
(
‖∇tφ0 −∇sψ0‖

p
Lp + ‖∇tψ0 + ∗s∇s ∗s φ0‖

p
Lp

)1/p

≤ c2ε
2 ‖πA(ξ0)‖Lp .

The last inequality follows from the basic regularity estimate for D0.

Now consider the function

θ(τ) = θε,Ξ(τ) = 〈ξε,Ξτ − Ξ0〉ε

where the expression 〈 , 〉ε abbreviates the ε-pairing between Lq
f and Lp

f with

1/p + 1/q = 1. Then equation (6.8) can be written as θ(τ) = 0. We shall

prove that there exist constants δ0 > 0, ε0 > 0, and ρ0 > 0 such that

(6.9) |τ | + ‖Ξ − Ξ0‖1,p,ε ≤ δ0ε
1/p+1/2, 0 < ε < ε0 =⇒ θ′(τ) ≥ ρ0.

Then the existence of a zero follows from the fact that

|θ(0)| = |〈ξε,Ξ − Ξ0〉ε| ≤ ‖ξε‖0,q,ε ‖Ξ − Ξ0‖0,p,ε ≤ c3δε
1/p+1/2.

In fact, if c3δ < 1
2
δ0ρ0 and δ ≤ 1

2
δ0 then ‖Ξ − Ξ0‖1,p,ε ≤ 1

2
δ0ε

1/p+1/2 and,

by (6.9), there exists a number τ ∈ R with |τ | ≤ |θ(0)|/ρ0 ≤ 1
2
δ0ε

1/p+1/2 such

that θ(τ) = 0. This number τ satisfies (6.8) as required.



614 STAMATIS DOSTOGLOU AND DIETMAR A. SALAMON

To prove (6.9) define

ητ = gτ
−1 (∂τ gτ − ∂tgτ )

and observe that

θ′(τ) = 〈ξε, ∂tΞτ + dΞτ ητ 〉ε.

Now differentiate the identity d∗ε
Ξ0

(Ξτ − Ξ0) = 0 with respect to τ to obtain

d∗ε
Ξ0
dΞ0ητ + d∗ε

Ξ0
[Ξτ − Ξ0 ∧ ητ ] + d∗ε

Ξ0
∂tΞτ = 0.

By Lemma 6.4 this equation has a unique solution ητ ∈ W2,p
f (R2 × gP ) when-

ever ε−2/p ‖Ξτ − Ξ0‖1,p,ε is sufficiently small. Moreover, ητ satisfies

‖ητ‖1,p,ε ≤ c4 ‖∂tΞτ‖0,p,ε ≤ c5
(
1 + ε−1 ‖Ξτ − Ξ0‖1,p,ε

)
.

Since d∗ε
Ξ0
ξε = 0 we obtain

|〈ξε, dΞτ ητ 〉ε| = |〈ξε, [Ξτ − Ξ0 ∧ ητ ]〉ε|

≤ c6 ‖Ξτ − Ξ0‖∞,ε ‖ητ‖0,p,ε

≤ c7ε
−2/p ‖Ξτ − Ξ0‖1,p,ε ‖ητ‖1,p,ε

≤ c5c7ε
−2/p ‖Ξτ − Ξ0‖1,p,ε

(
1 + ε−1 ‖Ξτ − Ξ0‖1,p,ε

)

≤ c8δ0.

In the last inequality we have used the fact that ε > 0 is sufficiently small and,

by (6.7), ‖Ξτ − Ξ0‖1,p,ε ≤ c1(|τ | + ‖Ξ − Ξ0‖1,p,ε) ≤ c1δ0ε
1/p+1/2. Moreover,

〈ξε, ∂tΞτ 〉ε = 〈∂tξε,Ξ0 − Ξτ 〉ε + 〈ξε, ∂tΞ0〉ε

Since ∂tA0 6= 0 we have

‖∂tΞ0‖0,2,ε ≥ 3ρ0 > 0

for some constant ρ0 > 0 and hence

〈ξε, ∂tΞ0〉ε ≥ 2ρ0

for ε > 0 sufficiently small. This implies

〈ξε, ∂tΞτ + dΞτ ητ 〉ε > ρ0

for |τ | + ‖Ξ − Ξ0‖1,p,ε < δ0ε
1/p+1/2 provided δ0 and ε are sufficiently small.

Thus we have proved (6.9) and this finishes the proof of the proposition.
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7. Estimates on the curvature

This section is of a preparatory nature. We prove estimates on the derivatives

of the curvature for ε-self-dual connections with bounded curvature. We also

establish uniform exponential decay of the curvature as t tends to ±∞. These

results are used in the next section to prove a compactness theorem for ε-

self-dual connections with ε converging to zero.

The curvature of the connection Ξ = A+ Φ ds+ Ψ dt is given by

FΞ = FA −Bs ds−Bt dt− C ds ∧ dt

where

(7.1) Bs = ∂sA− dAΦ, Bt = ∂tA− dAΨ, C = ∂tΦ − ∂sΨ − [Φ,Ψ].

The Bianchi identity takes the form

(7.2) ∇sFA = dABs, ∇tFA = dABt, ∇sBt −∇tBs = dAC

where ∇s = ∂s + Φ and ∇t = ∂t + Ψ. The curvature terms Bs, Bt, and C also

appear as commutators

∇sdA − dA∇s = Bs, ∇tdA − dA∇t = Bt, ∇t∇s −∇s∇t = C.

The perturbed self-duality equation (3.5) can be written in the form

(7.3) Bt + ∗s(Bs −Xs(A)) = 0, C + ε−2 ∗s FA = 0.

If Ξ satisfies these equations with Xs = 0 then FΞ is harmonic with respect

to the ε-dependent Laplacian. This implies the following estimate for con-

nections with L∞ bounds on the curvature.

Theorem 7.1. Let Ω ⊂ C be an open set, Q ⊂ Ω be a compact subset,

and c0 > 0. Then there exist constants c > 0 and ε0 > 0 such that the

following holds. If Ξ = A + Φ ds + Ψ dt satisfies (7.3) for s + it ∈ Ω with

0 < ε ≤ ε0 and

‖Bt‖L∞(Ω×Σ) + ε ‖C‖L∞(Ω×Σ) ≤ c0

then for 2 ≤ p ≤ ∞

ε2/p ‖Bt‖Lp(Q×Σ) + ‖dABt‖Lp(Q×Σ) + ‖dA ∗s Bt‖Lp(Q×Σ)

+ε ‖∇sBt‖Lp(Q×Σ) + ε ‖∇tBt‖Lp(Q×Σ)

+ε ‖dAC‖Lp(Q×Σ) + ε2 ‖∇sC‖Lp(Q×Σ) + ε2 ‖∇tC‖Lp(Q×Σ)(7.4)

≤ cε2/p
(
‖Bt‖L2(Ω×Σ) + ε ‖C‖L2(Ω×Σ)

)
.
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Remark 7.2. The estimate (7.4) is standard for ε = 1 (or if the constant

is allowed to depend on ε): the W2,p-norm of a harmonic function on a

compact set can be estimated above by the Lp-norm on a neighbourhood

of this set. For the standard Laplacian this follows from the mean value

property.

Proof of Theorem 7.1. Consider the nonnegative function u0 : Ω → R

defined by

u0(s, t) = 1
2

(
‖Bt(s, t)‖

2
L2(Σ,∗s)

+ ε2 ‖C(s, t)‖2
L2(Σ,∗s)

)
.

The Laplacian of u0 is given by

∆u0 = ‖∇tBt‖
2 + ‖∇sBt‖

2 + ε2‖∇tC‖2 + ε2‖∇sC‖2

+〈∇t∇tBt + ∇s∇sBt, Bt〉 + ε2〈∇t∇tC + ∗s∇s∇s ∗s C,C〉

−2〈∇sBt, ∗s∗̇sBt〉 − 1
2
〈Bt, ∗s∗̈sBt〉 − 1

2
ε2〈C, ∗s∗̈sC〉.

Here all norms and inner products are L2-norms and L2-inner products on Σ

induced by the ∗s-metric. Now we have

ε2∇s ∗s C = −dA ∗s Bt,

ε2∇tC = − ∗s dABt,

∇tBt + ∗s∇sBt = ∗sdXs(A)Bt + ∗sdAC,

and

ε2 (∇t∇tC + ∗s∇s∇s ∗s C) = − ∗s dA ∗s dAC

−2 ∗s [Bt ∧Bt] + ∗s[∗sXs(A) ∧Bt]

− ∗s dA ∗s dXs(A)Bt − ∗sdA∗̇sBt,

∇t∇tBt + ∇s∇sBt = −ε−2 ∗s dA ∗s dABt − ε−2dA ∗s dA ∗s Bt

+3 ∗s [Bt ∧ C] + [Xs(A) ∧ C]

+dXs(A)∇sBt + ∗sdXs(A)∇tBt

+dẊs(A)Bt + ∗̇s∇tBt − dA ∗s ∗̇sC

+d2Xs(A)(∗sBt +Xs(A), Bt)

+ ∗s d2Xs(A)(Bt, Bt).

