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Abstract

In Barrett’s (1994) paper on transboundary pollution abatement is shown that if

the signatories of an international environmental agreement act in a Stackelberg fashion,

then, depending on parameter values, a self-enforcing IEA can have any number of signa-

tories between two and the grand coalition. Barrett obtains this result using numerical

simulations in a pollution abatement model where he is not constraining emissions to be

non-negative. Recent attempts to use analytical approaches and to explicitly recognize

the non-negativity constraints have suggested that the number of signatories of a stable

IEA may be very small. The way such papers have dealt with non-negativity constraints

is to restrict parameter values to ensure interior solutions for emissions. We argue that

a more appropriate approach is to use Kuhn-Tucker conditions to derive the equilibrium

of the emissions game. When this is done we show, analytically, that the key results

from Barrett’s paper go through. Finally, we explain why his main conclusion is correct

although his analysis can implicitly imply negative emissions.

Keywords: international externalities, self-enforcing international environmental

agreements, Stackelberg equilibrium, non-negative emissions constraints

JEL classification:C72, D62, F02, Q20

2



1 Introduction

Over the last two decades, one of the factors driving an increased sense of interdepen-

dence between countries is the need to tackle global environmental problems such as

climate change, ozone depletion, loss of biological diversity amongst others. Tackling

such problems requires some form of agreement between countries, and the Framework

Convention on Climate Change, the Montreal Protocol on Substances that Deplete the

Ozone Layer, and the Convention on Biodiversity are important examples of such In-

ternational Environmental Agreements (IEAs). However, the very different experience

of these agreements illustrates the crucial importance of understanding how to design

agreements which give countries incentives to both join and abide by such agreements.

Economists have emphasized two important features: agreements must be profitable,

that is there must be potential gains to all signatory countries; more importantly, in

the absence of any international authority, agreements must be self-enforcing, i.e. there

must be incentives for countries acting in their own self-interest to want to join or stay

in an agreement.

One of the earliest definitions of a self-enforcing agreement was the concept of a

stable IEA, which means that no individual signatory country has any incentive to leave

the IEA, and no non-signatory country has an incentive to join, taking as given the

membership decisions of all other countries.1 Models based on this concept include

Carraro and Siniscalco (1991,1993), Hoel (1992), Barrett (1994), Na and Shin (1998)

amongst many others. Carraro and Siniscalco (1991) and Hoel (1992) have shown that

if signatory countries act in Cournot fashion with respect to non-signatories, then a

1There are a number of other concepts of what makes an agreement self-enforcing. Chander and

Tulkens (1995, 1997) draw on cooperative game concepts. See Tulkens (1998) for a systematic compari-

son of these two approaches. Other concepts, such as far-sightedness, have been developed, for instance,

by Ecchia and Mariotti (1997,1998), Ray and Vohra (2001) and Diamantoudi and Sartzetakis (2002b);

see Finus (2001) and Wagner (2001) for excellent overviews, and, more recently, Barrett (2003a) for a

broad exposition of the strategy of environmental treaty-making.
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stable IEA consists of 3 countries when marginal environmental damage is constant

(i.e., when the countries’ best-replay functions are orthogonal), and of 2 countries when

marginal damage increases with emissions (i.e., when the best-replay functions have a

negative slope), in both cases irrespective of the number of countries affected.2 In the

paper published by Barrett in 1994, that has had a great influence in the subsequent

literature on IEA, it is shown that for a model of abatement with quadratic costs and

benefits where the countries in the agreement act in a Stackelberg fashion, an IEA

may achieve a high degree of cooperation, but only when the gains of cooperation are

small. When the gains are large, a self-enforcing IEA cannot support a large number

of signatories (see Prop. 1 on page 886).3 The rationale for the difference in outcomes

between Cournot and Stackelberg models is that if one country was to leave the IEA,

with Cournot behaviour, the non-signatories expand their emissions and the remaining

signatory countries partially accommodate this by reducing their emissions. On the

other hand with Stackelberg behaviour, if a signatory was to leave the IEA the remaining

signatories would expand their emissions. Thus the incentives to leave an IEA are greater

with Cournot behaviour than with Stackelberg.

2Carraro and Siniscalco (1991,1993) also show that the number of signatory countries can be increased

by means of self-financed transfers. However, expanding coalitions requires some form of commitment.

Petrakis and Xepapadeas (1996) extend this result to the case in which the countries are not identical

using an emissions game with orthogonal best-replay functions like the one studied by Hoel (1992). Hoel

and Schneider (1997) point out that the prospect of receiving a transfer tends to reduce the incentive a

country might have to commit itself to cooperation so that if the disincentive is strong, total emissions

will be higher with side payments. More recently, Barrett (2001) has shown that with strong asymmetry

side payments become the vehicle for increasing participation in a cooperative agreement.
3The results obtained so far in the literature as regards participation vary widely. The number of

signatories depends on the specification of the net benefit function; for some specifications, it depends on

the parameter values; and, for some specifications, it depends on the Cournot/Stackelberg assumption.

For a more comprehensive and technical discussion of the importance of specification, see Finus (2001)

and Barrett (2003, Table 7.1). In this paper we focus on Barrett’s model (quadratic costs and benefits

in combination with the Stackelberg assumption).
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Since this model has become something of a workhorse tool to study IEAs, it is

important that its properties are well understood. In this respect we think that the

early analysis developed by Barret (1994) could be improved in two ways. First, it re-

lied on numerical simulations to derive his Prop. 1.4 Second, it assumed that aggregate

emissions are large enough to avoid the maximal abatement constraint binding (see foot-

note 4 in Barrett’s paper). However, it can be shown that this assumption on aggregate

emissions does not guarantee non-negative emissions for each individual country.5 Re-

cent papers have attempted to generalize Barrett’s numerical analysis to evaluate the

robustness of his results. Finus (2001) presents an analytical generalization of Barrett’s

results and shows that the higher the level of environmental damages, the greater the

size of the stable IEA. However, his proof assumes interior solutions, and it is easy to

show that high environmental damages imply that, unconstrained, emissions will become

negative. Diamantoudi and Sartzetakis (2002a) and Rubio and Casino (2001) also use

analytical approaches, but recognize the need to ensure that emissions are non-negative.6

They reach even more pessimistic conclusions - that even with Stackelberg behaviour

4To be fair to Barrett’s (1994) paper it should be pointed out that three additional models with

different specifications of the net benefit function are analytically solved in the paper, although these

other models have received less attention in the subsequent literature.
5This assumption is a potential problem for the quadratic specification studied by Barrett (1994) but

it is not necessarily a problem for other specifications as, for instance, the one studied by Carraro and

Siniscalco (1991). These authors develop an analytical solution for a symmetric Cournot equilibrium.

In their model they assume an environmental damage function that is quadratic with respect to the

local emissions but linear with respect to the imported emissions, i.e., environmental damage depends

on the product between local emissions and total emissions that affect the country. As a result of this

specification the solution of the game always yields interior solutions. In this paper, we focus on a global

environmental problem so that we assume that the environmental damage is a quadratic function of the

aggregate emissions.
6A referee pointed out that sequestration of carbon dioxide could be viewed as a form of negative

emissions. However this arises in the context of a stock pollutant, so that in one period it may be

possible that reductions in the stock of greenhouse gases through carbon sequestration might exceed

any positive flow of new emissions of greenhouse gases.
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the number of signatories of a stable IEA will be small - no greater than four.

However the way Diamantoudi and Sartzetakis deal with the non-negativity con-

straint is to compute an interior solution and then restrict parameter values to ensure

that the resulting emissions are always strictly positive, see their Prop. 1. It is not

surprising that this restriction on parameters restricts the number of signatories in a

stable IEA. Rubio and Casino go further and restrict parameters to ensure that payoffs

are non-negative, which is difficult to justify. We argue that neither of these approaches

is appropriate. In this paper we also use an analytical approach and deal with the non-

negativity constraint by simply imposing it directly on the choice of emissions by both

signatory and non-signatory countries and using Kuhn-Tucker conditions to derive the

equilibrium of the game. Then for some parameter values, the emission game will result

in corner solutions.