Hence ∆u0 = 2v0 + f0 where

v0 = 1
2

(
ε−2 ‖dABt‖

2 + ε−2 ‖dA ∗s Bt‖
2

+ ‖∇sBt‖
2 + ‖∇tBt‖

2 + ‖dAC‖2

+ε2 ‖∇sC‖2 + ε2 ‖∇tC‖2
)
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and

f0 = 5〈Bt, ∗s[Bt ∧ C]〉 + 2〈Bt, [Xs(A) ∧ C]〉

+〈dAC,dXs(A)Bt〉 − 〈dAC, ∗s∗̇sBt〉 + 〈dA ∗s Bt, ∗̇sC〉

−2〈∇sBt, ∗s∗̇sBt〉 − 1
2
〈Bt, ∗s∗̈sBt〉 − 1

2
ε2〈C, ∗s∗̈sC〉

+〈Bt,dXs(A)∇sBt + ∗sdXs(A)∇tBt〉 + 〈Bt,dẊs(A)Bt + ∗̇s∇tBt〉

+〈Bt,d
2Xs(A)(∗sBt +Xs(A), Bt) + ∗sd

2Xs(A)(Bt, Bt)〉.

It follows from the L∞ estimate on the curvature that |f0| ≤ v0 + c1u0 with a

suitable constant c1 > 0. In particular, ‖FA‖L∞(Σ) ≤ εc0 and Xs(A), dXs(A)

and d2Xs(A) are uniformly bounded in this domain. Hence

(7.5) ∆u0 ≥ v0 − c1u0

and, by Lemma 7.3 below,

sup
Q
u0 +

∫

Q
v0 ≤ c2

∫

Ω
u0

with a suitable constant c2 > 0. This proves the proposition for p = 2. We

shall now prove the estimate for p = ∞ and then the general case will follow

by interpolation.

Consider the functions u1, v1 : Ω → R defined by

u1 = 1
2

(
‖∇sBt‖

2 + ‖∇tBt‖
2 + ε2 ‖∇sC‖2 + ε2 ‖∇tC‖2

)

and

v1 = 1
2

(
ε−2 ‖dA∇tBt‖

2 + ε−2 ‖dA ∗s ∇tBt‖
2

+ε−2 ‖dA∇sBt‖
2 + ε−2 ‖dA ∗s ∇sBt‖

2

+ ‖dA∇sC‖2 + ‖dA∇tC‖2

+ ‖∇s∇sBt‖
2 + ‖∇t∇tBt‖

2 + ‖∇s∇tBt‖
2 + ‖∇t∇sBt‖

2

+ε2 ‖∇s∇sC‖2 + ε2 ‖∇t∇tC‖2 + 2ε2 ‖∇s∇tC‖2
)
.

Here all norms are L2-norms on Σ with respect to the s-metric. To simplify

the formulae we shall now restrict ourselves to the case where the Hodge-∗-
operator ∗s = ∗ is independent of t and the perturbation Xs ≡ 0. Then we

have

∆u1 = 2v1 + f1

where

f1 = ε−2〈dA ∗ dAC, [Bt ∧Bt]〉 − 4ε2〈C, [∇sC,∇tC]〉

−3〈C, ∗[dAC ∧ dAC]〉 + 10〈C, ∗[∇tBt ∧ ∗s∇sBt]〉

−10〈∇sC, ∗[∇sBt ∧Bt]〉 − 10〈∇tC, ∗[∇tBt ∧Bt]〉
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Now it follows from the the L∞ estimates on the curvature that

|f1| ≤ v1 + c3
(
ε−1v0 + ε−2u0

)

In particular, the term ε−2‖dA ∗ dAC‖2 = ε−2‖dA∇tBt + dA ∗ ∇sBt‖
2 can be

estimated by v1. Hence

∆u1 ≥ v1 − ε−1c3v0 − ε−2c3u0.

If εc3 < 1/2 then, by (7.5),

∆(u0 + ε2u1) ≥ v0 + ε2v1 − c0u0 − εc3v0 − c3u0

≥ 1
2
(v0 + ε2v1) − c4u0

where c4 = c0+c3. This inequality remains valid in the general case (arbitrary

metric and perturbation) and it follows again from Lemma 7.3 below that

sup
Q

(u0 + ε2u1) ≤ c5

∫

Ω
u0.

Similar arguments show that

sup
Q

(u0 + ε2u1 + ε4u2 + ε6u3) ≤ c6

∫

Ω
u0.

where uj is defined as above with derivatives of order j. This implies the

assertion of the theorem for p = ∞. To see this note that (pointwise for every

s and t)

ε2 ‖∇tBt‖
2
L∞(Σ) ≤ c7ε

2
(
‖∇tBt‖

2
L2(Σ) + ‖dA ∗s dA∇tBt‖

2
L2(Σ)

+ ‖dA ∗s dA ∗s ∇tBt‖
2
L2(Σ)

)

≤ c8
(
u0 + ε2u1 + ε4u2 + ε6u3

)
.

The first inequality follows from arguments similar to Lemma 7.6 below. The

second inequality follows from identities of the form

∇t∇t∇tBt + ∇t∇s∇sBt

= ∇tdA∇sC + ∇t ∗s dA∇tC + 3∇t ∗s [Bt ∧ C] + · · ·

= dA∇t∇sC + ∗sdA∇t∇tC + · · ·

= −ε−2dA ∗s dA ∗s ∇tBt − ε−2 ∗s dA ∗s dA∇tBt + · · · .

Thus we have proved the proposition for p = 2 and p = ∞. For general p the

statement follows from the interpolation inequality ‖u‖Lp ≤ ‖u‖
2/p
L2 ‖u‖

1−2/p
L∞

for 2 ≤ p ≤ ∞.
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Lemma 7.3. Let BR = {s + it : s2 + t2 ≤ R2}, u : BR+r → R be a

C2-function, and v : BR+r → R be continuous such that

∆u ≥ v − cu, u ≥ 0, v ≥ 0

for some constant c > 0. Then
∫

BR

v ≤

(
c+

4

r2

) ∫

BR+r

u,
π

2
sup
BR

u ≤

(
c+

4

r2

) ∫

BR+r

u.

Proof. It suffices to prove the lemma for r = 1. To prove the first

estimate note that
∫

BR

v − c

∫

BR+1

u ≤
∫

∂BR+s

∂u

∂ν
≤

d

ds

∫

∂BR+s

u

for 1/2 ≤ s ≤ 1. (The last inequality holds since u ≥ 0.) Integrate this

inequality from 1/2 to t to obtain
∫

BR

v − c

∫

BR+1

u ≤ 2

∫

∂BR+t

u

for 1/2 ≤ t ≤ 1. Integrate this inequality again from 1/2 to 1 to obtain the

first estimate for r = 1.

To prove the second estimate for r = 1 consider the function

f(ρ) = (1 − ρ)2 sup
Bρ

u.

Choose ρ∗ < 1 to be any number at which f attains its maximum value

and define c∗ = supBρ∗(0) u = u(w∗) and δ = (1 − ρ∗)/2. Then u(w) ≤ 4c∗

for w ∈ Bρ∗+δ(0) and hence ∆u ≥ −4cc∗ in Bδ(w
∗). This implies that the

function ũ(w) = u(w) + cc∗|w − w∗|2 is subharmonic in Bδ(w
∗) and hence

c∗ = u(w∗) ≤
cc∗ρ2

2
+

1

πρ2

∫

Bρ(w∗)

u, 0 < ρ ≤ δ.

If cδ2 ≥ 1 choose ρ2 = c−1 ≤ δ2 to obtain

u(0) ≤ c∗ ≤
2c

π

∫

Bρ(w∗)

u.

If cδ2 ≤ 1 choose ρ = δ to obtain

c∗δ2 ≤
2

π

∫

Bδ(w∗)

u
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and use the inequality u(0) = f(0) ≤ f(ρ∗) = (1−ρ∗)2c∗ = 4δ2c∗. This proves

the second estimate for r = 1. The general case can be reduced to the case

r = 1 by rescaling.

We shall now prove an exponential estimate on the curvature of a connec-

tion Ξ ∈ A1,p
ε (a−, a+,H) for t→ ∞. For a fixed number ε > 0 such estimates

are well known. Our result is quantitative and shows how the constants vary

as ε tends to 0.

Theorem 7.4. Assume all H-flat connections a ∈ Aflat(Pf ,H) are

nondegenerate. Then for every c0 > 0 there exists a constants δ > 0, ε0 > 0,

c > 0, and ρ > 0 such that the following holds. If Ξ ∈ A1,p
ε (a−, a+,H) with

0 < ε ≤ ε0 satisfies

(7.6) ε−1 ‖FA‖L∞(Σh×R) + ‖∂tA− dAΨ‖L∞(Σh×R) ≤ c0

and

Yε
[0,∞)(Ξ) = ε−2 ‖FA‖

2
L2(Σh×[0,∞)) + ‖∂tA− dAΨ‖2

L2(Σh×[0,∞)) ≤ δ

then

Yε
[T,∞)(Ξ) ≤ ce−ρT , T ≥ 0.

Lemma 7.5. Assume all H-flat connections a ∈ Aflat(Pf ,H) are non-

degenerate. Then there exist a constants δ > 0, ε0 > 0, and c > 0 such that

for every connection A+ Φds ∈ A(Pf ) with

‖FA‖L∞(Σh) + ‖∂sA−Xs(A) − dAΦ‖L∞(Σh) ≤ δ

and for 0 < ε ≤ ε0 there is an estimate

‖α‖2 + ε2 ‖φ‖2 + ε2 ‖ψ‖2

≤ c
(
‖∗s∇sα− ∗sdXs(A)α − ∗sdAφ− dAψ‖

2(7.7)

+ε2
∥∥∥∇sψ − ε−2dAα

∥∥∥
2
+ ε2

∥∥∥∇s ∗s φ+ ε−2dA ∗s α
∥∥∥
2
)

for α ∈ W1,2
f (R × T ∗Σ ⊗ gP ) and φ, ψ ∈ W1,2

f (R × gP ). Here all norms are

L2-norms on Σh.

Proof. Suppose not. Then there exists a sequence εν → 0 and a sequence

of connections Aν + Φν ds ∈ A(Pf ) such that

lim
ν→∞

(
‖FAν‖L∞(Σh) + ‖∂sAν −Xs(Aν) − dAνΦν‖L∞(Σh)

)
= 0

and the estimate (7.7) does not hold with c = ν and A + Φds replaced by

Aν + Φν ds and ε replaced by εν . By Uhlenbeck’s compactness (cf. [32]) we

may assume that Aν + Φν ds converges to an H-flat connection A + Φds ∈
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Aflat(Pf ). (If necessary, pass to a subsequence and apply a sequence of gauge

transformations. Note that the estimate (7.7) is invariant under gauge trans-

formations.) Since A + Φds is nondegenerate there exists a constant c0 > 0

such that the estimate

‖α0‖
2 ≤ c0 ‖πAν (∇sα0 − dXs(Aν)α0)‖

2

holds for ν sufficiently large and α0(s) ∈ H1
Aν

(s, t) with α0(s+ 1) = f ∗α0(s).

Hence it follows from Lemma 7.4 in [10] that there exist constants ε0 > 0,

ν0 ∈ N, and c > 0 such that the estimate (7.7) holds with 0 < ε ≤ ε0 and

A+ Φds replaced by Aν + Φν ds where ν ≥ ν0. With ε = εν and ν > c this

contradicts our assumption.

Lemma 7.6. Let p > 2. Then there exist constants δ > 0 and c > 0

such that for every connection A ∈ A(P ) with

‖FA‖Lp ≤ δ

there are estimates

‖φ‖L∞ ≤ c ‖dAφ‖Lp , ‖dAφ‖L∞ ≤ c ‖dA ∗s dAφ‖Lp ,

for φ ∈ C∞(gP ) and s ∈ R.

Proof. Since every flat connection on P is irreducible the estimates hold

when FA = 0. Moreover, given a flat connection A0, there exist constants

δ > 0 and c > 0 such that the estimates hold for every connection A ∈ A(P )

with

‖A−A0‖Lp + ‖FA‖Lp ≤ δ.

Now, if the statement were false then there would exist a sequence Aν ∈ A(P )

such that ‖FAν‖Lp → 0 and one of the estimates fails to hold with c = ν. By

Uhlenbeck’s compactness theorem there exist a subsequence (still denoted by

Aν) and a sequence gν ∈ G(P ) such that g∗νAν converges in the Lp-norm to a

flat connection A0. Hence the estimates hold for the connections g∗νAν with a

uniform constant c. Hence they hold for Aν with a uniform constant c. This

contradicts our assumption on Aν and proves the lemma.

Proof of Theorem 7.4. Consider the function

f(t) = 1
2

∫ 1

0

(
‖Bt‖

2
L2(Σ,∗s)

+ ε2 ‖C‖2
L2(Σ,∗s)

)
ds

where Bt and C are defined by (7.1). By (7.6) we have

f(t) ≤ 1
2
Vol(Σ)c20 = c1

for t ∈ R. By (7.2) and (7.3) we have

ε2∇tC = − ∗s dABt, ε2∇t∇tC = − ∗s dA∇tBt − ∗s[Bt ∧Bt]
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and, since ∇tXs(A) = dXs(A)Bt,

∇tBt = − ∗s (∇sBt − dXs(A)Bt − dAC) ,

∇t∇tBt = − ∗s (∇s∇tBt − dXs(A)∇tBt − dA∇tC)

−2 ∗s [C ∧Bt] + ∗sd
2Xs(A)(Bt, Bt).

Now f ′(t) = 〈∇tBt, Bt〉 + ε2〈∇tC,C〉 and the second derivative is given by

f ′′(t) = ‖∇tBt‖
2 + ε2 ‖∇tC‖2 + 〈∇t∇tBt, Bt〉 + ε2〈∇t∇tC,C〉

= ‖∇tBt‖
2 + ε−2 ‖dABt‖

2

−〈∗s(∇s∇tBt − dXs(A)∇tBt − dA∇tC), Bt〉 − 〈∗sdA∇tBt, C〉

−〈2 ∗s [C ∧Bt] + ∗sd
2Xs(A)(Bt, Bt), Bt〉 − 〈∗s[Bt ∧Bt], C〉

= ‖∇tBt‖
2 + ε−2 ‖dABt‖

2

−〈∇tBt, ∗s(∇sBt − dXs(A)Bt − dAC)〉 − 〈∇tC, ∗sdABt〉

−3〈C, ∗s[Bt ∧Bt]〉 + 〈∗sd
2Xs(A)(Bt, Bt), Bt〉

= 2 ‖∇sBt − dXs(A)Bt − dAC‖2 + 2ε−2 ‖dABt‖
2

−3〈C, ∗s[Bt ∧Bt]〉 + 〈∗sd
2Xs(A)(Bt, Bt), Bt〉

= ‖∇sBt − dXs(A)Bt − dAC‖2 + ‖∇sBt − dXs(A)Bt‖
2 + ‖dAC‖2

+2ε−2 ‖dABt‖
2 − 2〈dAC,∇sBt − dXs(A)Bt〉

−3〈C, ∗s[Bt ∧Bt]〉 + 〈∗sd
2Xs(A)(Bt, Bt), Bt〉

= ‖∇sBt − dXs(A)Bt − dAC‖2 + ‖∇sBt − dXs(A)Bt‖
2 + ‖dAC‖2

+2ε−2 ‖dABt‖
2 + 2ε−2 ‖dA ∗s Bt‖

2 + 2〈dAC,dXs(A)Bt〉

+2〈∗s[Xs(A) ∧ C], Bt〉 + 2〈∗̇sC,dA ∗s Bt〉 − 2〈dAC, ∗s∗̇sBt〉

−5〈C, ∗s[Bt ∧Bt]〉 + 〈∗sd
2Xs(A)(Bt, Bt), Bt〉.

Here all norms and inner products are L2-norms and L2-inner products on

Σh. The third equality follows from the fact that the operators α 7→ ∗s∇sα

and α 7→ ∗sdXs(A)α are self-adjoint. Here the “bad” terms are the ones

which involve the product of Bt and C. To control these, it is necessary to

isolate the term ‖dAC‖2 in the above identity. For fixed ε it would have been

sufficient to use the fourth expression.