Our findings for the Stackelberg equilibrium of the emissions game show that the

number of countries in a stable IEA is directly related to the level of marginal envi-

ronmental damage so that when marginal environmental damage is low enough a stable

IEA consists of at most 3 countries while when marginal environmental damage is large

enough the unique stable IEA is the grand coalition.7 The rationale for this kind of

relationship is given by the fact that the interdependence among the countries occurs

through the environmental damage function. Thus when the marginal environmental

damage is relatively high, the countries in the agreement choose emission levels which

induce the non-signatories to select low emissions, making exit from the agreement un-

profitable. With lower marginal environmental damage cost, these effects are weakened,

so that some countries find it profitable to leave the agreement, i.e. the free-riding can-

not be avoided by Stackelberg leadership. Finally, we clarify the previous results in the

7We have also shown analytically that when the environmental damage is a quadratic function of

the aggregate emissions and the non-negativity constraints are taken into account, the previous results

obtained by Carraro and Siniscalco (1991) for the Cournot equilibrium are unaffected. See Rubio and

Ulph’s (2002a) working paper.
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literature which have been derived assuming interior solutions. According to our results

restricting parameter values to guarantee interior solutions is a sufficient condition to

get stable IEAs with a small number of signatories but it is not a necessary condition.

In this paper we show that a stable IEA with a small number of countries can involve

a corner solution. In other words, our results establish that what is really a necessary

and sufficient condition to get stable IEAs with a small number of signatories is that the

marginal environmental damage is low.

Thus we have shown in this paper that the results derived for the model of stable IEAs

in paper by Barrett (1994), which used numerical calculations on the linear-quadratic

version of the model and ignored the issue of non-negative emissions, carry through when

derived analytically in a model which takes seriously the need to ensure that emissions

are non-negative. The reason why taking account of non-negative emissions does not

change the main results of the literature is that, as we shall show, the definition of a

stable agreement depends on the sign of the difference between payoffs to signatories

and non-signatories as the number of signatories varies. Taking account of the need

for emissions to be non-negative obviously changes the value of these payoffs, but not

the sign of differences in payoffs. Thus this paper not only derives analytically results

for the Barrett (1994) model using an appropriate treatment of non-negative emission

constraints, but disproves the claim that taking account of such constraints makes a

significant difference to known results.

Finally, we would like to clarify three issues. Firstly, we want to recognize explicitly

that our results have been obtained assuming that all countries are identical as in Bar-

rett’s (1994) paper. This assumption, although restrictive, allows us to get an analytical

solution of the game and thus to advance the analysis of the stability of IEAs.8 Secondly,

we want to highlight that it is important, at least for one case, to extend the analysis in

order to consider the possibility of zero emissions not only from a mathematical point

8Although countries are symmetric, the equilibrium is asymmetric with signatories and non-

signatories polluting in different amounts.
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of view but also from an economic point of view. We are thinking about the case of

non essential emissions. In a partial equilibrium analysis, like the one we develop in this

paper, emissions are non essential when the marginal benefit from emissions is positive

but finite for zero emissions. For this type of emissions if the marginal environmental

damage is large enough it makes sense to consider the possibility that emissions can be

completely eliminated. This means that there exists a substitute so that if the damage

is big enough, emissions of a particular pollutant can be zero. This is the case studied in

this paper where we assume that the benefit from emissions is given by a quadratic-linear

function so that the marginal benefit is positive for zero emissions but finite. Finally,

following the approach adopted by Carraro and Siniscalco (1993), Barrett (1994) and

Chander and Tulkens (1997) among others we focus our analysis on the case where only

one IEA is formed and the only question remaining is the size of the self-enforcing agree-

ment. This approach is justified in this paper because our aim is to review Barrett’s

(1994) numerical analysis in order to evaluate analytically the robustness of his results

when the non-negativity constraints are taken into account. Nevertheless, this assump-

tion may be reasonable for global environmental problems, such as the climate change

problem, for which IEAs are usually unique and launched by the United Nations. In the

last analysis, it could be interpreted as an institutional constraint.

In section 2 we present the basic model of an international emissions game and

introduce the definition of a stable international environmental agreement. In section 3

we derive the stability results for Stackelberg behaviour. Section 4 concludes.9

9The proofs of all Propositions, Corollaries and Lemmas, other than Proposition 3, are provided in

the Technical Appendix.
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2 An International Emissions Game

2.1 The Basic Model

In this section we present the basic linear-quadratic model of an international emissions

game.10 There are N identical countries, i = 1, ..., N. We define qi ≥ 0 as the level

of emissions generated by country i, Qi ≡
P

k 6=i qk the total emissions generated by

all countries other than i, and Q =
P

k qk = Qi + qi as the total emissions generated

by all N countries. Each country derives a gross benefit from its emissions and also

suffers environmental damage which depends on the global level of emissions. Then each

country has a net benefit(payoff) function:

π(qi, Qi) ≡ αqi −
β

2
q2i −

γ

2
(qi +Qi)

2.

We assume that α > 0, β > 0 and γ > 0. It should be clear that w.l.o.g. we can normalize

one of the parameters and we choose to normalize by setting γ = 1. To emphasize this

normalization we rewrite the net benefit function as:

π(qi, Qi) ≡ aqi −
b

2
q2i −

1

2
(qi +Qi)

2. (1)

We shall think of b as β/γ - the ratio of the (absolute) slope of the marginal benefit curve

and the slope of the marginal damage cost curve, so a low value of b is to be interpreted

as a (relatively) high marginal damage cost.11

10In this model, as in the early papers discussed in the introduction, we deal with a flow pollutant.

For analysis using a stock pollutant see Rubio and Ulph (2002b, 2003).
11Notice that while we work with an emission game, it can be shown that this is equivalent to the

model of an abatement game developed by Barrett. The only thing that is necessary to go from the

emission game to the abatement game or vice versa is to properly define the level of unabated emissions

and to propose a variable change. In our linear-quadratic emissions game this level is given by the

emissions that maximize the gross benefit, a/b, then the abatement is defined as the difference between

this level of emissions and the current emissions xi = a/b− qi, so that the net benefits can be written in

terms of the abatement just by substitution of qi = a/b− xi in (1), where xi stands for the abatement.
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2.2 Stable International Environmental Agreements

We model an International Environmental Agreement as a three-stage model, in which

in the first stage (the Membership Game) each country decides whether or not to join

an IEA, in the second stage the signatories determine their emissions, and in the third

stage the non-signatories determine their emissions. Thus, the countries first play a

simultaneous game, the Membership Game, and given the outcome of this game they

play a sequential game that we call the Emissions Game. We describe each game briefly,

in reverse order.

The Emissions Game

Suppose that, as the outcome of the first-stage game, there are n signatory countries

(a typical signatory being denoted by s) andN−n non-signatory countries (a typical non-

signatory being denoted by f, for fringe or free-rider). Each non-signatory country takes

as given the emissions of all other countries and chooses its emissions to maximize its own

net benefits. Using symmetry, this will define a non-signatory reaction function linking

the emissions of a typical non-signatory country to the emissions of a typical signatory

country. Signatory countries choose emissions to maximize the aggregate payoff of the

n signatories, recognising how this will affect emissions of non-signatories.