By Theorem 7.1, we have

ε−1 ‖FA‖L∞(Σh×T ) + ‖∂sA−Xs(A) − dAΦ‖L∞(Σh×T ) ≤ c2δ

for T ≥ 1. Choose δ > 0 so small that Lemma 7.5 holds with δ replaced by

c2δ. Choose ε0 > 0 and c3 > 0 to be the constants of Lemma 7.5 so that the

estimate (7.7) holds with c = c3, A(s) = A(s, t), and Φ(s) = Φ(s, t) provided

that ε ≤ ε0 and t ≥ 1. Apply this estimate to α = Bt, φ = C, ψ = 0, and use

the identity ∇s ∗s C + ε−2dA ∗s Bt = 0, to obtain

‖Bt‖
2 + ε2 ‖C‖2 ≤ c3

(
‖∇sBt − dXs(A)Bt − dAC‖2 + ε−2 ‖dABt‖

2
)
.
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Moreover, by Lemma 7.6, there is a constant c4 > 0 such that

‖C‖2 ≤ c4 ‖dAC‖2

for t ≥ 0 provided that ε0 is sufficiently small. Hence the above formula for

f ′′(t) shows that there exists a constant ρ > 0 such that

f ′′(t) ≥ ρ2f(t), t ≥ 1.

This implies

f(t) ≤ e−ρ(t−1)f(1) ≤ e−ρ(t−1)c1, t ≥ 1.

(To see this note that the function g(t) = e−ρt(f ′(t) + ρf(t)) is strictly in-

creasing. Since f(t) does not converge to infinity it follows that g(t) < 0 and

hence eρtf(t) is decreasing.) Hence

Yε
[T,∞)(Ξ) =

∫ ∞

T
f(t) dt ≤ ρ−1c1e

−ρ(T−1) = c5e
−ρT

for T ≥ 1. With c5 ≥ δeρ the theorem follows.

8. Compactness with bounded curvature

In this section we shall prove that every sequence of εν -self-dual instantons Ξν

connecting a− to a+ with εν → 0 has a subsequence which converges, modulo

gauge transformation and time shift, to a holomorphic curve Ξ0. We shall also

prove that the convergence is sufficiently fast (with the rate ε
1+2/p
ν ) so that,

by Theorem 6.1, Ξν is in the range of the operator Tεν : A1,p
0 (a−, a+,H) →

A1,p
εν

(a−, a+,H) of Theorem 5.1 for ν sufficiently large.

Theorem 8.1. Assume H ∈ Hreg
0 . Then for every constant c0 > 0 there

exists a constant ε0 > 0 such that the following holds. If a± ∈ Aflat(Pf ,H)

with µ(a−, a+) = 1 and Ξ ∈ A1,p
ε (a−, a+,H) with 0 < ε ≤ ε0 and

(8.1) ε−2 ‖FA‖L∞ + ‖∂tA− dAΨ‖L∞ ≤ c0

then there exists a connection Ξ0 ∈ A1,p
0 (a−, a+,H) such that

Ξ = Tε(Ξ0).

Lemma 8.2. Let p > 2. Then there exist constants δ > 0 and c > 0

such that the following holds. For every connection A ∈ A(P ) with

‖FA‖Lp ≤ δ

there exists a unique section η ∈ C∞(gP ) such that

FA+∗dAη = 0, ‖dAη‖L∞ ≤ c ‖FA‖Lp .
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Proof. The condition FA+∗dAη = 0 is equivalent to

FA + dA ∗ dAη + 1
2
[dAη ∧ dAη] = 0.

Hence the result follows from Lemma 7.6 and the implicit function theorem.

More explicitly, use a Newton type iteration argument by constructing a

sequence ην+1 = ην + ζν where η1 = 0 and ζν is the unique solution of the

elliptic equation

dA ∗ dAζν + FA+∗dAην = 0.

This solution exists by Lemma 7.6 and the sequence ην converges to the

required solution η. The details of this argument are left to the reader.

Proof of Theorem 8.1. Assume that the statement were false. Then there

exist H-flat connections a± ∈ Aflat(Pf ,H), a sequence εν → 0, and a sequence

Ξν ∈ A1,p
εν

(a−, a+,H) such that (8.1) holds with Ξ = Ξν and ε = εν but Ξν is

not in the range of Tεν . Hence g∗(Ξν ◦ στ ) is not in the range of Tεν for every

g ∈ G2,p and every τ ∈ R. Applying a suitable time shift we may assume

without loss of generality that

CSH(Aν(s, 0) + Φν(s, 0) ds) = 1
2
(CSH(a−) + CSH(a+))

Applying a suitable gauge transformation we may also assume that Ψν(s, t) =

0 for |t| ≥ T0. We shall prove in seven steps that Ξν is in the range of Tεν for

some ν in contradiction to our assumption.

Step 1: There exist constants c > 0 and ρ > 0 such that

Yεν

[T,∞)(Ξν) ≤ ce−ρT

for T ≥ 0 and similarly for T ≤ 0.

In view of Theorem 7.4 it suffices to prove that

lim
T→∞

inf
ν
Yεν

[−T,T ](Ξν) = CSH(a−) − CSH(a+).

We prove this by contradiction. If this equation would not hold then there

would exist a number δ > 0, a subsequence (still denoted by Ξν), and a

sequence Tν → ∞ such that

Yεν

[−Tν ,Tν ](Ξν) ≤ CSH(a−) − CSH(a+) − δ.

Now the curvature of Ξν satisfies a uniform L∞ estimate. Hence, by Uh-

lenbeck’s weak compactness theorem (cf. [32]), we may choose a further

subsequence and a sequence gν ∈ G2,p such that g∗νΞν converges to Ξ0 =

A0+Φ0 ds+Ψ0 dt, uniformly on compact sets and weakly in W1,p on compact
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sets. The limit connection Ξ0 satisfies the holomorphic curve equation (3.4)

and has finite energy

E(Ξ0) =

∞∫

−∞

1∫

0

‖∂tA0 − dA0Ψ0‖
2
L2(Σ,∗s) dsdt ≤ CSH(a−) − CSH(a+) − δ.

Hence the limits of Ξ0 for t → ±∞ exist and are H-flat connections on Pf .

Since µ(a−, a+) = 1 the limits of Ξ0 agree with those of Ξν . Otherwise it

would follow from the usual arguments in Floer homology or in finite di-

mensional Morse theory (see e.g. [26]) that there exist H-flat connections

a0, a1, . . . , a` ∈ AΣ(Pf ,H) with ` > 1 such that a0 = a−, a` = a+, and

M0(aj , aj+1,H) 6= ∅ for every j. Since H ∈ Hreg
0 this would imply that

µH(aj , aj+1) ≥ 1

for every j and hence

µH(a−, a+) =
`−1∑

j=0

µH(aj , aj+1) ≥ 2

in contradiction to the assumption µH(a−, a+) = 1. This shows that Ξ0 ∈
A1,p

0 (a−, a+,H) and hence

E(Ξ0) = CSH(a−) − CSH(a+).

This contradicts the above inequality and proves step 1.

Step 2: Let ρ be the constant of step 1. Let Bν
s , Bν

t and Cν be defined

by (7.1) with Ξ replaced by Ξν. Then there exist constants c > 0 and ν0 ∈ N

such that

ε2/p
ν ‖Bν

t ‖Lp(Σh×[T,∞)) + ‖dAνB
ν
t ‖Lp(Σh×[T,∞)) + ‖dAν ∗s B

ν
t ‖Lp(Σh×[T,∞))

+εν ‖∇sB
ν
t ‖Lp(Σh×[T,∞)) + εν ‖∇tB

ν
t ‖Lp(Σh×[T,∞))

+εν ‖dAνC
ν‖Lp(Σh×[T,∞))

+ε2ν ‖∇sC
ν‖Lp(Σh×[T,∞)) + ε2ν ‖∇tC

ν‖Lp(Σh×[T,∞))

≤ cε2/pe−ρT .

for 2 ≤ p ≤ ∞, ν ≥ ν0, and T ≥ 0. Similarly for T ≤ 0. Moreover,

‖Cν‖Lp ≤ c

for 2 ≤ p ≤ ∞ and ν ≥ ν0.

The first inequality follows from step 1 and Theorem 7.1. For p = 2 the

second inequality follows from the first and for p = ∞ it holds by assumption.

For general p it follows by interpolation using Hölder’s inequality.
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Step 3: By Lemma 8.2 choose ην(s, t) ∈ C∞(gP ) such that

FA′
ν

= 0, A′
ν = Aν + ∗dAνην .

Moreover, choose Φ′
ν(s, t),Ψ

′
ν(s, t) ∈ C∞(gP ) such that

dA′
ν
∗s (∂sA

′
ν − dA′

ν
Φ′

ν −Xs(A
′
ν)) = 0, dA′

ν
∗s (∂tA

′
ν − dA′

ν
Ψ′

ν) = 0.

Then Ξ′
ν ∈ A1,p(a−, a+) and there exist constants c > 0 and ν0 ∈ N such that4

(8.2)
∥∥Ξ′

ν − Ξν

∥∥
1,p,εν ,Ξν

≤ cε1+2/p
ν

(8.3)
∥∥∂tA

′
ν − dA′

ν
Ψ′

ν

∥∥
L∞(Σ,∗s)

≤ ce−ρ|t|,

(8.4)
∥∥∂tA

′
ν − dA′

ν
Ψ′

ν + ∗s(∂sA
′
ν −Xs(A

′
ν) − dA′

ν
Φ′

ν)
∥∥
Lp ≤ cε2ν .

for ν ≥ ν0 and 2 ≤ p ≤ ∞.

We shall suppress the subscript ν and write A, A′, ε for Aν , A′
ν , εν etc.

All constants are independent of ν. By Lemma 8.2 we have an estimate
∥∥A′ −A

∥∥
L∞(Σ,∗s) ≤ c1 ‖FA‖Lp(Σ,∗s)

pointwise for every s and t. Hence, by step 2,
∥∥A′ −A

∥∥
Lp ≤ c2ε

2

for 2 ≤ p ≤ ∞ where the Lp-norm is to be understood on the infinite cylinder

Σh × R. It follows also from step 2 that
∥∥A′ −A

∥∥
L∞(Σ,∗s)

+ ‖FA‖L∞(Σ,∗s) ≤ c3εe
−ρ|t|

pointwise for every s and t. Now differentiate the identity

FA + dA ∗s dAη + 1
2
[dAη ∧ dAη] = 0

with respect to t to obtain

dA ∗s dA∇tη = −dABt − [dA∇tη ∧ dAη] − [[Bt ∧ η] ∧ dAη]

−2[Bt ∧ ∗sdAη] − [dA ∗s Bt ∧ η](8.5)

This implies

‖dA∇tη‖L∞(Σ,∗s)
≤ c4

(
‖dABt‖Lp(Σ,∗s)

+
∥∥A′ −A

∥∥
Lp(Σ,∗s)

)
,

4The subscript Ξν in (8.2) indicates that the covariant derivatives in the definition of the

1, p, εν-norm are with respect to the connection Ξν .
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and hence

(8.6) ‖dA∇tη‖L∞(Σ,∗s) ≤ c5e
−ρ|t|, ‖dA∇tη‖Lp ≤ c5ε

2/p.

A similar estimate holds for ∇sη.

Now denote B ′
s = ∂sA

′ − dA′Φ′ and B′
t = ∂tA

′ − dA′Ψ′. Then B′
t −Bt =

dA′(Ψ − Ψ′) + ∇t(A
′ −A) and hence

(8.7) B′
t −Bt = dA′(Ψ − Ψ′) + ∗sdA∇tη + ∗s[Bt ∧ η]

This implies

dA ∗s dA(Ψ′ − Ψ) = dA ∗s Bt − [A′ −A ∧ dA∇tη + [Bt ∧ η]]

−[dABt ∧ η] − [FA ∧∇tη](8.8)

Hence
∥∥dA(Ψ′ − Ψ)

∥∥
L∞(Σ,∗s)

≤ c6e
−ρ|t|,

∥∥dA(Ψ′ − Ψ)
∥∥
Lp ≤ c6ε

2/p
ν

and, by (8.7),
∥∥B′

t

∥∥
L∞(Σ,∗s)

≤ c7e
−ρ|t|,

∥∥B′
t −Bt

∥∥
Lp ≤ c7ε

2/p
ν

This proves (8.3).

It follows also from (8.7) and an analogous identity for B ′
s −Bs that

B′
t + ∗s(B

′
s −Xs(A

′)) = ∗s∗̇sdAη − [Xs(A) ∧ η] − ∗s(Xs(A
′) −Xs(A))

+[A′ −A ∧∇sη] − ∗s[A
′ −A ∧∇tη]

−dA′(Ψ′ − Ψ + ∇sη) − ∗sdA′(Φ′ − Φ −∇tη).

In view of (8.6) it follows that the A′-harmonic part of B ′
t + ∗s(B

′
s −Xs(A

′))

can be estimated by A′ −A. This proves (8.4).

To prove the estimate (8.2) note that

dA(A′ −A) = −FA + 1
2
[A−A′ ∧A−A′], dA ∗s (A′ −A) = −[FA ∧ η].

The Lp-norm of both terms can be estimated by ε2. The Lp-norm of dA(Ψ′−
Ψ) has already been estimated above by ε2/p and for dA(Φ′−Φ) the argument

is similar. Since

∇t(A
′ −A) = ∗s[Bt ∧ η] + ∗sdA∇tη

it follows from (8.6) that the Lp-norm of ∇t(A
′ − A) can be estimated by

ε2/p. Similarly for ∇s(A
′ − A). To estimate ∇t(Ψ

′ − Ψ) differentiate the

identity (8.5) with respect to t to obtain an estimate for ∇t∇tη in terms of

ε2/p−1 Then differentiate (8.8) with respect to t. The expressions ∇s(Ψ
′−Ψ),

∇t(Φ
′−Φ), and ∇s(Φ

′−Φ) can be estimated by similar arguments the details

of which are left to the reader. This proves (8.2).
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Step 4: Fix a constant p > 4. Then for ν sufficiently large there exists a

smooth map A′′
ν : R

2 → Aflat(P ) which satisfies the Cauchy-Riemann equa-

tions (3.4), the boundary condition (3.2),

(8.9) dA′′
ν
∗s (A′′

ν −A′
ν) = 0,

and ∥∥A′′
ν −A′

ν

∥∥
Lp +

∥∥A′′
ν −A′

ν

∥∥
L∞ ≤ cε2ν ,

∥∥∂tA
′′
ν − dA′′

ν
Ψ′′

ν − ∂tA
′
ν + dA′

ν
Ψ′

ν

∥∥
Lp ≤ cε2ν .

Here Ψ′′
ν is chosen such that dA′′

ν
∗s (∂tA

′′
ν − dA′′

ν
Ψ′′

ν) = 0. The constant c is

independent of ν.

The assertion follows from step 3 and Theorem 2.5. Condition (8.9)

means that for every s and t the connection A′′
ν(s, t) minimizes the L2-distance

of the orbit of A′′
ν(s, t) under G(P ) to the connection A′

ν(s, t) with respect to

the s-metric.

Step 5: For ν sufficiently large there exists a smooth map A0
ν : R

2 → Aflat(P )

which satisfies (3.4), (3.2),

(8.10) dAν ∗s (Aν −A0
ν) = 0,

and ∥∥∥Aν −A0
ν

∥∥∥
Lp

≤ cε2ν ,

∥∥∥∂tAν − dAνΨν − ∂tA
0
ν + dA0

ν
Ψ0

ν

∥∥∥
Lp

≤ cε2/p
ν .

Here Ψ0
ν is chosen such that dA0

ν
∗s (∂tA

0
ν − dA0

ν
Ψ0

ν) = 0. The constant c > 0

is independent of ν.

It follows from step 3 and step 4 that
∥∥Aν −A′′

ν

∥∥
L∞ +

∥∥Aν −A′′
ν

∥∥
Lp ≤ c1ε

2
ν

and ∥∥∂tAν − dAνΨν − ∂tA
′′
ν + dA′′

ν
Ψ′′

ν

∥∥
Lp ≤ c1ε

2/p
ν

with a suitable constant c1 > 0. Moreover, with ην as in step 3 we have

dAν ∗s (Aν −A′′
ν) = dAν ∗s (Aν −A′

ν) + dAν ∗s (A′
ν −A′′

ν)

= −dAνdAνην + [Aν −A′′
ν ∧ ∗s(A

′
ν −A′′

ν)]

= −[FAν ∧ ην ] + [Aν −A′
ν ∧ ∗s(A

′
ν −A′′

ν)].

and

dAν (Aν −A′′
ν) = FAν − 1

2
[Aν −A′′

ν ∧Aν −A′′
ν ].
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Hence there is a constant c2 > 0 such that for every ν

sup
s,t

∥∥Aν −A′′
ν

∥∥
W1,p(Σ,∗s) +

∥∥Aν −A′′
ν

∥∥
Lp ≤ c2ε

2
ν .

This implies that for all s and t there exists a gauge transformation gν(s, t) ∈
G(P ) such that the map A0

ν = g∗νA
′′
ν satisfies (8.10) and

∥∥∥Aν −A0
ν

∥∥∥
W1,p(Σ,∗s)

≤ c3
∥∥Aν −A′′

ν

∥∥
W1,p(Σ,∗s)

with a suitable constant c3 > 0. Since Aν and A′′
ν are smooth so is gν . Hence

A0
ν satisfies the requirements of step 5. In particular the last estimate follows

from the identity

∂tA
0
ν + dA0

ν
Ψ0

ν = g−1
ν (∂tA

′′
ν + dA′′

ν
Ψ′′

ν)gν .