Two issues need further clarification. First, there is the question of the timing, or

really commitment, of the emissions of signatories relative to non-signatories. Following

Barrett (1994) we argue that membership of an IEA acts as a form of commitment

device, which we model by thinking of signatories setting their emissions before non-

signatories. In that case signatories can calculate what emissions non-signatories will

choose (in terms of the non-signatory reaction function), and choose their own emissions

to maximize aggregate net benefit. This is the Stackelberg model.12

The resulting abatement game is equivalent to the emission game and yields the same results. See

Diamantoudi and Sartzetakis (2002a) for an application of this procedure.
12We would like to explicitly acknowledge that this notion of equilibrium for the emissions game is the

Stackelberg version of the “Partial Agreement Nash Equilibrium (PANE) with respect to a coalition”
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The second issue is that emissions by signatories and non-signatories have to be non-

negative and we just impose these as constraints on the decision problems of signatories

and non-signatories. So for some parameter values the emissions of either a signatory or

non-signatory could be zero (a corner solution).

The outcome of the emission game then, is that, for any number of signatories n we

can define the equilibrium payoffs to signatory and non-signatory countries: πs(n),πf(n).

The Membership Game

We follow Hoel (1992), Carraro and Siniscalco (1993), Barrett (1994) and others

in saying that an IEA is self-enforcing if it is stable, where the concept of stability

is borrowed from the literature on cartel stability (d’Aspremont et al (1983)). For

2 ≤ n ≤ N we define ∆(n) = πs(n)− πf(n− 1); then:

Definition 1 An IEA with n signatories is stable if it satisfies the conditions: Inter-

nal Stability: ∆(n) ≥ 0, i.e. πs(n) ≥ πf(n − 1); External Stability: ∆(n + 1) ≤

0, i.e.πf(n) ≥ πs(n+ 1).

Internal stability simply means that any signatory country is at least as well off

staying in the IEA as quitting, assuming that all other countries do not change their

membership decisions. External stability similarly requires that any non-signatory is at

least as well off remaining a non-signatory than joining the IEA, again assuming that

all other countries do not change their membership decisions.

We can also think of a stable IEA as a Nash equilibrium of a simultaneous open

membership game where the strategies for each country are to sign or not sign.13 A

country takes as given the membership decisions of all other countries. Suppose these

have resulted in a membership of m, 0 ≤ m ≤ N − 1. Then the payoffs to a country are

πs(m+ 1) if it signs and πf(m) if it does not. So it will join if πs(m+ 1) ≥ πf(m) and

not join otherwise. For an IEA with n∗ members to constitute a Nash equilibrium of the

defined by Chander and Tulkens (1997)
13In open membership games, any player is free to join or leave a coalition. In our case each country

chooses one of the two possible strategies and the agreement is formed by all players who choose to sign.
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Membership Game, it must have paid each signatory to sign, so πs(n∗) ≥ πf(n∗ − 1).

Similarly it must have paid each non-signatory not to join, so πf(n∗) ≥ πs(n∗+1). These

are just the conditions for Internal and External Stability.

In this next section we analyze stable IEAs for the Stackelberg model with non-

negative emissions.

3 Stable Stackelberg IEAs with Non-Negative Emis-

sions

In this section we analyze stable IEAs when signatory countries act collectively as a

Stackelberg leader and emissions are restricted to be non-negative. We begin with the

emissions game.

3.1 Stackelberg Emissions Game with Non-Negative

Emissions

Suppose there are n signatories and N − n non-signatories. A non-signatory country k

takes as given Qfk and chooses qfk to solve:

max
qfk≥0

πfk = aqfk −
b

2
q2fk −

1

2
(qfk +Qfk)

2,

where qfk stands for the level of emissions generated by non-signatory k, k = 1, ..., N−n,

and Qfk for the total emissions generated by all countries other than non-signatory k.

The first order condition is:

∂πfk
∂qfk

= a− bqfk − (qfk +Qfk) ≤ 0, qfk ≥ 0, qfk
∂πfk
∂qfk

= 0. (2)

(2) defines the non-signatory reaction function for a country k allowing for the fact

that emissions must be non-negative, so part of the reaction function has qfk = 0. Now
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signatories are assumed to coordinate in order to maximize their collective net benefits

taking into account the reaction function of the followers:

max
qs1,...,qsn,qf1,...,qf,N−n≥0

Πs =
nX
i=1

πsi =
nX
i=1

[aqsi −
b

2
q2si −

1

2
(qsi +Qsi)

2],

s.t. − a+ bqfk + (qfk +Qfk) ≥ 0,

where qsi stands for the level of emissions generated by signatory i, i = 1, ..., n, and Qsi

for the total emissions generated by all countries other than signatory i.

Under the assumption of symmetry we have that qf1 = ... = qf(N−n) = qf , qs1 = ... =

qsn = qs and Q = nqs + (N − n)qf , so that the previous optimization problem reduces

to:

max
qs≥0, qf≥0

nπs = n[aqs −
b

2
q2s −

1

2
(nqs + (N − n)qf)2]

s.t. − a+ bqf + nqs + (N − n)qf ≥ 0, (3)

The Lagrange function for the problem is

L = n[aqs −
b

2
q2s −

1

2
(nqs + (N − n)qf)2]

+λ (−a+ bqf + nqs + (N − n)qf) ,

and the KTCs are

∂L

∂qs
= n[a− bqs − n(nqs + (N − n)qf) + λ] ≤ 0, (4)

qs ≥ 0, qs
∂L

∂qs
= 0,

∂L

∂qf
= −n(N − n)(nqs + (N − n)qf) + λ(b+N − n) ≤ 0, (5)

qf ≥ 0, qf
∂L

∂qf
= 0,

∂L

∂λ
= −a+ bqf + nqs + (N − n)qf ≥ 0, (6)

λ ≥ 0, λ
∂L

∂λ
= 0.

Equilibrium in the emissions game involves solving (4)-(6) simultaneously, taking

account of non-negativity constraints. In principle there are three possibilities:
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(i) Interior Solution (qs > 0, qf > 0). From (4)-(6) we obtain:

qs =
a [b2 − (N − n)(n− 2)b+ (N − n)2]

b[(b+N − n)2 + bn2]
, (7)

qf =
a [b2 + (N + n2 − 2n)b− (N − n)n]

b[(b+N − n)2 + bn2]
, (8)

so that qs > 0, qf > 0 iff

g(b, n) = b2 − (N − n)(n− 2)b+ (N − n)2 > 0,

h(b, n) = b2 + (N + n2 − 2n)b− (N − n)n > 0.

(ii) Signatory Corner Solution (qs = 0, qf > 0). From (4)-(6) this requires:

qf =
a

b+N − n, g(b, n) ≤ 0. (9)

(iii) Non-Signatory Corner Solution (qs > 0, qf = 0). From (4)-(6) this requires:

qs =
a

n
, h(b, n) ≤ 0. (10)

It is easy to show that for the Stackelberg equilibrium a solution qs = qf = 0 does

not satisfy the KTCs. Given the emissions for each kind of solution the net benefits can

be obtained by substitution.

(i) Interior Solution:

πs (n) =
a2

2b

½
1− N2b

(b+N − n)2 + bn2

¾
, (11)

πf (n) =
a2

2b

½
1− (b+ 1)N

2(b+N − n)2

[(b+N − n)2 + bn2]2

¾
. (12)

(ii) Signatory Corner Solution:

πs(n) = − a2(N − n)2
2(b+N − n)2 , πf(n) =

a2[b− (N − n)(N − n− 2)]
2(b+N − n)2 . (13)

(iii) Non-Signatory Corner Solution:

πs(n) = −a
2(b+ n(n− 2))

2n2
, πf(n) = −a

2

2
. (14)
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Now note that for the interior solution the full-cooperative level of emissions is given

by Eq. (7) for n = N and that the full-noncooperative Cournot level of emissions is

given by Eq. (8) for n = 0. In these two cases we have an interior solution, for this

reason we focus in the rest of this Section on n = 1, 2, ..., N − 1.