Step 6: Choose Φ0
ν and Ψ0

ν such that

dA0
ν
∗s

(
∂sA

0
ν − dA0

ν
Φ0

ν −Xs(A
0
ν)
)

= 0, dA0
ν
∗s

(
∂tA

0
ν − dA0

ν
Ψ0

ν

)
= 0.

Then Ξ0
ν ∈ A1,p

0 (a−, a+,H) and there exist constants c > 0 and ν0 ∈ N such

that ∥∥∥Ξν − Ξ0
ν

∥∥∥
1,p,εν ,Ξ0

ν

≤ cε1+2/p
ν

for ν ≥ ν0.

Again we shall suppress the subscript ν and write A, A0, ε for Aν , A0
ν ,

εν etc. Moreover, denote ∇t
0 = ∂t + Ψ0, ∇s

0 = ∂t + Φ0, B0
t = ∂tA

0 − dA0Ψ0,

and B0
s = ∂sA

0 − dA0Φ0. The identity

dA0(A−A0) = FA − 1
2
[A−A0 ∧A−A0]

shows that
∥∥∥dA0(A−A0)

∥∥∥
Lp

+
∥∥∥dA0 ∗s (A−A0)

∥∥∥
Lp

≤ c1ε
2.

As in the proof of step 3 we have

(8.11) dA0(Ψ − Ψ0) = ∇t(A−A0) +B0
t −Bt.

Differentiating the identity dA0 ∗s (A−A0) = 0 with respect to t gives

dA0 ∗s ∇t
0(A−A0) = [A−A0 ∧ ∗sB

0
t ]

and hence

(8.12) dA0 ∗sdA0(Ψ−Ψ0) = −dA∗sBt+[A−A0∧∗s(Bt+B
0
t −dA0(Ψ−Ψ0))].

This implies ∥∥∥dA0(Ψ − Ψ0)
∥∥∥
Lp

≤ c2ε
2/p.
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By step 5, we have ∥∥∥Bt −B0
t

∥∥∥
Lp

≤ c3ε
2/p

and hence it follows from (8.11)
∥∥∥∇t

0(A−A0)
∥∥∥
Lp

≤ c4ε
2/p.

To estimate ∇t
0(Ψ − Ψ0) and ∇s

0(Ψ − Ψ0) by ε2/p−1 differentiate the iden-

tity (8.12) with respect to t and s. The expressions dA0(Φ−Φ0), ∇s
0(A−A0),

∇t
0(Φ − Φ0), and ∇s

0(Φ − Φ0) can be estimated by similar arguments. This

proves step 6.

Step 7: For ν sufficiently large there exist gν ∈ G2,p and τν ∈ R such that

g∗ν(Ξν ◦ στν ) = Tεν (Ξ0
ν).

The real numbers act on the moduli space M0(a
−, a+,H) by time shift.

Since µ(a−, a+) = 1 the quotient M0(a
−, a+,H)/R consists only of finitely

many points. Now the constants δ and ε0 of Theorem 6.1 are invariant under

gauge transformations and time shift. Hence step 7 follows from step 6 and

Theorem 6.1. This proves Theorem 8.1.

9. Bubbling

In this section we prove that the assumption of bounded curvature in Theo-

rem 8.1 is necessarily satisfied when the index difference is 1 or the energy is

sufficiently small.

Theorem 9.1. Let a± ∈ AΣ(Pf ,H) and assume that either CSH(a−)−
CSH(a+) < 8π2 or H ∈ Hreg

0 and µH(a−, a+) ≤ 3. Then there exist constants

c0 > 0 and ε0 > 0 such that

ε−2 ‖FA‖L∞ + ‖∂tA− dAΨ‖L∞ ≤ c0

for every Ξ ∈ A1,p
ε (a−, a+,H) with 0 < ε ≤ ε0.

Theorem 5.1 asserts that every holomorphic curve Ξ0 ∈ A1,p
0 (a−, a+,H)

can be approximated by self-dual instantons Ξε ∈ A1,p
ε (a−, a+,H). The next

theorem asserts that when the relative Morse index is 1 then for ε sufficiently

small every self-dual instanton connecting a− to a+ can be obtained this way.

Theorem 9.2. Assume H ∈ Hreg
0 and a± ∈ Aflat(Pf ,H) such that

µH(a−, a+) = 1. Then the map Tε : A1,p
0 (a−, a+,H) → A1,p

ε (a−, a+,H) of

Theorem 5.1 is onto for ε > 0 sufficiently small.

Proof. Theorem 8.1 and Theorem 9.1
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The proof of Theorem 9.1 involves a bubbling argument. Roughly speak-

ing, a sequence of εν -self-dual instantons with εν → 0 may not satisfy a uni-

form L∞-estimate in arbitrarily small neighborhoods of finitely many points

and in this case either instantons on S4 or instantons on C × P or holomor-

phic spheres in M(P ) will split off. But this cannot happen when the relative

Morse index is 1. We use the following observation due to Hofer.

Lemma 9.3. Let M be a complete metric space and f : M → R be

continuous and nonnegative. Given x ∈ M and r > 0 there exist ξ ∈ M and

0 < ρ < r such that

d(x, ξ) ≤ r, sup
Bρ(ξ)

f ≤ 2f(ξ), ρf(ξ) ≥ rf(x)/2.

Proof of Theorem 9.1. Assume that the statement were false. Then there

would exist a sequence Ξν ∈ A1,p
εν

(a−, a+,H) with εν → 0 such that

(9.1) ε−2
ν ‖FAν‖L∞ + ‖∂tAν − dAν Ψν‖L∞ → ∞.

We first prove that a subsequence (still denoted by Ξν) satisfies the estimate

(9.2) sup
ν

(
ε−2
ν ‖FAν‖L∞(K) + ‖∂tAν − dAνΨν‖L∞(K)

)
<∞

for every compact subset K ⊂ (C \W )×Σ where W ⊂ C is a discrete set (to

be constructed) which intersects [0, 1] + iR in a finite set. If (9.2) does not

hold for some compact set K ⊂ C × Σ then there exists a bounded sequence

wν ∈ C such that

cν = cν(wν) = ε−1
ν

∥∥∥FAν(wν)

∥∥∥
1/2

L∞(Σ)
+
∥∥∥∂tAν(wν) − dAν(wν)Ψν(wν)

∥∥∥
L∞(Σ)

diverges to ∞. (Pass to a subsequence if necessary.) Assume without loss of

generality that wν converges and denote its limit by w0 = s0 + it0. There are

three cases.

Instantons on S4

Assume that the sequence ενcν is unbounded. Consider the self-dual

instantons

Ξ̃ν = Ãν + Φ̃ν ds+ Ψ̃ν dt

given by

Ãν(w) = Aν(wν+ενw), Φ̃ν(w) = ενΦν(wν+ενw), Ψ̃ν(w) = ενΨν(wν+ενw)

for w = s + it. Passing to a subsequence we may assume that ενcν → ∞.

Hence there exists a sequence zν ∈ Σ such that the norm of the curvature

of Ξ̃ν at (0, zν) diverges to ∞. Assume without loss of generality that zν

converges to z0. Then it follows from the usual renormalization argument
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that an instanton on S4 splits off near (0, z0) (cf. [29]). This implies that the

energy of Ξν in an arbitrarily small neighbourhood of wν × Σ is in the limit

at least 16π2. Hence an instanton on S4 can only split off near finitely many

points (w0, z0). Let W1 denote the discrete set of complex numbers w0 ∈ C

such that there exists a sequence wν → w0 with supν ενcν(wν) = ∞.

Instantons on C × P

Let w0 ∈ C \W1 and assume that there exists a sequence wν → w0 such

that ενcν(wν) ≥ δ > 0. Since w0 /∈ W1 there exist constants c > 0 and ρ > 0

such that

sup
|w−wν |≤ρ

ενcν(w) ≤ c

for every ν. Let Ξ̃ν = Ãν + Φ̃ν ds+ Ψ̃ν dt be defined as above. Then Ξ̃ν is a

sequence of self-dual connections on C × P

∂tÃν − d
Ãν

Ψ̃ν + ∗sν+ενs

(
∂sÃν − d

Ãν
Φ̃ν

)
= 0

∂tΦ̃ν − ∂sΨ̃ν − [Φ̃ν , Ψ̃ν ] + ∗sν+ενsFÃν
= 0.

(Here sν = Rewν and s = Rew.) The curvature of Ξ̃ν is uniformly bounded

on any compact set. Hence it follows from Uhlenbeck’s compactness theorem

that there exists a subsequence (still denoted by Ξ̃ν) and a sequence of gauge

transformations gν : C × P → G such that g∗νΞ̃ν converges uniformly with all

derivatives on compact sets. The limit connection

Ξ̃ = Ã+ Φ̃ds+ Ψ̃dt = lim
ν→∞

Ξ̃ν

is self-dual on C×P with respect to the metric ∗ = ∗s0 on Σ where s0 = Rew0.

Since ενcν ≥ δ > 0 it follows that

(9.3)
∥∥∥F

Ã(0)

∥∥∥
L∞(Σ)

+
∥∥∥∂tÃ(0) − d

Ã(0)
Ψ̃(0)

∥∥∥
L∞(Σ)

6= 0.

Now introduce polar co-ordinates w = s + it = eτ+iθ and define Ξ = A +

Φds+ Ψdt by

A(θ, τ) = Ã(eτ+iθ)

Φ(θ, τ) = eτ cos θ Ψ̃(eτ+iθ) − eτ sin θ Φ̃(eτ+iθ)

Ψ(θ, τ) = eτ cos θ Φ̃(eτ+iθ) + eτ sin θ Ψ̃(eτ+iθ)

Then

(9.4)
∂τA− dAΨ − ∗ (∂θA− dAΦ) = 0,

∂τΦ − ∂θΨ − [Φ,Ψ] − e2τ ∗s FA = 0
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and the Yang-Mills action of Ξ is finite

Y(Ξ) =

∫ ∞

−∞

∫ 2π

0

(
‖∂τA− dAΨ‖2

L2(Σ) + e2τ ‖FA‖
2
L2(Σ)

)
dθdτ <∞

Similar arguments as in section 7 show that the curvature decays exponen-

tially as τ tends to ∞. Moreover, we may assume without loss of generality

that Ξ is in radial gauge, i.e. Ψ = 0 for τ sufficiently large. This implies that

the limits

A∞(θ) = lim
τ→∞

A(θ, τ), Φ∞(θ) = lim
τ→∞

Φ(θ, τ)

exist and define a flat connection on P × S1. Hence

A∞(θ) = g(θ)∗A0, Φ∞(θ) = g(θ)−1ġ(θ)

where g(θ) = g(θ + 2π) ∈ G0(P ) and A0 = A∞(0) ∈ Aflat(P ). It follows that

the Yang-Mills action of Ξ is given by

Y(Ξ) =

∫ ∞

−∞

∫ 2π

0

(
‖∂τA‖

2
L2(Σ) + e2r ‖FA‖

2
L2(Σ)

)
dθdτ

=

∫ ∞

−∞

d

dτ

∫ 2π

0

∫

Σ
( 1

2
〈∂θA ∧ (A−A0)〉 + 〈FA ∧ Φ〉) dθdτ

=

∫ 2π

0

∫

Σ

1
2
〈Ȧ∞ ∧ (A∞ −A0)〉dθ

= −8π2 deg(g).

By (9.3) the Yang-Mills action of Ξ is positive. Hence the Yang-Mills action

of Ξν in an arbitrarily small neighbourhood of w0 × Σ is in the limit at least

8π2. This shows that an instanton on C × P can only split off near finitely

many points w0. Let W2 denote the discrete set of complex numbers w0 ∈ C

such that there exists a sequence wν → w0 with ενcν(wν) 6→ 0.

Holomorphic spheres in M(P )

Now let w0 ∈ C \W2 and assume that there exists a sequence wν → w0

such that cν = cν(wν) diverges to ∞. By Lemma 9.3 we may assume that

there exists a sequence 0 < ρν < 1/2 such that

(9.5) sup
|w−wν |≤ρν

cν(w) ≤ 2cν(wν), ρνcν(wν) → ∞.

Moreover, since w0 /∈W2

lim
ν→∞

ενcν(wν) = 0.

Now define Ξ̃ν = Ãν + Φ̃ν ds+ Ψ̃ν dt by Ãν(w) = Aν(wν + c−1
ν w), Φ̃ν(w) =

c−1
ν Φν(wν + c−1

ν w), and Ψ̃ν(w) = c−1
ν Ψν(wν + c−1

ν w). This sequence satisfies
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the partial differential equation

∂tÃν − d
Ãν

Ψ̃ν + ∗sν+s/cν

(
∂sÃν − d

Ãν
Φ̃ν

)
= 0,

∂tΦ̃ν − ∂sΨ̃ν − [Φ̃ν , Ψ̃ν ] +
1

ε2νc
2
ν

∗sν+s/cν
F

Ãν
= 0.

Moreover, the Yang-Mills action is finite over Bρνcν (0) × Σ:

∫

s2+t2≤ρ2
νc2ν

(∥∥∥∂tÃν − d
Ãν

Ψ̃ν

∥∥∥
2

L2(Σ)
+

1

ε2νc
2
ν

∥∥∥F
Ãν

∥∥∥
2

L2(Σ)

)
dsdt ≤ c,

and, by (9.5), the curvature is bounded:

sup
|w|≤ρνcν

(
1

ε2νc
2
ν

∥∥∥F
Ãν(w)

∥∥∥
L∞(Σ)

+
∥∥∥∂tÃν(w) − d

Ãν(w)
Ψ̃ν(w)

∥∥∥
L∞(Σ)

)
≤ 6.

By Uhlenbeck’s weak compactness theorem (cf. [32]) we may assume, passing

to a subsequence and up to gauge equivalence, that Ξ̃ν converges strongly in

L∞ and weakly in W1,p on compact sets. The limit connection Ξ0 represents

a non-constant holomorphic map C → M(P ) with respect to the conformal

structure ∗ = ∗s0

∂tA0 − dA0Ψ0 + ∗ (∂sA0 − dA0Φ0) , FA0 = 0.

Since ρνcν(wν) → ∞ this holomorphic curve has finite energy

E(Ξ0) =

∫

C

‖∂tA0 − dA0Ψ0‖
2
L2(Σ) dsdt ≤ c.

By the removable singularity theorem Ξ0 extends to a nonconstant holomor-

phic sphere v0 : S2 → M(P ). The energy of such a holomorphic sphere is at

least 8π2 (cf. [10]). Hence a holomorphic sphere on M(P ) can only split off

near finitely many points w0. Thus we have proved that the set W ⊂ C of

all points w0 such that there exists a sequence wν → w0 with cν(wν) → ∞
intersects [0, 1] + iR in a finite set. We must prove that this set is empty.

Assume, by contradiction that W is nonempty. By (9.2) and Uhlen-

beck’s weak compactness theorem, we may assume that Ξν converges, mod-

ulo gauge equivalence, on the complement of W to a connecting orbit Ξ0 ∈
A1,p

0 (a0, a1,H) for some H-flat connections a0, a1 ∈ Aflat(Pf ,H). We may

assume without loss of generality that a0 = a− and proceed by induction as

in [26] to obtain finitely many such limit trajectories

Ξj ∈ A1,p
0 (aj , aj+1,H), j = 0, . . . , `− 1,
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with a` = a+. Now each bubble carries energie at least 8π2. Since W 6= ∅ it

follows that the limit connections have total energy

`−1∑

j=1

E(Ξj) ≤ E − 8π2

where E = CSH(a−) − CSH(a+) is the perturbed Yang-Mills action of the

connections Ξν . This is not possible if E < 8π2. Hence in this case it follows

that W = ∅. If µH(a−, a+) ≤ 3 and W 6= ∅ then the index formula (3.7)

shows that
`−1∑

j=1

µH(aj , aj+1) =
`−1∑

j=1

(
1
2
η(Daj+1) −

1
2
η(Daj ) +

1

2π2
E(Ξj)

)

= 1
2
η(Da+) − 1

2
η(Da−) +

1

2π2

`−1∑

j=1

E(Ξj)

≤ 1
2
η(Da+) − 1

2
η(Da−) +

1

2π2
E − 4

= µH(a−, a+) − 4

≤ −1

Hence µH(aj , aj+1) < 0 for some j. But since H ∈ Hreg
0 it follows that for this

value of j the set A1,p
0 (aj , aj + 1,H) must be empty. This is a contradiction

and shows that W = ∅ whenever µH(a−, a+) ≤ 3 and H ∈ Hreg
0 .

Thus we have proved in both cases that W = ∅. Hence the estimate (9.2)

holds for every compact subset K ⊂ C. It continues to hold when Ξν is

replaced by Ξν ◦ στν with any sequence τν ∈ R. Hence (9.2) holds for K = C

in contradiction to (9.1). This proves the theorem.

10. The main theorem

Theorem 10.1. There is a natural isomorphism of Floer homologies

HF inst
∗ (Σh, Pf ) = HF symp

∗ (M(P ), φf ).