We now want to determine more precisely for which parameter values the three

different solutions occur. This analysis is developed in the following pages and the final

results are presented in Fig. 3. The results clearly depend on the signs of g(b, n) and

h(b, n). In that Fig. b1(n) is the function implicitly defined by h(b, n) = 0 and b2(n) and

b3(n) are the functions implicitly defined by g(b, n) = 0 so that these functions allows

us to determine for which values (b, n), g(b, n) and h(b, n) yield negative values or zero

and then to know when the solution of the problem is a corner solution.14 The next

proposition fixes n and considers for which values of b we get each of the three solutions.

Proposition 1 For any n, there exists a unique solution to the Stackelberg emissions

game with non-negative emissions as follows: (i) for n ∈ {1, 2, 3}, there exists b1(n)

defined above such that for b ≤ b1(n) the equilibrium is the non-signatory corner solution

while for b > b1(n) the equilibrium is the interior solution; (ii) For n = 4, we have

that g(N − 4, 4) = 0 and that b1(4) < N − 4 so that: (a) for b ≤ b1(4) the equilibrium

is the non-signatory corner solution, (b) for b1(4) < b < N − 4 the solution is the

interior solution, (c) for b = N − 4 the equilibrium is the signatory corner solution,

(d) for b > N − 4 the equilibrium is again the interior solution; (iii) For n ∈ (4,N),

we have that b1(n) < b2(n) < b3(n) so that : (a) for b ≤ b1(n) the equilibrium is the

non-signatories corner solution, (b) for b ∈ (b1(n),b2(n)) the equilibrium is the interior

solution, (c) for b ∈ [b2(n),b3(n)] the equilibrium is the signatories corner solution, and

(d) for b > b3(n) the solution is the interior solution.

This Proposition determines, for a given value of n, the critical values of b that yield

14Notice that g(b, n) = 0 defines two functions because for a given n the equation has two positive

real solutions: b2(n) < b3(n). However, h(b, n) = 0 has only a positive real solution that defines b1(n).

15



one type of solution or another. For instance, we have shown that if b is big enough

the Stackelberg equilibrium is an interior solution for any value of n. Notice that the

three kind of solutions that the problem can present can be explained by resort to the

marginal conditions defined by the f.o.cs. of the problem. Next, we explain the logic

behind the non-signatories corner solutions since as will be seen in Subsection 3.2 this

kind of solution supports high levels of cooperation. To do that first we rewrite the

optimization problem of signatories using the reaction function of non-signatories as an

equality

max
qs≥0

nπs = n

"
aqs −

b

2
q2s −

1

2

µ
(N − n)a+ nbqs
b+N − n

¶2#
.

For this problem the f.o.c. can be written as

a− bqs =
nb(N − n)a
(b+N − n)2 +

n2b2

(b+N − n)2 qs,

where the l.h.s. stands for the marginal benefit of emissions and the r.h.s for the marginal

environmental damage. Now we can use this condition to explain why when b is enough

low the solution is that non-signatories cut their emissions completely. Looking first at

the limit case of b = 0 we see that the problem becomes linear and the solution would be

qs = +∞ and qf = −∞ as (7) and (8) establish. Thus, when b is enough low the opti-

mization problem is “quasi-linear” and both the marginal benefit curve and the marginal

environmental damage curve are very “flat”. Under these conditions the marginal ben-

efit of emissions decreases slowly and the marginal environmental damage also increases

slowly resulting in large emissions for the signatories. Then as for b = 0 the emissions

tend to infinite there exists a critical value for b given by b1(n) such that if b ≤ b1(n)

the signatories’ emissions are large enough to induce the non-signatories to choose zero

emissions. At this point the reader should take into account that the signatories enjoy

a strategic advantage and that emissions are strategic substitutes which explains why

zero emissions can be the optimal policy for the non-signatories if signatories’ emissions

are large enough.
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In order to complete the analysis of the parameter space we now characterize func-

tions b1(n), b2(n) and b3(n) which allow us to determine the shape of the contours

g(b, n) = h(b, n) = 0 of the functions g(b, n) and h(b, n). For b1(n) we have that

b1(0) = b1(N) = 0 and it is easy to show that the function presents a unique extreme in

the interior of the interval (1, N − 1) which is a maximum.15 Then there exists, at least,

one integer, n̂, in that interval that maximizes b1(n) so that b1(n̂) is the maximum value

of the function given by an integer in domain {1, 2, ..., N − 1}.16 Given this behaviour of

function b1(n) we are able to establish for a given b what is the solution to the emissions

game for non-signatories for different values of n. For b ≤ b1(n̂), define n1≤ n2 as positive

real roots of b = b1(n) then we find that:

Lemma 1 (i) If b > b1(n̂) we have that for all n the equilibrium will be an interior

solution; (ii) If b ≤ b̂1(n̂), there exist n1, n2 defined above such that the equilibrium will

be an interior solution for n such that n /∈ [n1,n2] and a corner solution for n when

n ∈ [n1,n2].

Moreover, as b1(N − 1) is the minimum value of b1(n) for n = 1, 2, ..., N − 1 we can

also establish that:

Corollary 1 If b ∈ (0,b1(N− 1)], n1< 1 and n2≥ N− 1 so the only interior solutions

are n = 0 and n = N. In other words, the equilibrium is a corner solution for non-

signatories for all n.

15In order to study the behaviour of b1(n) in that interval we assume that n is a real number and

once we know the properties of b1(n) then we are able to characterize the values of b1(n) with respect

to n but now with n restricted to be an integer number. The same approach is followed to study b2(n)

and b3(n).
16Function b1(n) has a unique maximum, ñ,in the real interval (1, N−1). If the maximum is an integer

the function has the same maximum in the domain {1, 2, ..., N − 1} that we call n̂. If ñ is not an integer

and the function is not symmetric then n̂ is the closest integer to ñ that yields the maximum value

for b1(n). If the function is symmetric we could have two maximums n̂1 and n̂2 such that n̂2 = n̂1 + 1

provided that ñ is in the center of interval (n̂1, n̂2).
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We illustrate these results in Figure 1.17

⇒ FIGURE 1 ⇐

The kind of solution for signatories emissions depend on whether b belongs to the

interval [b2(n), b3(n)]. It can be shown that b2(n) is a strictly convex, decreasing function

defined in the interval [4, N ] with b2(4) = N−4 and b2(N) = 0. Then for n = 4, 5, ..., N−1

the maximum value of the function is N − 4 and the minimum value is b2(N − 1).

On the other hand, b3(n) is a strictly concave function with a maximum value equal

to N(N−4)/4 in interval (4, N−1) with b3(4) = N−4 and b3(N) = 0. Then there exists,

at least, one integer, n∗, that maximizes b3(n) so that b1(n
∗) is the maximum value of

the function given by an integer in domain {4, 5, ..., N − 1} and therefore the function

increases for 4 ≤ n < n∗ and decreases afterwards.18 See Fig. 2. For this behaviour of

functions b2(n) and b3(n) we are able of establishing for a given b what is the solution

to emissions game for signatories for different values of n. For b ∈ [b2(N− 1),N− 4],

define n3 as the unique, positive real root of b = b2(n) and n4 > n3 as the unique positive

real root of b = b3(n). For b ∈ (N− 4,b3(n
∗)], define n3 ≤ n4 as the positive real roots

of b = b3(n). Then we have:

Lemma 2 (i) If b > b3(n
∗) we have that for all n the equilibrium will be an interior

solution;(ii) If b ∈ [b2(N− 1),b3(n
∗)], there exist n3,n4 defined above depending on

whether b is greater or less than N−4 such that the equilibrium will be an interior solution

for n when n /∈ [n3,n4] and a signatory corner solution for n when n ∈ [n3,n4];(iii) If

b ∈ (0,b2(N− 1)), we have that for all n the equilibrium will be an interior solution.