In particular, for f = id,

HF inst
∗ (Σ × S1, P × S1) = HF∗(M(P ),Z).

Coherent orientation

We follow the line of argument in [18]. Let H ∈ Hreg(0) and fix two

H-flat connections a± ∈ AΣ(Pf ,H). Let p > 4 and denote

A1,p
Σ (a−, a+) =

{
Ξ = A+ Φ ds+ Ψ dt ∈ A1,p(a−, a+) : FA = 0

}
.
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This space is nonempty, connected, and simply connected. For every Ξ ∈
A1,p

Σ (a−, a+) there are Fredholm operators D0(Ξ) and Dε(Ξ). Consider the

determinant line bundle

L0 → A1,p
Σ (a−, a+)

whose fibre at Ξ is the 1-dimensional real vector space

det(D0(Ξ)) = Λmax(ker D0(Ξ)) ⊗ Λmax(ker D0(Ξ)∗)

The bundle Lε → A1,p
Σ (a−, a+) is defined similarly. Since A1,p

Σ (a−, a+) is

simply connected both line bundles are orientable. For the bundle Lε this

also follows from the fact that it extends to a determinant line bundle over

the affine space

Lε → A1,p(a−, a+).

Denote by Or0(a
−, a+) and Orε(a

−, a+) the spaces of orientations of L0 and

Lε, respectively, each consisting of 2 elements. The spaces Orε(a
−, a+) for

different values of ε are naturally isomorphic.

Proposition 10.2. For every pair a± ∈ Aflat(Pf ,H) there is a natural

bijection

τε(a
−, a+) : Or0(a

−, a+) → Orε(a
−, a+).

Proof. If D0(Ξ) is onto and ε > 0 is sufficiently small then, by Lemma 4.5

and Lemma 4.3, there is a linear bijection

Tε(Ξ) : ker D0(Ξ) → kerDε(Ξ)

given by

Tε(Ξ)α0 = ξ0 −D∗
ε(DεD

∗
ε)

−1Dεξ0.

Here ξ0 = α0+φ0 ds+ψ0 dt and φ0 and ψ0 are determined by the requirement

that

D0(Ξ)α0 = ∇tα0 − dAψ0 + ∗s(∇sα0 − dXs(A)α0 − dAφ0)

is harmonic. If D0 is not onto choose a number N and a linear map L : R
N →

Lp
f (HA) such that

D0 ⊕ L : W1,p
f (HA) ⊕ R

N → Lp
f (HA).

is onto. As in Lemma 4.5 one can show that the operator Dε ⊕ L is onto for

ε sufficiently small and there is a linear bijection

det(D0) ' Λmax(ker(D0 ⊕ L)) → Λmax(ker(Dε ⊕ L)) ' det(Dε).

The induced map Or(det(D0)) → Or(det(Dε)) is independent of the extension

L used to define it.
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Now for any three H-flat connections a0, a1, a2 ∈ Aflat(Pf ,H) Floer’s

glueing construction determines a natural map

σ0(a0, a1, a2) : Or0(a0, a1) ⊕ Or0(a1, a2) → Or0(a0, a2).

A coherent orientation for L0 is a collection of orientations σ0(a
−, a+) ∈

Or0(a
−, a+) such that

σ0(a0, a1, a2)(σ0(a0, a1), σ0(a1, a2)) = σ0(a0, a2).

Similarly for Lε. In [18] it is shown that such coherent orientations exist. The

next proposition asserts that τε and σ commute and hence every coherent

orientation for L0 is mapped under τε to a coherent orientation for Lε.

Proposition 10.3.

σε(a0, a1, a2) ◦ τε(a0, a1) ⊕ τε(a1, a2) = τε(a0, a2) ◦ σ0(a0, a1, a2)

Proof. Let Ξ ∈ A1,p
Σ (a0, a1) and Ξ′ ∈ A1,p

Σ (a1, a2) such that Ψ(s, t) =

Ψ′(s, t) = 0, A(s, t) + Φ(s, t) ds = a1 for t ≥ T , and A′(s, t) + Φ′(s, t) ds = a1

for t ≤ −T . Assume without loss of generality that D0(Ξ) and D0(Ξ
′) are

onto.

For R > T define the catenation Ξ′′
R = Ξ#RΞ′ ∈ A1,p

Σ (a0, a2) of Ξ and Ξ′

by Ξ′′(s, t) = Ξ(s, t+R) for t ≤ 0 and Ξ′′
R(s, t) = Ξ′(s, t−R) for t ≥ 0. Then

for R > 0 sufficiently large there exist isomorphisms

S0 : ker D0(Ξ) ⊕ ker D0(Ξ
′) → ker D0(Ξ

′′
R),

Sε : ker Dε(Ξ) ⊕ ker Dε(Ξ
′) → ker Dε(Ξ

′′
R).

These maps are small perturbations of the obvious shift-overlap maps (ξ, ξ ′) 7→
ξ′′(s, t) = ξ(s, t+ R) + ξ′(s, t −R). They induce the maps σ0(a0, a1, a2) and

σε(a0, a1, a2) on the spaces of orientations. Now let Tε(Ξ) be defined as in

the proof of Proposition 10.2. Then the linear operators

Sε ◦ Tε(Ξ) ⊕ Tε(Ξ
′) : ker D0(Ξ) ⊕ ker D0(Ξ

′) → ker Dε(Ξ
′′
R),

Tε(Ξ
′′
R) ◦ S0 : ker D0(Ξ) ⊕ ker D0(Ξ

′) → ker Dε(Ξ
′′
R)

are close to each other for ε > 0 sufficiently small and R > 0 sufficiently

large. This is because the maps S0 and Sε for large R > 0 are close to the

shift-overlap maps while Tε(Ξ) for small ε > 0 is close to the identity. The

details are left to the reader. (For maps of the form S0 and Sε see [18].)

Proof of Theorem 10.1. Choose ε > 0 sufficiently small and let H ∈
Hreg

0 ∩ Hreg
ε . Throughout fix a sequence of H-flat connections a0, a1, a2, . . .
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such that each equivalence class in Aflat(Pf ,H)/G0(Pf ) is represented by pre-

cisely one member of this sequence. Both Floer homology groups are gener-

ated by the same chain complex

Ck =
⊕

µH(a0 ,aj)=k

Z[aj ].

By Theorem 3.2 the grading of this chain complex is the same in both theo-

ries. We must prove that the boundary operators ∂ symp and ∂inst
ε agree for ε

sufficiently small.

Choose coherent orientations σ0(a
−, a+) for L0 and consider the induced

coherent orientations σε(a
−, a+) for Lε. These determine orientations of the

moduli spaces M0 and Mε and hence of the quotient spaces M̃0 = M0/R

and M̃ε = Mε/R of connecting orbits modulo time shift. These orientations

are invariant under Floer’s glueing maps

S0(aj , ak, a`) : M̃0(aj , ak,H) × (R,∞) × M̃0(ak, a`,H) → M̃0(aj , a`,H).

in the symplectic case and under the corresponding maps Sε(aj , ak, a`) in

the instanton case. To see this note that the induced maps on the spaces of

orientations are given by σ0(aj , ak, a`) and σε(aj , ak, a`), respectively. Now

fix two H-flat connections a± ∈ Aflat(Pf ,H) and consider the map

Tε : M0(a
−, a+,H) → Mε(a

−, a+,H)

of Theorem 5.1. The induced map on the space of orientations agrees with

the map τε(a
−, a+) of Proposition 10.2. Hence Tε is orientation preserving.

Now assume µH(a−, a+) = 1. Then, by Proposition 5.7 and Theorem 9.2,

the map Tε is bijective and hence induces a bijection of finite sets

T̃ε : M̃0(a
−, a+,H) → M̃ε(a

−, a+,H)

for ε > 0 sufficiently small. By the above argument, this map preserves the

coherent orientations. Moreover, the differential dTε(Ξ0) satisfies

dTε(Ξ0)∂tΞ0 = ∂tΞε

where Ξε = Tε(Ξ0). Since µH(a−, a+) = 1 the vector ∂tΞ0 determines the

flow orientation of M0(a
−, a+,H) while ∂tΞε determines the flow orientation

of Mε(a
−, a+,H). Hence Tε preserves both the coherent orientation and the

flow orientation. Hence it preserves the signs ν symp(Ξ0) and ν inst
ε (Ξε) which

are determined by comparing both orientations. This shows that the oriented

number of connecting orbits from a− to a+ is the same in both theories. Hence

the boundary operators ∂symp and ∂inst
ε agree for ε > 0 sufficiently small. This

proves the theorem.

University of Warwick, Coventry CV4 7AL, Great Britain
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