17In order to simplify the graphical representation we assume that the maximum value of real function

b1(n) is the integer number n̂.
18Function b3(n) has a unique maximum, ñ, in the real interval (4, N −1) for N > 5. If the maximum

is an integer the function has the same maximum in the domain {4, ...,N − 1} that we call n∗. If ñ

is not an integer and the function is not symmetric then n∗ is the closest integer to ñ that yields the

maximum value for b3(n). If the function is symmetric we could have two maximums n
∗
1 and n

∗
2 such

that n∗2 = n
∗
1 + 1 provided that ñ is in the center of interval (n

∗
1, n
∗
2).
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We illustrate this Lemma in Figure 2.19

⇒ FIGURE 2 ⇐

Now we can completely characterize the parameter space. The next Proposition

summarizes Lemmas 1 and 2.

Proposition 2 (i) If b > b3(n
∗) we have that for all n, the equilibrium will be an interior

solution for signatories and non-signatories; (ii) If b ∈ (b1(n̂),b3(n
∗)], the equilibrium

will be an interior solution for non-signatories for all n, however for signatories there

exist n3,n4 defined above such that the equilibrium will be an interior solution for n when

n /∈ [n3,n4] and a corner solution when n ∈ [n3,n4];(iii) If b ∈ [b2(N− 1),b1(n̂)], there

exist n1,n2,n3 and n4 defined above such that the equilibrium will be an interior solution

for non-signatories for n when n /∈ [n1, n2] and a non-signatory corner solution for n

when n ∈ [n1,n2], moreover the equilibrium will be an interior solution for signatories

for n when n /∈ [n3,n4] and a signatory corner solution for n when n ∈ [n3,n4];(iv) If

b ∈ (b1(N− 1),b2(N− 1)), the equilibrium will be an interior solution for signatories

for all n and a corner solution for non-signatories also for all n except for n = N−1;(v)

Finally, if b ∈ (0,b1(N− 1)], the equilibrium will be an interior solution for signatories

for all n and a corner solution for non-signatories also for all n.

We illustrate this Proposition in Figure 3.20

⇒ FIGURE 3 ⇐
19In order to simplify the graphical representation we assume that the maximum value of real function

b3(n) is given by the integer n
∗.

20In order to simplify the graphical representation we assume that the maximum values of real func-

tions b1(n) and b3(n) are given by the integers n̂ and n
∗. Notice that as b2(n) is a decreasing, strictly

convex function and b2(N) = b1(N) = 0, b1(n) must be also a strictly convex function for big enough

values of n. The previous results apply for N > 5 although with minimal changes they are also valid

for N = 5.
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As can be seen the parameter space is divided into five regions which are defined by

four critical values of b. The first one is the maximum value of b3(n). Above this value

the equilibrium will be an interior solution for signatories and non-signatories. Under

this value the corner solutions appear. The second critical value is the maximum value

of b1(n). Between these two critical values the equilibrium will be a corner solution for

signatories for some values of n. The third critical value is the minimum value of b2(n),

i.e. b2(N − 1). In this third region the type of equilibrium depends on n. For low values

of n we will find a corner solution for non-signatories. However for high values of n the

signatories will choose zero emissions. Finally, the last critical value is b1(N − 1) which

defines a transition region almost identical to the bottom region for which the equilibrium

will be an interior solution for signatories and a corner solution for non-signatories.

Thus for any parameters N and b, Proposition 2 indicates for, any number of signa-

tories n, what type of solution there is to the Stackelberg emissions game, with corner

solutions to take account of non-negative emissions constraints. Next using these re-

sults and the corresponding outputs and equilibrium payoff functions for signatories and

non-signatories we conduct the stability analysis.

3.2 Membership Game for Stackelberg Model with Non-Negative

Emissions

In this Section we show that the scope of the international cooperation for controlling

an environmental problem depends critically on the level of the marginal environmental

damage. We begin analyzing the stability for (relatively) high marginal damages, i.e.,

for low values of b.

Proposition 3 If b ≤ b1(N − 1) the unique stable IEA of the Stackelberg model with

non-negative emissions is the grand coalition.

Proof: To conclude that the grand coalition is self-enforcing it is only necessary

to check if the internal stability condition is satisfied, i.e. if 4(N) = πs(N) − πf(N −
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1) ≥ 0 according to Def. 1. From (11) we know that the net benefits of the full-

cooperative equilibrium of the emission game are πs(N) = a2/2(b+N2).Moreover, Prop.

2 establishes that for this range of parameter values the equilibrium of the emissions game

is the non-signatories corner solution for n < N but for this kind of solution the net

benefits of the non-signatories are negative since their emissions are zero, see (14). The

result is that the internal stability condition is satisfied: 4(N) > 0.¥

When b is low enough as to induce the non-signatories to cut completely their emis-

sions, the grand-coalition, i.e. the full-cooperative equilibrium, is self-enforcing since no

country has incentives to exit from the agreement.

Next we show that the grand coalition cannot be a stable agreement for lower values

of damage costs.

Proposition 4 If b ∈ [b2(N−2), b2(4) = N−4], there exists an upper bound given by the

smallest integer no less than n3 for the number of countries that belong to a self-enforcing

IEA. This upper bound decreases when b increases.

This result establishes that the scope of cooperation is very sensitive to changes in

the level of marginal environmental damage. So that we have to expect that a reduction

in the marginal damage leads to a reduction in the level of cooperation reached by a

self-enforcing IEA. The explanation for this kind of relationship is given by the fact that

the interdependence among the countries occurs through the damage function. Thus,

when the marginal environmental damage is relatively high (a low b), the leadership of

the countries in the agreement is strong and the signatories choose emission levels which

induce non-signatories to select low values of emission, making exit from the agreement

unprofitable. These effects are weakened as environmental damage costs get smaller.

Finally, we focus on the scope of cooperation when b > N − 4.

Proposition 5 If b > N − 4 and N > 5 the maximum level of cooperation that can be

achieved by a self-enforcing IEA is 3.
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Then taking into account that N(N − 4)/4 > N − 4 when N > 5 and that b >

N(N − 4)/4 is a sufficient condition to have an interior solution for signatories and

non-signatories we can conclude that:

Corollary 2 If b > N(N − 4)/4 then the Stackelberg equilibrium is an interior solution

for signatories and non-signatories and the maximum level of cooperation that can be

achieved by a self-enforcing IEA is 3.

It is also easy to show that for a large enough value of b the stable level of cooperation

is 2. These conclusions clarify the previous results in the literature which have been

derived assuming that there are interior solutions. According to our results restricting

parameter values to guarantee interior solutions is a sufficient condition to get stable

IEAs with a small number of signatories but it is not a necessary condition. We have

obtained that it is enough with b > N − 4 to have a maximum of three countries in

an IEA. But between N − 4 and N(N − 4)/4 the Stackelberg equilibrium is a corner

solution for different values of n depending on the value of b. This means that what is

necessary and sufficient to get a small degree of cooperation is a high value of b and not

interior solutions for signatories and non-signatories.

Thus we have shown that even if we take seriously non-negative emission constraints,

the Stackelberg model can have stable IEAs as large as the grand coalition and as low

as a bilateral agreement depending on the value of the marginal environmental damage.

Finally, although we have shown that, allowing for non-negative emission constraints,

it is still possible to get the grand coalition as a stable IEA, it could still be the case that

imposing non-negative emissions has a significant effect on the size of a stable IEA in

the sense that for any particular set of parameter values the size of IEA is significantly

smaller than would be calculated if one simply ignored the constraints. To test this

we have taken values of a = 1000, values of N = 10, 20, , 150, and 1500 values of b.

For each set of parameter values we calculated the size of the stable IEA imposing

non-negative emission constraints and without imposing such constraints. Three points
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emerged: (i) first, we confirmed, that, for all N , by varying b the maximum size of

stable IEA obtained was the grand coalition, whether or not the non-negative emission

constraints were imposed; (ii) for any set of parameter values, the size of the stable

IEA with the non-negative emissions constraints imposed was never greater than the

size of stable IEA when the constraints were ignored; (iii), but crucially, the maximum

difference in the size of stable IEA between restricted and unrestricted emissions is 1.

We illustrate this in Table 1 by showing for a range of values of N the average size of

stable IEA (averaged over different values of b) with and without the constraints. As can

be seen the difference in average size by imposing the constraints is tiny as one expected

given that the maximum difference is 1. This means that for a lot of cases there is no

difference in the level of cooperation with and without constraints One has to go to the

third decimal place to detect a difference in average size.

Table 1

Average Size of Stable IEA

With and Without Constraints

N With Constraints Without Constraints

10 6.268 6.272

30 16.677 16.680

50 27.148 27.151

70 37.629 37.631

90 48.110 48.111

110 58.589 58.590

130 69.068 69.069

150 79.545 79.546
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4 Conclusions

In this paper we have provided analytical proofs of the main results of the linear-

quadratic version of the widely used model of stable IEAs introduced by Carraro and

Siniscalco (1991) and Barrett (1994). Moreover, we have shown, analytically, that these

results are robust to the introduction of constraints that emissions must be non-negative.

While such constraints significantly complicate the analysis, they leave the main find-

ings of the original literature almost completely unaffected. Since it is clearly right that

such non-negative constraints should be taken into account, it is important to know

the original results are robust and this is one of the contributions of our paper. An-

other contribution is that our results qualifies the claim by Diamantoudi and Sartzetakis

(2002a) that imposing non-negative emissions constraints significantly reduces the size

of the stable IEAs. This paper argues that this claim is right only when emissions are

restricted to be strictly positive, however if countries can completely cut their emissions

the size of the stable IEAs depends directly on the marginal environmental damage so

that a high degree of cooperation can be reached if the marginal environmental damage

is big enough. Thus, this paper gives an analytical support to the Barrett’s conclusion

on the scope of cooperation that can be achieved by a self-enforcing IEA.

Of course there are many other respects in which the original models of stable IEAs

need to be extended - richer concepts of self-enforcing agreements, asymmetric countries,

concepts of fairness, dealing with stock pollutants, allowing for uncertainty and learning

- and the authors of the original papers and many others have made important contribu-

tions to addressing these extensions (see again Finus (2001) for an excellent survey). We

too have addressed some of these extensions (Rubio and Ulph (2002b, 2003), Ulph (2002

a, b)). However, since the basic model continues to attract interest, it is important to

make sure that its properties rest on thorough analysis, and this paper contributes to

that purpose.
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Technical Appendix

A Proof of Proposition 1

First, we show that there does not exist any value of b such that g(b, n), h(b, n) ≤ 0 for

a given value of n. For given n h(b, n) is strictly convex function with respect to b with

a minimum for a negative value of b and an intersection point with the vertical axis also

negative. This implies that h(b, n) = 0 has only a positive real solution given by

b1(n) =
1

2

n
−(N + n2 − 2n) + (n4 − 4n3 + 2Nn2 +N2)1/2

o
, (1)

so that h(b, n) will be negative or zero if b ∈ (0, b1(n)] and strictly positive if b > b1(n).

On the other hand, function g(b, n) is strictly convex with respect to b and presents

a minimum for b = (N − n)(n − 2)/2. For this minimum the value of the function is

n(N − n)2(4 − n)/4 which implies that g(b, n) > 0 for n = 1, 2, 3 and b > 0. Then we

can conclude that there does not exist any value of b such that g(b, n), h(b, n) ≤ 0 for

n = 1, 2, 3 since g(b, n) is always positive. For n = 4, g(b, 4) = 0 for b = N − 4 and

positive for b 6= N − 4 but as b = N − 4 is bigger than b1(4) if N > 4, g(b, n), h(b, n)

cannot be negative or zero at the same time for n = 4.1 For n > 4, g(b, n) = 0 has two

positive real solutions

b2(n) =
1

2

n
(N − n)

h
n− 2− (n2 − 4n)1/2

io
, (2)

b3(n) =
1

2

n
(N − n)

h
n− 2 + (n2 − 4n)1/2

io
(3)

such that b2(n) < b3(n) and g(b, n) will be negative or zero if b ∈ [b2(n), b3(n)].

Next, we show that b1(n) is lower than b2(n). Let’s suppose now that b1(n) ≥ b2(n)

which yields

−(N + n2 − 2n) + (n4 − 4n3 + 2Nn2 +N2)1/2

≥ (N − n)(n− 2)− (N − n)(n2 − 4n)1/2 > 0, (4)

1We assume that N is big enough to satisfy N > 4.
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simplifying terms we have that

(n4 − 4n3 + 2Nn2 +N2)1/2 ≥ N(n− 1)− (N − n)(n2 − 4n)1/2 > 0.

Then squaring and simplifying terms again we get

n(n2 − (3 +N)n+ 3N) ≥ −(n− 1)(N − n)(n2 − 4n)1/2,

where the left-hand side of the inequality is negative for n ∈ (4, N), then multiplying by

−1 we obtain

0 < −n(n2 − (3 +N)n+ 3N) ≤ (n− 1)(N − n)(n2 − 4n)1/2.

Finally, squaring again and simplifying terms we get a contradiction

4n(n2 − 2Nn+N2) ≤ 0,

since n2 − 2Nn + N2 is positive for n < N. Consequently, we can establish that

b1(n) < b2(n) for all n > 4 and then g(b, n) and h(b, n) cannot be negative or zero

at the same time. This means that for each combination (b, n) only one of the three

solution characterized in the paper applies.

Now according to the sign of h(b, n) and g(b, n) it can be established for each com-

bination (b, n) which it is the kind of solution the problem has. For n = 1, 2, 3 we have

two kinds of solutions. For b ≤ b1(n) we have that h(b, n) ≤ 0 and the equilibrium yields

qf = 0 and qs > 0 whereas for b > b1(n) h(b, n) > 0 and the equilibrium is the interior so-

lution since g(b, n) is also strictly positive. For n = 4 we find the three kinds of solutions

but the signatory corner solution only for b = N − 4 since only for (b = N − 4, n = 4)

g(b, n) is zero. Finally, as we can order the critical values of b : b1(n) < b2(n) < b3(n),

if b > b3(n) we have that h(b, n) and g(b, n) are strictly positive and the equilibrium

yields qs > 0, qf > 0, if b ∈ [b2(n), b3(n)] g(b, n) is negative or zero and the equilibrium

yields qs = 0, qf > 0, if b ∈ (b1(n), b2(n)) g(b, n) and h(b, n) are strictly positive again

and then the equilibrium yields qs > 0, qf > 0, and finally if b ≤ b1(n) g(b, n) is strictly

positive and h(b, n) is negative or zero and the equilibrium then yields qs > 0, qf = 0.

The graphical representation of this result appears in Fig. 3
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B Proof of Lemma 1

The results in Lemma 1 are shown from the properties of b1(n). Thus, what we show

first is that b1(0) = b1(N) = 0 and that b1(n) presents a unique extreme in the interval

(1, N − 1) which is a maximum.

By substitution it is easy to check that b1(0) = b1(N) = 0. To show that the unique

extreme of b1(n) is a maximum we use the inverse function of b1(n). In order to obtain

this function we rewrite h(b, n) as

h(b, n) = (b+ 1)n2 − (2b+N)n+ (b+N)b,

and then from h(b, n) = 0 we get:

n+(b) =
2b+N + (N2 − 4b3 − 4b2)1/2

2(b+ 1)
, n−(b) =

2b+N − (N2 − 4b3 − 4b2)1/2
2(b+ 1)

, (5)

which yield real values for N2−4b3−4b2 ≥ 0. Thus these two functions yield real values

in the interval [0, b̃] where b̃ is the unique positive solution of equation N2−4b3−4b2 = 0.

Moreover, the sign of their first derivatives is2:

dn+

db
= −2b

3 + 6b2 + 4b+N2 + (N − 2)(N2 − 4b3 − 4b2)1/2
2(b+ 1)2(N2 − 4b3 − 4b2)1/2 < 0,

dn−

db
=

2b3 + 6b2 + 4b+N2 − (N − 2)(N2 − 4b3 − 4b2)1/2
2(b+ 1)2(N2 − 4b3 − 4b2)1/2 > 0,

and

n+(b̃) = n−(b̃) =
2b̃+N

2(b̃+ 1)
= ñ,

so that it can be concluded that n−(b) is the inverse function of b1(n) in interval [0, ñ] and

that it is increasing in that interval and also that n+(b) is the inverse function of b1(n)

in interval [ñ, N ] and that it is decreasing in that interval. Then we have that function

b1(n) is increasing in interval [0, ñ) and decreasing in interval (ñ, N ] and therefore it

presents a maximum at n = ñ.

2It is easy to show that the numerator of dn−/db is positive.
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Notice that

lim
b→b̃−

dn+

db1
= −∞; lim

b→b̃−

dn−

db1
= +∞,

which implies that db1/dn = 0 when n = ñ . Finally, it is immediate to show that

ñ ∈ [1, N − 1]. Then given the properties of b1(n) we can determine for any b the kind

of solutions depending on the value of n. Next we explain this.3

According to footnote 16 in the main text we define n̂ as the integer that maximizes

b1(n) in the domain {1, 2, ..., N − 1}. Then if b > b1(n̂) we have that b > b1(n) for all n

and according to Prop. 1 the equilibrium is the interior solution for all n. If b < b1(n̂)

equation b = b1(n) has two, positive real roots that we call n1, n2 such that n1 < n2.

Then as b1(n) is first increasing and afterwards decreasing we have that b > b1(n) when

n < n1 and n > n2 and accordingly the equilibrium is the interior solution in those two

cases. However, when n ∈ [n1, n2] we have that b ≤ b1(n) and Prop. 1 establishes that

the equilibrium is the corner solution. Finally, for b = b1(n̂) we find three possibilities.

If n̂ = ñ equation b1(n̂) = b1(n) yields n1 = n2 = n̂ and the equilibrium is the interior

solution for all n except for n̂. If n̂ 6= ñ, because ñ is not an integer and the function

is not symmetric, equation b1(n̂) = b1(n) yields n1 < n2 where one of this two values

by definition is n̂, the closest integer to ñ, see footnote 16. Then given the behaviour

of the function around ñ the distance between n1 and n2 must be less than the unity

and the equilibrium again is the interior solution for all n except for n̂. If the function

is symmetric it could present two maximum n̂1 = n1 and n̂2 = n2 provided that ñ is in

the center of interval (n̂1, n̂2),and the equilibrium would be the interior solution for all

n except for n̂1 and n̂2.
4

3Fig. 1 can help to the reader to follow our argument.
4Notice that symmetry is a necessary condition to have two maximums but not a sufficient condition.
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C Proof of Corollary 1

This result is immediate from Lemma 1 provided that b1(N − 1) is the minimum value

of b1(n) for n = 1, 2, ..., N − 1 since in this case n1 < 1 and n2 ≥ N − 1. As b1(n) is

first increasing for n < ñ and afterwards decreasing, b1(N − 1) is the minimum value if

b1(N − 1) is lower than b1(1).

First we calculate these two values:

b1(1) =
1

2

n
−(N − 1) + (N2 + 2N − 3)1/2

o
,

b1(N − 1) =
1

2

n
−(N2 − 3N + 3) + (N4 − 6N3 + 15N2 − 14N + 5)1/2

o
.

Let´s suppose now that b1(1) ≤ b1(N − 1) which yields

−(N − 1) + (N2 + 2N − 3)1/2 ≤ −(N2 − 3N + 3) + (N4 − 6N3 + 15N2 − 14N + 5)1/2,

simplifying terms we have that

0 < N2 − 4N + 4 + (N2 + 2N − 3)1/2 ≤ (N4 − 6N3 + 15N2 − 14N + 5)1/2.

Then squaring and simplifying terms again we get

0 < 2(N2 − 4N + 4)(N2 + 2N − 3)1/2 ≤ 2N3 − 10N2 + 16N − 8.

Finally, squaring again and simplifying terms we get a contradiction

0 ≤ −16N5 + 144N4 − 512N3 + 896N2 − 768N + 256,

since the right-hand side of the inequality is negative for N ≥ 3. Then we can conclude

that b1(1) > b1(N − 1) and from Lemma 1we obtain Corollary 1.

D Proof of Lemma 2

As for Lemma 1, the proof of Lemma 2 derives from the properties of the functions b2(n)

and b3(n). By substitution in (2) we get that b2(4) = N − 4 and b2(N) = 0. Remember
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that signatories’ emissions are always positive for n ∈ {1, 2, 3} and b > 0. See Appendix

A.

On the other hand, if we take the first derivative of b2(n) we obtain

db2
dn

=
1

2

(
N − 2n+ 2 + 2n

2 − (6 +N)n+ 2N
(n2 − 4n)1/2

)
,

that presents the following limits:

lim
n→4

db2

dn
= −∞,

lim
n→N

db2

dn
=

1

2

(
−(N − 2) + N(N − 4)

(N2 − 4N)1/2

)
< 0 for N > 4.

Moreover, its second derivative is:

d2b

dn2
=
1

2

Ã
−2 + 2n

3 − 12n2 + 12n+ 4N
(n2 − 4n)1/2

!
.

Let ´s suppose that this second derivative is negative or zero. This implies that

0 < 2n3 − 12n2 + 12n+ 4N ≤ 2(n2 − 4n)1/2,

squaring and reordering terms we obtain the following inequality

4n6 − 48n5 + 192n4 + (16N − 288)n3 − (96N − 140)n2 + (96N + 16)n+ 16N2 ≤ 0.

It is easy but tedious to show that the left-hand side of this inequality is positive for

n ≥ 4 yielding a contradiction. So that we can conclude that d2b2/dn2 > 0 which allows

us to establish that b2(n) is a decreasing, strictly convex function in interval [4, N ].

Next, we study the properties of function b3(n). By substitution in (3) we get that

b3(4) = N − 4 and b3(N) = 0. Moreover, it is easy to show that b3(n) is a strictly

concave function with a maximum in interval (4, N − 1) equal to N2/2(N − 2).5 So that

for n ∈ (4, N2/2(N − 2)) b2(n) increases and for n ∈ (N2/2(N − 2), N) decreases. The

maximum value for the function is b3(N
2/2(N − 2)) = N(N − 4)/4 > b2(4) = N − 4.

5In order to have an interval with more than one point we assume that N > 5.
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Then given the properties of b2(n) and b3(n) we can determine for any b the kind of

solutions for signatories depending on the value of n. Next we explain this.6

According to footnote 18 in the main text we define n∗ as the integer that maximizes

b1(n) in the domain {4, ..., N−1}. Then if b > b3(n∗) we have that b > b3(n) for all n and

according to Prop. 1 the equilibrium is the interior solution for all n. If b ∈ (N−4, b3(n∗))

equation b = b3(n) has two positive real roots that we call n3, n4 such that n3 < n4. Then

as b3(n) is first increasing and afterwards decreasing we have that b > b3(n) when n < n3

and n > n4 and accordingly the equilibrium is the interior solution in those two cases.

However, when n ∈ [n3, n4] we have that b ≤ b1(n) and Prop. 1 establishes that the

equilibrium is the corner solution. If b ∈ [b2(N − 1), N − 4], we have that b = b3(n)

has a unique positive solution n4 that along with n3 obtained from b = b2(n) define an

interval [n3, n4] for which b ∈ [b2(n), b3(n)], then according to Prop. 1 the equilibrium is

the corner solution when n belongs to that interval and the interior solution if that is

not the case. If b ∈ (0, b2(N−1)) we have that b < b2(n) for all n and according to Prop.

1 the equilibrium is the interior solution for all n. Finally, for b = b3(n
∗) we find three

possibilities. If n∗ = ñ equation b3(n
∗) = b3(n) yields n3 = n4 = n

∗ and the equilibrium

is the interior solution for all n except for n∗. If n∗ 6= ñ, because ñ is not an integer and

the function is not symmetric, equation b3(n
∗) = b3(n) yields n3 < n4 where one of this

two values by definition is n∗, the closest integer to ñ, see footnote 18. Then given the

behaviour of the function around ñ the distance between n3 and n4 must be less than

the unity and the equilibrium again is the interior solution for all n except for n∗. If the

function is symmetric it could present two maximum n∗1 = n1 and n
∗
2 = n2 provided that

ñ is in the center of interval (n∗1, n
∗
2),and the equilibrium would be the interior solution

for all n except for n∗1 and n
∗
2.

6Fig. 2 can help to the reader to follow our argument.
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E Proof of Proposition 2

Points (i)-(iii) and (v) follow from Lemmas 1 and 2 and Corollary 1 provided b1(n̂) <

b3(n
∗). Point (iv) only occurs if b1(1) > b2(N − 1) and b1(N − 2) > b2(N − 1) since

function b1(n) is first increasing and afterwards decreasing and b1(N − 1) < b2(N − 1)

according to Prop. 1. First we show that b1(n̂) < b3(n
∗) for N > 5. From the proofs of

Proposition 1 and Lemma 2 we know that b1(4) < b2(4) = b3(4) = N − 4 < b3(n∗).

On the other hand, b1(n) can be increasing or decreasing at n = 4 depending on the

number of countries, N. Let´s suppose that

db1(4)

dn
= −3 + 16 + 4N

(32N +N2)1/2
≥ 0.

This implies that

16 + 4N ≥ 3(32N +N2)1/2,

that squaring and simplifying yields

256− 160N + 7N2 ≥ 0.

It is easy to show that the left-hand side of the inequality is negative for N ∈ (5, 21].

So that we can conclude that db1(4)/dn < 0 which means that n̂ ≤ 4. The previous

result also allows us to establish that for N > 21, the first derivative of b1(n) at n = 4

is positive which means that n̂ ≥ 4.

Next we suppose that N ∈ (5, 21]. In that case, n̂ is an integer in the domain

{1, 2, 3, 4}. If n̂ = 4, we already know that b1(4) < N − 4 < b3(n∗) and it is established

that b1(n̂) < b3(n
∗). If n̂ were an integer different from 4, it is easy to show that b1(n) <

N − 4 for n = {1, 2, 3} so that we can also conclude that b1(n̂) < b3(n∗) for this values

of n.

Next, we suppose that N > 21. In that case, n̂ ≥ 4. For n̂ = 4 the same argument

than the one we have just used is applied. For n̂ > 4, we know from Proposition 1 that

b1(n̂) < b2(n̂) and from the proof of Lemma 2 that b2(n̂) < N − 4 < b3(n∗) so that we

find that b1(n̂) < b3(n
∗) as we wanted to establish.
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Finally, we show that b1(1) > b2(N − 1)b and b1(N − 2) > b2(N − 1). Let´s suppose

first that b1(1) ≤ b2(N − 1). This implies that

0 <
³
(N − 1)2 + 4(N − 1)

´1/2
≤ 2N − 4−

³
(N − 1)2 − 4(N − 1)

´1/2
.

Squaring yields

2(2N − 4)
³
(N − 1)2 − 4(N − 1)

´1/2
≤ (2N − 4)2 − 8(N − 1),

squaring again, simplifying and reordering terms we obtain the following inequality

32N3 − 240N2 + 448N − 256 ≤ 0.

This inequality yields a contradiction for N > 5 so that we can conclude that b2(N−1) <

b1(1).

Next, we suppose that b1(N − 2) ≤ b2(N − 1). This implies that

0 < (N4 − 10N3 + 41N2 − 72N + 48)1/2 ≤ −4N +N2 + 5− (N2 − 6N + 5)1/2.

Squaring yields

2(−4N +N2 + 5)(N2 − 6N + 5)1/2 ≤ 2N3 − 14N2 + 26N − 18,

squaring again, simplifying and reordering terms we obtain the following inequality

16N4 − 144N3 + 400N2 − 464N + 176 ≤ 0

This inequality yields a contradiction fro N > 5 so that we can conclude that b2(N−1) <

b1(N − 2).

F Proof of Proposition 4

For b ∈ [b2(N−2), N−4], we have that n4 ∈ (N−1, N) so that we have a signatory corner

solution for n ∈ [n3, n4]. This is a consequence of the fact that b3(N−1) > b2(4) = N−4.7

7This is very easy to show so that we omit it.
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Now given a value of b we select n such that n and n− 1 ∈ [n3, n4] and we check if the

internal stability condition can be satisfied. In this case we have that both n and n− 1

are signatory corner solutions so that according to (13) from the main text the internal

stability condition is given by

4(n) = − a2(N − n)2
2(b+N − n)2 −

a2[b− (N − n+ 1)(N − n− 1)]
2(b+N − n+ 1)2

= −a
2[b3 + L(n)b2 +M(n)b+ P (n)]

2(b+N − n)2(b+N − n+ 1)2 ,

where

L(n) = 2(N − n) + 1 > 0, M(n) = 3(N − n)2 + 2(N − n) > 0

P (n) = 2(N − n)3 + 2(N − n)2 > 0

So, 4(n) is negative, in fact, is negative for all b > 0. Consequently if there exists a

self-enforcing IEA the number of countries in the agreement must be equal to or less

than n3, in fact, as it is not guarantee that n3 is an integer, the upper bound for the

number of countries in a self-enforcing IEA must be defined as the smallest integer no

less than n3. Finally, from Lemma 2 we know that b2(n) is a strictly convex, decreasing

function defined in interval [4, N ], then as n3 is defined as the unique, positive real root

of equation b = b2(n), we can conclude that n3 decreases when b increases and that,

consequently, the smallest integer no less than n3 also decreases.

G Proof of Proposition 5

According to Proposition 4 if b = N − 4 the maximum number of countries in a self-

enforcing IEA is four then the question to answer now is whether an agreement of four

countries can be self-enforcing for b > N − 4. For b > N − 4 and n = 4, according to

Proposition 1, the equilibrium is the interior solution for signatories and non-signatories.

Then using (11) and (12) from the main text we get

4(4) = − a2N2k(b)

2[(b+N − 3)2 + 9b]2[(b+N − 4)2 + 16b] ,
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where

k(b) = 3b4 + (6N + 48)b3 + (2N2 − 40N + 101)b2

−(2N3 − 7N2 − 10N + 39)b− (N4 − 14N3 + 73N2 − 168N + 144).

It can be easily shown that k00(b) is a strictly convex function with a minimum at

b = (8+N)/2. For this minimum we have that the second derivative is positive for all N.

This implies that k0(b) is increasing for all b > 0 and consequently is also increasing for

b > N − 4. Then as k0(N − 4) = 252N3− 1212N2− 3408N +16716 is positive for N > 5

we can conclude that the first derivative is positive for b > N−4, which implies that k(b)

is increasing for b > N −4. Finally, as f(N − 4) = 8N4− 99N3+362N2−207N − 676 is

positive for N > 5 we have that k(b) is positive for b > N − 4 so that 4(4) is negative

and the internal stability condition is not satisfied. This show that n = 4 cannot be the

Nash equilibrium of the membership game.
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